
Technology Mapping for Speed-Independent Circuits: Decomposition and

Resynthesis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Alex Kondratyev, The University of Aizu, Japan

Jordi Cortadella, Univ. Politecnica de Catalunya, Barcelona, Spain*
Michael Kishinevsky, The University of Aizu, Japan

Lucian0 Lavagno, Politecnico di Torino, Italy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt
Alex Yakovlev, University of Newcastle upon Tyne, United Kingdom !

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This paper presents theory and practical implementa-

tion of a method for multi-level logic synthesis of speed-
independent circuits. An initial circuit implementation is
assumed to satisfy the monotonous cover conditions but is
technology independent. The proposed method pedorms
both combinational {inserting new gates) and sequential
{inserting new memory elements) decomposition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof com-
plex gates in a given standard cell library, while pre-
serving original behaviour and speed-independence. The
algorithm applies known eficient algebraic factorization
techniques from combinational multi-level logic synthesis,
but achieves also boolean simplification and sequential
decomposition. The method allows sharing of decomposed
logic.

1 Introduction
Speed-independent circuits, originating from D.E.

Muller’s work [111, are hazard-free under the unbounded
gate delay model. With recent progress in developing effi-
cient analysis and synthesis techniques, supported by CAD
tools, this sub-class has moved closer to practice, bear-
ing in mind the advantages of speed-independent designs,
such as their greater temporal robustness and self-checking
properties.

Existing methods of logic synthesis for speed-
independent circuits either assume that the implementa-
tion library contains and gates with unbounded fanin and
“free” input inversions ([1,5,9]) or they use non-standard
‘‘hazard absorbing” flip-flops whose effectiveness inprac-
tice still needs to be evaluated ([141). Other results on the
implementability of semi-modular circuits without inputs
using two-input/two-output and and or gates ([HI) are
only interesting from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa theoretical standpoint, due to their
extremely high implementation cost.

In attempts to map speed-independent circuits into a
more realistic, standard cell-like, library, other sort of re-

‘This work has been partly supported by the Ministry of Education of
Spain (CICYT TIC 95-0419), ACD-WG (ESPRIT21949) and integrated
action UK -1995-0203.

h i s work has been partly supported by MURST research project
“VLSI architectures”.

Work supported by UK EPSRC GRn24038, ACiD-WG (ESPRIT
21949) and British Council integratedaction Spain (MDR/1996/97/1159)

strictions have been exercised. For example, the approach
described in [16] works only under thefundamental mode
assumption, which is overly restrictive and does not fit well
theoretically with the unbounded delay assumption. The
same authors describe in [15] a method to perform tech-
nology mapping for speed-independent circuits that only
decomposes existing gates (e.g., a 3-input AND into two
2-inputANDs), without any further search of the implemen-
tation space. They do not explore complex decompositions,
that could use multi-cube divisors, or decompose several
gates simultaneously. The same limitations also affect the
work of [l, 21. The idea of complete resynthesis of a
circuit every time a new signal is inserted is exploited in
[12] for the technology mapping of timed asynchronous
circuits. However the search space for decomposition is
again limited by a single signal network.

In [13] a method for technology mapping of speed-
independent circuits using complex gates was presented.
This method however only identifies when a set of simple
logic gates can be implemented as a complex gate, but
cannot perform a speed-independent decomposition of a
signal function in case it does not fit into a single gate. In
fact, this method can be used as a post-optimization step
after our proposed decomposition technique.

Finally, Bums analyzes [4] the correctness conditions
for a decomposition of a sequential element that is part of
a speed-independent circuit into two sequential elements
(or a sequential and a combinational element). Notably,
these conditions are analyzed using the original (unex-
panded) behavioural model, thus helping the efficiency of
the method. This work is, in our opinion, a big step in
the right direction, but addresses mainly correctness issues.
It does not describe how to use the efficient correctness
checks in an optimization loop, and does not allow the
sharing of a decomposed gate by different signal networks.

The idea of combinational logic decomposition with
resynthesis has been proposed in [8,7]. The approach com-
bines together efficient algebraic factorization techniques
used in multi-level combinational logic synthesis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(finding
candidates for decomposition), and speed-independence
preserving signal insertion (the latter idea originated in [171
and was implemented efficiently in [6]).

The main contribution of this paper is a generalisation
and extension of the above basic idea so as to cover both
combinational and sequential decomposition. We have

0-8186-7922-0/97 $10.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1997 IEEE
240

developed a body of theory that allows us to prune the
search space when looking for solutions. We continue
to use classical logic synthesis techniques available for
combinational multi-level logic in order to fiid good can-
didate functions for the decomposition. In the case of
combinational decomposition the newly inserted signal is
a library gate. The insertion of a combinational gate is
based primarily on one of the two transitions of the gate's
output (e.g., its rising transition). The other transition of
the combinational gate is fully determined by the insertion
place of the first transition.

A sequential decomposition, based on a new memory
element, can improve the progress of mapping by rendering
the opposite transition a more effective role, since the set
and reset logic are inserted independently. In particular,
two boolean functions can be decomposed at the same time
with one new signal. Thus, in comparison with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4], this
method:

e targets the search of the solution towards a given

e allows logic sharing based on multiple acknowledg- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 performs global optimization via resynthesis (rather

Throughout the paper we use the following notation:

library;

ments;

than sequential decomposition).

A stands for the original State Graph, A' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- for a new
State Graph obtained by signal insertion.

a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, c, . . . (lower case Latin letters) are used for signal
names and, corresponding to them, literals in Boolean
functions.

2 - always denotes a new signal, which is inserted
in State Graph A to decompose a non-implementable
function.

B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, F, P, Q, R, . . . (upper case Latin letters, except
A) stand for the names of Boolean functions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 Theoretical background
In this section we introduce theoretical concepts required

for our decomposition method: (1) circuit specification
and its logic implementability; (2) conditions for speed-
independent decomposition of complex gates; and (3)
transformations of state graphs to ensure those conditions.
2.1 State Graphs and Logic Implementability

A State Graph (SG) is a labeled directed graph whose
nodes arc called states. Each arc of an SG is labeled with
an event, that is a rising (a+) or falling (a-) transition
of a signal a in the specified circuit. We also allow
notation a* if we are not specific about the direction of
the signal transition. Each state is labeled with a vector
of signal values. An SG is consistent if its state labeling
v : S --f (0, is such that: in every transition sequence
from the initial state, rising and falling transitions altemate
for each signal. Figure 1,b shows the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASG for the Signal
Transition Graph in Figure l,a, which is consistent, We
write s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ (s 5 s') if there is an arc from state s (to state
s') labeled with a.

a+

Z-

a,d - inputs acdz r--l

o001-

Figure 1: An example of State Transition Graph (a) and
State Graph (b) (benchmark hazard.g)

The set of all signals whose transitions label SG arcs
are partitioned into a (possibly empty) set of inputs, which
come from the environment, and a set of outputs or state
signals that must be implemented. In addition to consis-
tency, the following two properties of a SG are needed for
their implementability in a speed-independent logic circuit.

The first property is speedindependence. It consists of
three constituents: determinism, commutativity and output-
persistency. A SG is called deterministic if for each state
s and each label a there can be at most one state s' such
that s ---f s'. A SG is called commutative if whenever
two transitions can be executed from some state in any
order, then their execution always leads to the same state,
regardless of the order. An event U* is called persistent
in state s if it is enabled at s and remains enabled in any
other state reachable from s by firing another event b*. A
SG is called output-persistent if its output signal events are
persistent in all states. Any transformation (e.g., insertion
of new signals for decomposition), if performed at the SG
level, may affect all three properties.

The second property, Complete State Coding (CSC),
becomes necessary and sufficient for the existence of a
logic circuit implementation. A consistent SG satisfies the
CSC property if for every pair of states s,s' such that
v (s) = v(s'), the set of output events enabled in both states
is the same. (The SG in Figure 1 ,b is output-persistent and
has CSC.) CSC does not however restrict the type of logic
function implementing each signal. It requires that each
signal is cast into a single atomic gate. The complexity
of such a gate can however go beyond that provided in a
concrete library or technology.
2.2 Gate-level implementability without hazards

Necessary and sufficient conditions for speed-
independent implementation using unbounded fanin and
gates (with unlimited input inversions), bounded fanin or
gates and C elements were given in [1,9]. In this work we
are considering a similar basic implementation architec-
ture, called the standard-C architecture, which is described
in Figure 2. The difference from previous work is that

24 1

instead of unbounded fanin gates for the set and reset logic
of C-elements, we will allow only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAimplementable gates,
that is the gates which exist in the chosen library.

Figure 2: The standard-C architecture extended for com-
plex gates

The concepts of excitation and quiescent regions are
essential for that. A set of states is called an excitation
region (ER) for event a* (denoted by ERj(a*)) if it is a
maximal connected set of states such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVs E E Rj (a*) : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Since any event a* can have several separated ERs,
an index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj is used for the distinction between different
connected occurrences of a* in the SG.

The quiescent region (QR) (denoted by QRj(a*)) of a
transition a*, with excitation region ERj(a*) , is a maximal
set of states s reachable from ERj(a*) such that a is stable
in s and s is not reachable from any other ERk(a*) such
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk # j without going through ERj (a*) '. Examples of
ER and QR are shown in Figure 1,b.

Let Cj(a*) denote one of the first-level AND-OR
gates in the standard-C architecture. Cj(a*) is a cor-
rect monotonous poly-term cove? for the excitation region
ERj(a*) if the following three conditions are satisfied: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. Cover condition: Cj(a*) covers all states of ERj(a*)
(i.e., Cj(a*) evaluates to 1 in all states of ERj(a*)) .

2, One-hot condition: Cj(a*) does not cover any state
outside ERj(a*) U QRj(u*).

3 . Monotonicity condition: Cj(a*) changes at most once

The conditions above are called the Monotonous Cover
conditions or shortly the MC-conditions. Since under these
conditions the outputs of the first-level gates are one-hot

along any state sequence within QRj(a*) .

'Note that contrary to [9, 11 in this paper we use only the so-called
restricted quiescent regions which do not include states reachable directly
from two different excitationregions of the same signal.

*Here for simplicity we consider the definition of Monotonous Cover
without the extension by the so-called backward quiescent regions and
without considering covering of multiple regions by the same cover.
However all the results can be easily generalized for this extension as
well.

encoded any valid Boolean decomposition of the second-
level or gates is speed-independent.

The standard-C architecture permits a combinational
implementation of a signal. If the set and reset networks
are the complements of each other, then a C-element with
identical inputs can be simplified to a wire (see Figure
2,b,c). In such case we say that the signal has a complete
cover,
2.3 Property-preserving event insertion

Our decomposition method is essentially behavioural --
the extraction of new signals at the structural (logic) level
must be matched by an insertion of their transitions at the
behavioural (SG) level. Event insertion is an operation on
a SG which selects a subset of states, splits each of them
into two states and creates, on the basis of these new states,
an excitation region for a new event. Figure 3 shows the
chosen insertion scheme, analogous to that used by most
authors in the area [17].

Figure 3: Event insertion scheme: (a) before insertion, (b)
after insertion

State signal insertion must preserve the speed-
independence of the original specification. An inserted
signal is denoted by x in this paper. The corresponding
to it events are denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx*, x + , x - , or, if no confusion
occurs, simply by 2. Let A be a SG and A' is a state graph
obtained by insertion of event x . We say that an insertion
state set ER(x) , in a SG A is a speed-independence pre-
serving set (SIP-set) iff: (1) for each event a in A, if a is
persistent in A, then it remains persistent in A', and (2) A'
is deterministic and commutative. The formal conditions
for the set of states r to be a SIP-set can be given in terms
of intersections of r with the so-called state diamonds of
SG [6]. These conditions are illustrated by Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, where
all possible cases of the illegal intersections of r with state
diamonds are shown.

It was shown in [6] that the insertion of a signal by
means of a SIP-set is a necessary and sufficient condition
to preserve the speed-independence of a corresponding SG.
This requirement is the most general one in the synthesis
of speed-independent circuits and it does not restrict the
solution space unless we go beyond the speed-independent
class. An efficient method for finding SIP-sets, which
is based on regions, has been proposed in [6]. The
first method for finding SIP-sets based on reduction to
satisfiability problem was proposed in [171.

Assume that the set of states S in a SG is partitioned
into two subsets which are to be encoded by means of
an additional signal. This new signal can be added either
in order to satisfy the CSC condition, or to break up a
complex gate into a set of smaller gates. In the latter case,
a new signal represents the output of the intermediate gate
added to the circuit. Let r and 7 = S - r denote the blocks
of such a partition. For implementing such a partition we

242

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4: Possible violations of SIP conditions

need to insert transitions of the new signals in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAborder
states between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV.

In this paper we shall consider the so-called input
border of a partition block T , denoted by IB(T) , which is
informally a subset of states of T by which T is entered. We
call IB(r) wellformed if there are no arcs leading from
states in T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- IB(T) to states in IB(T). If a new signal is
inserted using an input border, which is not well-formed,
then the consistency property is violated. Therefore, if
an input border is not well-formed, its well-formed speed-
independent preserving closure is constructed, as described
by Algorithm 4.1 in Section 4.

The insertion of a new signal can be formalized with
the notion of I-partition ([17] used a similar defmition).
Given a SG, A, with a set of states S, an I-partition is a
partition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS into four blocks: {S+, S', S-, So}. So(S')
defines the states in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz will have the stable value
0 (1). S+(S-) defines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAER(z+) (ER(%-)) in the new
SG A'. Therefore, abusing notation we will often refer
to S+(S-) as to ER(s+) (ER(z-)) when talking about
states of the original SG A or, if confusion may arise,
we write ERA(z+) (ERA(z-)). If the insertion of z
preserves consistency and persistency, then the only tran-
sitions crossing boundaries of the blocks are the following:
so --+ s+ -+ s' t s- t so. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Decomposition techniques

We assume here familiarity with multi-level logic syn-
thesis (see [3] for more details).

As described in the previous section, any deterministic,
commutative, output-persistent SG satisfying the CSC and
the Monotonous Cover conditions can be implemented
using the standard-C architecture. We assume that C-
elements are present in the library '. OR-gates combining
cover functions C(a*) can be decomposed by any standard
technique since their inputs are one-hot encoded. Hence the
bottleneck for technology mapping is the implementation
of cover functions C(a*) using gates available in the
library.

As traditionally done in multi-level combinational syn-
thesis, we have chosen algebraic division as the main
operation for logic decomposition. Thus, for each cover
function C(a*) we seek algebraic divisors, aiming at de-
compositions of the following ty C(a*) = F * G + R
where G is the quotient C (a *) F ! AND-decomposition

31n fact our technique works and is implemented also for RS- and
Dlatches. However, this generalization of the method is omitted due to
the lack of space.

i complex gate!
I

Figure 5: Cover function C(a*) (a) and its combinational
(b) and sequential (c) decompositions

is done when R = 0, whereas OR decomposition occurs
when G = 1.

However, contrary to the classical combinational de-
composition we use divisor F not for immediate extraction,
but as a first approximation of the function to be extracted.
More specifically, function F defies one (sequential de-
composition) or two (combinational decomposition) blocks
of a partition of the state space, which is later used for new
signal insertion (see Sections 4 and 5 for more details).

Two ways of decomposing C(a*) are possible:

0 combinational decomposition: a divisor F is imple-
mented by a combinational gate, z, as shown in Figure
5,b and

0 sequential decomposition: an additional latch (e.g.,
C-element) implements signal z; divisor F is used
as one of the input functions for the latch as shown
in Figure 5,c. Another function (denoted by P in
the figure) must be extracted from some other cover
function. Functions F and P form the set and reset
functions for the new sequential signal z.

In our decomposition technique transitions of z are
acknowledged by several cover functions. This is more
general and powerful than [lS, 41 where transitions of s
must be acknowledged locally, only by the cover function
C(a*) from which z is extracted. Multiple acknowledg-
ment offers two advantages: (1) the same signal z can be
shared by several cover functions (this corresponds to the
extraction of common sub-dividers in classical multi-level
decomposition) and (2) correct speed-independent decom-
position can be found even if it does not exist for solutions
with single acknowledgments (see the experimental re-
sults). Note that we do not specifically search for multiple
acknowledgments. They appear automatically due to the
signal insertion technique based on SIP-sets. Hence our
solution is correct by construction and contrary to [2] never
requires iterations with verification procedures.

To find good divisors F for C(a*) the following func-
tions are considered:

0 Kernels and co-kernels of C(a*).

243

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(a*) is a poly-term cover, any subset of terms of
the sum-of-product expression (OR-decomposition).

0 If C(a*) is one cube, any subset of literals of the cube
(AND-decomposition).

0 Recursive decomposition of the previous candidates,
e.g. sub-kemels and AND/OR-decomposition of kernels.

This generation of divisors is heuristically pruned to
avoid an explosion of candidates for functions with many
terms or cubes with many literals. Experimental results
(Section 6) have shown this type of decomposition to be
very effective. In particular, only those decompositions are
considered that:
(1) preserve speed-independence and
(2) guarantee progress in mapping the circuit to the given
library.

The first condition is satisfied by finding an I-partition
for signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC. Many candidates for decomposition are
filtered out at this step, since for many divisors there are
no valid I-partitions.

To clarify the second condition assume that function F
is extracted from a cover function C(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa*) for combinational
decomposition (see Figure 5,b). If there is a valid I-partition
for a new signal 2, then there is a speed-independent
implementation for the circuit with signal IC. However,
in general, there is no guarantee that function C(a*) is
simplified in the new circuit. The substitution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 for
F in C(a*) does not always preserve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ed-independence
and hence new fan-in signals for C G) can appear in
the implementation. Thus, the progress condition checks
whether a substitution of IC instead of F in C(a*) is valid.

Since multiple acknowledgment of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 can appear, the
requirement for “good decomposition” is following: the
complexity of all (other than C(a*)) functions in 5’s
fan-out has to remain the same or to increase very moder-
ately. In Section 4.3 we present a computationally efficient
method for the estimation of effective decompositions.

The overall algorithm for logic decomposition is
sketched below. The next sections describe each step
in more detail.

Algorithm 3.1 (Speed-independent decomposition)

while circuit is not mapped to the libmy do
Calculate monotonous covers for all events;
Let a* be the event with the most complex cover;
Let D, be a set of divisors for C(a*);
/* Kemels, co-kernels, AND/OR decomposition */
Let &be a set of divisors for the most complex
cover functions other than C(a*);
for each F E D, do

Decomposition(F, F) ;
/* Check combinational decomposition for F */
for each P E &do

Decomposition(F, P)
/* Check sequential decomposition for the pair { F, P} */

end for
end for
if All decompositions fail then

else
return; /* Cover C(a*) cannot be decomposed */

Choose the best decomposition ({F, F } or {F , P});
Insert a new signal
/* by an I-partition defined by the best decomposition */

end if
end while

Decomposition(F, P);
Find I-partition for the pair { F, P};
if not exists then return failure;
Evaluate progress for decomposition of C(a*);
/*(proposition 4.1) */
if no progress then return failure;
Estimate progress for all other covers;
/* (property 4.5) */
if implementability is disturbed then return failure

Note that after each cycle, when a successful decom-
position is found, the implementation of every signal in
the circuit is recomputed for the best candidate. Since at
the recomputation step the new don’t care sets are used
for all signals, this practically implements sequential de-
composition and boolean division (i.e., it is far beyond the
capabilities of algebraic factorization). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a

a
z

z

Figure 6: Circuits for a hazard.g example before (a) and
after (b) decomposition

Example hazardg. This example (from the set of
asynchronous benchmarks) is used for illustrating our al-
gorithm. Its Signal Transition Graph and SG are shown in
Figure l,a and b. Signals a and d are inputs, signals c and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z -- outputs. A speed-independent implementation of the
output signals c and z is presented in Figure 6,a. Our target
is the decomposition of function S, into two-input gates,
because it is a standard worst case against which the per-
formance of a decomposition algorithm can be measured.
Function S, consists of a single 3-literal cube iidc. It can
be decomposed in three ways: by extracting functions i id,
Ec and dc.

Example 2. For the cover C(y*) = ab+ac+de f the fol-
lowing divisors are generated (trivial 1-literal divisors are
not considered): the kernel b + c, the OR-decompositions
ab, ac, d e f , ab + ac, ab + def and ac + def and the
AND-decompositions de, df and e f .

4 Combinational d ~ c o ~ ~ o s i t i o n
4.1 State partitioning

In this section we apply the theory of SIP-insertion,
reviewed in Section 2.3, to a divisor F of a given cover
C(a*).

244

Definition 4.1 (Transition sets) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=< V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE > be a
SG with a set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof states V and a set of events E . Let S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC V
be a subset of states and e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE E be an event. The following
sets of states are defined for S and e (see Figure 7):

before(e, S) = { s : s # S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 3s'(s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 s' A s' E S) }

entry(e, S) = {s : s E s A W (s ' -5 s A SI # s)}
Zeave(e, S) = {s : s E S A W (s -5 s' A s' # s)}
after(e, S) = {s : s s A 3s'(s' s A s' E s)}

eave(e,S)

after(e,S) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 7: Illustration of transition sets

Pred(S) and Succ(S) give the sets of states outside
S reachable in one step in backward or forward direction,
respectively. Input, I B (S) , and exit, EB(S), borders of
S give the sets of states inside S from which the states
not included in S are reachable in one step in backward
or forward direction, respectively. Our technique operates
with input borders. Set I B (F) defined by Definition 4.1
can be computed as follows (IB (F) is computed similarly):

IB(F) = U entry(e, {s : ~ (s) = 01) =

= {S : F(s) = 0 A 391 : SI + s A F (s ~) = 1).
eEE

An event b* is said to be a trigger event for event a*
if entry(b*,ER(a*)) # 8. Informally, by firing trigger
events it is possible to enter the excitation region for a*.
We also say that signal b is a trigger signal for signal a
and for event a*. All trigger signals for signal a must be
included in the support of the logic function implementing
a and hence each trigger signal will be in the fan-in of a.
Triggers can be easily derived by observing ERs of a in
the SG.

We can also show another property of trigger signals,
that will be used to estimate the complexity of the logic
after decomposition.

Property 4.1 Event zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx* is a trigger for event b* in SG A'
iffZeave(b*, ER(%*)) # 8.

The proof follows directly from the rules for event
insertion (cf. Figure 3), because if Zeave(b*, ER(x*)) # 8
then the firing of b* will be delayed until x* has fired.

Any boolean function F defines a bipartition { S F , SF}
of the set of states of a SG: SF = {s : F(s) = 1) and
S" = {s : F(s) = 0). As discussed in Section 2.3, for
insertmg a new signal x it is necessary to find an I-partition,
{S+,S1,S-,So}, based on bipartition { S F , S F } . The
four blocks of I-partition are constructed as follows:

S- = ER(x-) g SF and S+ = ER(s+) g S",
corresponding to the excitation regions of 5 in the new
SG, are obtained by the well-formed closure of the
input border sets, I B (F) C SB and I B (F) C S F ,
respectively [6].

-

-
S' = SF - S+ and So = S F - S - .

The following property states that, if there is a well-formed
SIP closure of the IB , then there is a minimal closure that
has strictly less states than any other.

Property 4.2 [8] Let {b ,6} be a bipartition of the SG
states. Let I1 C b and let I2 be a minimal well-formed SIP
set such that I1 C I2 C b. Then I2 either does not exist or
unique.

In particular (the practically useful case), this property
holds for I1 = IB(b). The proof (see [SI) provides
a constructive procedure for selecting the minimal well-
formed SIP closure of the input border without backtracking
and thus is computationally efficient. This procedure can be
summarized as follows. (We further illustrate it by deriving
ER(x-) for F = dc in S, for the hazard.g example, as
shown in Figure 8).

8)

Figure 8: Derivation of ER(x-) for a decomposition dc
of a hazard.g example

Algorithm 4.1 Generation of ERs for a new signal,
by example of S- = ER($-)

1. Let ER(z-) = I B (F)

245

2. Find well-formed closure by recursive application zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof
the following rule: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi f s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE Pred(ER(x-)) n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASF, then
let ER(x-) = ER(x-) U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs.

3. Preserve (if required) the input-output interface by
checking that no input signals can be delayed by x.
For this do the following:
for any input si nal b: i s E after(b*,ER(x-)),
then let ER(x-7 = E R i -) U s.

4. Force SIP properties (make any intersection of state
diamonds with ER(x-) legal by inserting in ER(x-)
the corresponding states of the diamond). Goto Step
9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d

Calculation of ER(x-) stops either if at some step
intersects with S F (then there is no legal

) or a fixed point is reached. Calculation of
is done similarly based on I B (F) . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Example ha2ard.g continued. In the example
(see Figure 8,a) ER(x-) = (1011) (step 1). It is
well-formed (step 2). At step 3 we will find that
state 0011 E af ter (a- ,ER(x-)) and state 1001 E

). Therefore, {0011,1001} are in-
Figure 8,b). State diamond
illegally intersects ER(x-)

(step 4). To le alize this, the intersection state OOO1 is
included in ERtx-) as shown in Figure8,c.

Figure 9 shows the results of ER(x*) generation for
the decomposition of S, = Ecd with divisors Ed, Ec and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dc, respectively. The choice F = Ed is not valid (see Fig-
ure 9,a), because F intersects illegally with state diamond
{ 101 1,001 1,1001,0001). This illegal intersection cannot
be corrected by expanding I B (F) without hitting states
where F = 0. The divisors Ec and dc are valid and the
corresponding ERs of signal x are shown in Figure 9,b,c. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

acdz

Figure 9: Three attempts to decompose S, = Zcd in
huzurdg example

4.2 Progress Analysis
If ER(x+) and ER(x-) are derived, then there is a

speed-independent implementation of the SG with a new
signal x. However, to ensure progress in the technology
mapping for the target cover function C(m) = P * G + R,
we would like to have the following implementation in the
new circuit: C(a*) = x * G + R (function F is substituted

in this expression by one literal z)~ . This is not always
possible, since to preserve speed-independence, C(a*) may
require more fan-in signals. We will formulate progress
conditions which will defiie when the implementation
above is valid.

State images. The progress conditions are easily formu-
lated in terms of the new SG A' . However, constructing
the new SG is computationally hard and hence it is better
to use the original SG A (cf. the approach in [4]). For
this we need to compare the states of A and their images
in A'. The insertion scheme (Figure 3) determines a binary
relation (we call it an image relation) between the states
of A and the states of A'. A state s' from SG A' is said
to be an image of a state s from A if values of all signals,
except x , are the same in s and in s'. Then, state s is called
the inverse image of s'. The inverse image for any state
from A' is unique. The opposite is not true. Each state
s E ER(x*) from SG A has two images s', s" in A' such
that s' 2 s". All other states in A have one image. The
image relation is expanded to the sets of states. If S is
a set of states in A', then its inverse image is denoted by
S-'. To avoid confusion, we will add subscript A or A' to
address the objects in SGs A and A' if necessary.

Inverse images for excitation and quiescent regions.
The validity of substituting a new signal z in a cover
function C(a*) is checked by considering the inverse
images of ER(u*)At and QR(u*)A~. By construction, only
states from ER(u*)A have images in which a* is enabled,
hence ER(u*)A is the inverse image of ER(u*)A~. For
quiescent regions the image relation is more complicated.
Consider, for example, signal transition a+. For every state
s E QR(u+)A there is an image in which signal a is equal
to 1, and therefore QR(u+)A C QR(a+),f. However,
QR(a+)p! can include additional states because some
original signal transitions are delayed by x.

Figure 10: Inverse image for quiescent regions

This case is illustrated in Figure 10. In SG A state
s E ER(a-). However, in one of its images, s', signal a
is equal to 1 and is stable, and therefore s' E QR(u+)A~.
Hence, state s is in the inverse image of QR(u+)AI. The
following procedure computes the inverse image for a
quiescent region (by example of QR(ai+)A!).

4Algorithm 4.1 does not modify the borders of SF or SB, so the
combinational solution z = F is always valid. However the technique
described in this section may also find a sequential decomposition with
this combinational "seed".

246

Algorithm 4.2 Computing inverse image
for quiescent regions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

QR(ai+);! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQR(ai +)A;

for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, - that succeeds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa;+ do

i fs E ER(%*) n ER(a,-) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA after(a,-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs) n ER(%*) = 0
then QR(ai+)Af = QR(ai+),! U s

end for

Before formulating progress conditions we present a
useful property that captures conditions for signal x to
have a constant value inside the excitation region of the
original signal a in the new SG even if the excitation
region for x* in the original SG contains states from the
ER(a*) (2, as before, denotes the signal which is inserted
for decomposition).

Property 4.3 [8] Let SG A' be obtained from SG A by
insertion of signal x . Let a* be an event. Let ER(x+) be
a welllformed SIP closure of the input border for a block
of a state partition for SG A, obtained with Algorithm 4.1,
such that ER(x+) f l ER(a*) # 8. Ifthe following two
conditions are satisfied for SG A

then x is equal to 1 in any state of ER(u*)At.

A symmetrical property holds for ER(x-) . The next
proposition states the progress condition by presenting
conditions for preserving monotonous cover conditions for
substituting function F with one literal x in the cover
function C(a*).

Proposition4.1 [7] Let CA(U*) = F * G + R be a
monotonous cover of ER(a*) in SG A. Let ER(x+) and
ER(x -) be the S+and S-sets for inserting a signal x ob-
tained by Algorithm 4.1. Thefunction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACAI (U *) = x*G+ R
satisfies the three conditions for the monotonous cover in
the new SG A', iff: ..

1. Covercondition: after(a*, (ER(a*)nF*G* f i -))n
ER(x+) = 8

2. One-hot condition: Vs : s $2 ER(a*) U
QR(a*),! + s $2 ER(x -) n G

3. Monotonicity conditions:
(a) Vs : s E (QR(a*) n F * G * x) + s $2 ER(x+) , and
(b) VS : s E 'QR(a*),! n E R (x 1) n G + Pre;(s) E
G + R

The proof is given in [8]. The conditions in the above
proposition can be informally explained as follows.

Condition 1 ensures the cover condition for CAI (U*) in
the new SG A', by detailing Property 4.3. Set ER(a*) n
F * G * contains those states of ER(a*) in SG A
that are covered by F * G, but not by R. Therefore, to
satisfy the cover condition in SG A', the image of this
set in A' must be covered by the function x * G. If
after(a*, (ER(a*) n F * G * x)) n ER(x+) # 0, then
there is a transition SI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 s2 internal to ER(x+) such
that F (s l) = G(sl) = 1 and R (s l) = 0. Hence, state

~

247

SI has two images si and sy in A' such that si 2 sy,
which implies that signal x has value 0 in si and value 1
in sy. Therefore, state si E E R A ~ (x +) is not covered by
CAI(U*) = x * G + R since both 2 * G and R have value
0 in si. The cover condition is violated.

Condition 2 ensures the one-hot condition for CA' (U *)

in the new SG A'. Lets be outside ER(a*) U QR-'(a*).
If s E ER(x -) n G in SG A, then in the new SG A',
function x * G evaluates to 1 in the first image s' of s

(s' "J s"). Hence, for A', function x * G is evaluates to 1
outside ERA,(U*)UQRA~(U*) , which violates the one-hot
condition for the cover function CA' (U *) = x * G + R.

Condition 3 ensures the monotonicity condition for
CAI (U *) in SG A'. Condition 3(a) guarantees that CAI (U *)
cannot make a non-monotonous transition of the ty e "1-
0-1" along any path inside ERA~(u*) U QRA'(a*y Set
QR(a*) n F * G * contains the states of QR(a*) that
are covered by F * G, but not by R, in SG A. Let some
state s from this set belong to ER(x+) . Then there are
two images for state s in SG, A': s' and s" such that
s' 2 s". Function x * G evaluates to 0 in s' and to 1 in
SI'. Neither image is covered by R. Moreover since states
of E R a*) are covered by CA,(,*) the cover function
CA' (a* \ performs a non-monotonic transition 1-0-1 along
a path within ERAI(u*) U QRA,(u*) (this path starts in
ER(a*) and contains states s' and s").
Condition 3(b) ensures that CA' (U *) cannot make a non-
monotonous transition of the other type "0-1-0 along any
path inside ERA, (a*) U QRA,(u*). Assume that there is at
least one state, s, such that s E Q R (u *) ~ ! n ER(x-) fl G
and let its predecessor, SI, be covered neither by G nor by
R. Then function CA,(,*) has value 0 in the image, si, of
s1 (if s1 has two images, then CAI (U *) has value 0 in both).

State s has two images in A' (s' "s s"). Function x * G
evaluates to 1 in the first one, s', and to 0 in the second one,
s". Hence, function CAI (a*) performs a non-monotonous
0-1-0 transition along the path si -+ s' -+ s" in A'.

Example hazard.g continued. All the conditions of
Proposition 4.1 are satisfied for F = Ec and F = de and
for both of them S, can be safely decomposed into two
AND gates.
4.3 Cost estimation

The progress condition (if satisfied) guarantees that the
implementation of a target cover function C(a*) will be
simplified as a result of a decomposition. However, to
accept a decomposition we need to check that it will not
increase the complexity of logic for other events. We use a
conservative estimate of logic complexity, in which trigger
signals play a key role, in order to select candidates for
decomposition.

All events (besides the target event a*) can be divided

e Events x* of signal x

in 3 groups:

It can be shown, by analyzing the MC conditions that
x = F is a correct complete cover for a signal x.

The preconditions for these events are not modified
by the insertion of x , and hence we can (in the

e Events for which x* is not a trigger

worst case) use the same implementation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas before the
decomposition. It is possible, though, that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx can be
used to further simplify the implementation of those
signals as well, since the don't care set is increased. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEvents for which x* is a trigger, denoted by TT(x) .
For estimating complexity of such events the follow-
ing procedure is used. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Algorithm 4.3 Estimating complexity of signals
for which x is a trigger

1. for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE T T (I) do
2. if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI* replaces trigger event zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd* in ER(b*) then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I* property 4.4 */
3. if I substitutes d in a cover function C(b*) then

I* proposition 4.2 *I
4. The complexity of C(b*) i s not increased

/* property 4.5 *I
6. The complexity of C(b*) is increased moderately

8. Decomposition fails

5. else if I can be added as one additional literal to C(b*) then

7. else

9. end if
10. end if

1 1. end for

Further we consider the main steps of Algorithm 4.3.

Replacement of other trigger events by x (line 2 of Al-
gorithm 4.3). Property 4. l helps to find the set of events
Tr(z) for which signal x becomes a trigger. Conditions
for replacing a trigger event by a new signal transition x*
are stated by the following property.

Property4.4 [8] An event x* replaces d* as a trigger
event for b* in SG A' i f f in SG A the following conditions
are satisj?ed:

(1) entry(d*,ER(b*)) c ER(x*)
(2) before(d*,ER(b*))n E R x*) = 0
(3) after(&, entry(d*, ER@* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0)) n ER(x*) = 0

Example ha2ard.g continued. Let us consider a com-
binational decomposition of S, using function F = dc.
ER(x+) satisfies all the conditions of Property 4.4 and
hence x+ becomes a new trigger event for t+ instead of
d+. On the other hand, for ER(x-) for both events a-
and d- condition 2 of Property 4.4 is violated. Therefore,
events a- and d- are concurrent with 5- and none of
them is replaced by the new trigger event x-. After in-
serting signal x event t- will have three trigger events
x-, a-, d-. For the decomposition based on function
F = Ec, the new signal x replaces old trigger signals for

Validating substitution of signal x into a cover function
other than C(a*) (line 3 of Algorithm 4.3). If a trig-
ger event x* replaces another trigger event d* for some
ER(b*), then the next step is to check that signal d can be
replaced by signal x in the logic implementation of C(b*).
Assume that CA@*) = d * M + N . We want to check
validity of substitution CAI (b*) = x * M + N . Conditions
for validity of such substitution are almost identical to
those of Proposition 4.1.

both Z+ and t - .

Proposition 4.2 Let C(b*) = d * M + N be a monotonous
cover of ER(b*) in SG A. Let { S+ = ER(x+) , S' , S- =
ER(x-) , So} be the I-partition for inserting signal x. The
implementation CA, (b*) = x * M + N satisfies the three
conditions for monotonous cover in the new SG A' iff:

I. Cover condition: (after(a*, (ER(a*) nd* M * N)) n

2. One-hot condition: Vs : s $ ER(a*) U
QR(a*)A! =$ s # (ER(z-) U S ') n M

3. Monotonicity conditions:
(a) Vs : s E (QR(a*) n d * M *

Pred(s) E M + N

Let us clarify the difference between Propositions 4.1
and 4.2. In Proposition 4.1 signal x is the output of
the gate implementing function F and is substituted into
C(a*) = F * G + R instead of F. In Proposition 4.2 x
substitutes signal d, which is implemented by a gate differ-
ent from the gate implementing x . Therefore, Conditions
1-3 have a more general form in Proposition 4.2. Indeed,
to ensure the cover condition (according to Property 4.3)
condition ER(a*) n F * G * R n ER(z-) = 0 is required.
This condition is automatically satisfied if z = F and x
substitutes F in C(a*), whereas it is not if x substitutes
signal d. If signal z substitutes function F, z is equal to
1 in the same states as F with the exception of ER(x*).
Hence, in the one-hot and the monotonicity conditions, we
should only consider states from ER(x-) . If x substitutes
signal d, then states from S should be considered as well.

Note that Property 4.2 can also be used when signal
z replaces several trigger signals dl , . . . , dk. In this case
the cover function for b* can be represented as C(a*) =
dt * . . . * dk * M + N . After substituting x a new cover
function is C(b*), = z * M + N .

When the replacement fails (line 5 of Algorithm 4.3).
In this case the complexity of a cover function for ER(b*)
can in general increase (unless the expanded don't care set
induced by x* implies further simplification of C(b*)). If
the conditions of the following property are satisfied, then
no more than one literal is added to the fan-in of C(b*).
We restrict our method with such a moderate increase in
complexity only to bound the search space.

Property 4.5 [7, 81 Let CA(b*) be a monotonous cover
for event b* in SG A. If in the SG A' obtained from A
by inserting a new signal x the following conditions are
satisfied:

ER(X+) = 0) A (ER(u*) n d * M * F n ER(X-) = 0)

+ s $ ER(z+), and
(b) VS : s E QR(U*)A! n (ER(x-) U SI) n M 3

1. event x+ is a trigger for b*;
2. ER(x+) r l after@*, ER@*)) = 0 and

then the cover function CAI (b*) = CA&) * z for
3. C(b*) n ER(x-) = 0,

event b* in A' satisfies the monotonous cover conditions.

This property is used as a heuristic filter to select candidate
divisors that are guaranteed not to increase excessively the
complexity of the implementation of other signals.

248

Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhazard.g continued. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor a decomposition
with F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdc (Figure 9,c) signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs becomes a new trigger
for e- without replacing any other trigger. Hence the cover
for z- will increase by one literal. A cover for z+ will
decrease by one literal. This decomposition is not effective.
If F = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZc is used, then event zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx- is inserted before c-
and replaces trigger event zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa+. Function for c- will not
increase in complexity. The result of decomposition using
function Ec is shown in Figure 6,b.

5 Sequential decomposition
5.1 Motivation

Combinational decomposition is limited, since signal
insertion using bipartition { F 9 F } is based primarily on
one of the two transitions of the gate's output (e.g., its
rising transition). The other transition of the combinational
gate is fully determined by the insertion place of the first
transition. Moreover, if s substitutes F in cover function
C(a*) = F * G + R, then in most cases, event x+
becomes a trigger to a* and is acknowledged by a* itself.
However, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz- is often acknowledged by signals different
from a, which may increase their complexity. Sequential
decomposition, based on a new memory element, can
improve the progress of mapping by allowing the opposite
transition to play a more effective role, since the set and
reset logic are inserted independently. In particular, two
boolean functions can be decomposed at the same time
with one new signal.

Assume that there are two functions C(a*) = F * G + R
and C(b*) = P * Q + T, which are not yet mapped in the
library, and such that F * P =: 0. Then, in the sequential
decomposition, a new signal x is inserted in such a way
that x will go to 1 when F is changing from 0 to 1, and
go to 0 when P is changing from 0 to 1. Then, both rising
and falling transitions of z can be used to simplify the
cover functions: x+ to simplify C(a*), and z- to simplify
C(b*).

To illustrate that sequential decomposition can be more
powerful than combinational decomposition, let us modify
the hazard.g example, by declaring signal c to be an input
(example hazard-m0d.g). As before, we would like to map
the three-literal function S, =: Zdc into two-input gates.
Since signal c is now an input, there are additional con-
straints for preserving the input/output interface. Indeed,
we can no longer make the new event x- trigger for input
c-. Derivation of ER(z+) and ER(z -) for the example
hazard-m0d.g and the combinational decomposition based
on F = iic (that succeeded in hazard.g) is shown in Figure
11,a. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAER(s-) for hazard-m0d.g includes 5 states (instead
of 1 for hazard.g, cf. Figure 9,a) and event x- is no
longer replacing any other trigger event of z-. Decom-
position based on F = Zc makes the cover function for
event z- even worse: 4 literals instead of 3 (hence it
is not useful). Example hazard-m0d.g cannot be mapped
using only combinational decomposition. Further we will
refer to hazard-m0d.g to illustrate the steps of sequential
decomposition.

5.2 State partitioning
Combinational decomposition using function F is based

on bipartition of states into two blocks S F = { s : F(s) =
1) and SF = {s : F (s) = 0) = {s : F (s) = 1). This

-

a - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8% RZ

JI
a-

;- C-

C)

Figure 11: Decompositions of hazard-m0d.g example: (a)
combinational, (b) sequential, (c) logic for signal z

bipartition is transformed to an I-partition with four blocks
for inserting a new signal z as described in Section 4.1.

F=P=O

Figure 1 2 I-partition for sequential decomposition

Sequential decomposition using a pair of orthogo-
nal functions { F , P } defines a partition of states
into three blocks {SF,Sp,SFF} (see Figure 12):
SF -- = {S : F (s) = l}, Sp = {s : P(s) = l}, and
SF = {s : F(s) = P(s) = 0). We make the following
transformations of the three blocks when constructing an
I-partition, { S+, S', S-, So}, based on the four input bor-
ders: IB(F) , IB(P), IB(F), and IB(B) (see Figure 12)

Algorithm 5.1 Constructing I-partition for
sequential decomposition

(a.i) D1 = all states backward reachable fiom
Pred(IB(P)) without hitting SF;
(a.ii) Include in D1 all states forward reachable from
I B (7) U D1 without hitting IB(P) 6;

I . I* Construct D1 and DO -- subsets of SFF *I

5As before, for an ease of presentation, we ignore in this paper the
fact that the set and reset functions for C-elements are not required to be
orthogonal.

6'IJe reachability relation is reflexive (8 + 8) and hence states of
IB (F) can be includedinto D I .

249

2.

3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.

6.

(b.i) DO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= all states backward reachable from
Pred(IB(F)) without hitting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS p ;
(b.ii) Include in DO all states forward reachable from
I B (P) U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADO without hitting IB (F) ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
then return failure;

If (Dl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17 DO # 8) then return failure;

Construct S+ = ER(x+) as a well-formed SIP clo-
sure of IB (F) ;
I f S+ n (S p U DO) # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 then return failure;

Construct S- = ER(x-) as a well-formed SIP clo-
sure of I B (P) ;
If S- n (SF U 0') # 8 then return failure;

S' = (S F U 01) - S+andSo = (S p U D o) - S-
i* I-partition for { F, P } is constructed *I

If i(Succ(D1) C I B (P) A SUCC(DO) I B (F))

Algorithm 5.1 fails to construct an I-partition for { F, P }
if any one of steps 2-5 retums failure. Otherwise, the al-
gorithm retums an I-partition {S+ = ER(x+) , S', S- =
ER(x-) , So}.

Note that the set D1 (and similarly DO) is constructed in
two steps l(a.i) and l(a.ii), by first applying the backward,
and then the forward reachability. If SG A is cyclic (such
that the initial state SO is reachable from any other state of
a SG), then step l(a.ii) can be omitted, since it does not
produce any new states in D1. However, if SO is not a
cyclic state for SG A and SO E SFF, then both traversals
are needed to identify which set, D1 or Do, state so (and
its successors) belongs to.

Algorithm 5.1 ensures consistency for the new signal x .
Step 2 checks that an path in SG A starting from IB(F)
cannot reach ER(x+ywithout crossing ER(x -) (or sym-
metrically a path from IB (P) cannot reach ER(x-)
without crossing ER(x+)) . Step 3 checks that D1 and
DO have no states in common. These two checks guaran-
tee that there are no cycles inside D1 U DO. Therefore,
signal x can only perform consistent transitions in A':
1* 4 0 4 o* + 1 4 1* 4

The following property, which proof can be found in
[SI, shows that Algorithm 5.1 is sound.

Property5.1 Let I = {S+ = ER(z+),S',S- =
ER(x-) , So} be an I-partition obtained by Algorithm 5.1
for a pair offunctions {F, P } such that F * G = 0. The
new SG, A', obtained from A by inserting signal x using
I-partition I is consistent and speed-independent.

Example hazard-m0d.g. Let us consider the pair of
functions F = ?ic and P = & (F is extracted from
S, = Zcd, while P is extracted from R, = E&. The
well-formed SIP sets ER(x+) and ER(x-) defined us-
ing { F , P } are shown in Figure 11,b. The sequential
decomposition based on {F, P } is feasible because: 1)

DO = { 1100,1110); D1 nD0 = 0; and hence all conditions
of Property 5.1 are satisfied.

F * P = 0; 2) any cycle starting in ER(x+) (ER(x-
crossesER(2-) (ER(x+))3) D1 = {l l l l , 1011,0011

5.3 Progress conditions
Sequential decomposition is aimed at mapping in the

libr two non-implementable cover functions C(a*) an
C (q . However, the decomposition can be useful if at
least one of the functions is simplified. We can accept
a sequential decom osition simplifying only one cover
function (e.g., c(a*j'= F * G + R) in two main cases:

1. Combinational decomposition using F for function
C(a*) failed because of the x - event, e.g., the SIP
conditions are violated for ER(x-) .

2. Combinational decomposition using F for function
C(a*) is valid, but it makes logic for some other
(than a*) events more complex (e.g., due to the
acknowledging event x -) .

However, if none of the functions C(a*) or C(6*) is
simplified by sequential decomposition, then it is rejected.
Estimating progress for sequential decomposition is very
similar to that for a combinational one.

For target events a* and b*. The validity of substi-
tuting signal x into C(a*) and C(b*) is checked by
Proposition 4.2. If the substitution is not valid, the
conditions of Property 4.5 are applied to implement
CA, (a*) or CA, (b*) as CA(a*) * z or CA(&) * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,
correspondingly. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e For events x* of signal x . If conditions of Property
5.1 are satisfied, then signal x can be implemented by
a C-element with inputs F and P.

Similar to
the combinational case, it can be shown that the
complexity of these events cannot increase with the
insertion of x .

Events for which x is a trigger. We either check that
x can substitute for some other trigger signals in these
cover functions (see Proposition 4.2) or (if this check
fails) that cover functions can be implemented with at
most one extra literal z (see Property 4.5).

Events for which x is not a trigger.

Example hazard-m0d.g continued. For the target event
z+, the sequential decomposition with F = Zc and P = d
satisfies the progress condition. It also does not disturb
the implementability of event z-. Thus, the sequential
decomposition is successful, while all combinational de-
compositions fail. The final implementation is shown in
Figure 11,c.

6 Experimental results
The strategy for general logic decomposition presented

above has been implemented and applied to a set of bench-
marks. Results are shown in Table 1.

We have measured the complexity of each gate as the
number of literals required to be implemented as a sum-of-
product gate, either complemented or not. Thus a 2-input
EXOR gate (a5 + ab) is considered to be a 4-literal gate,
whereas the function ab + ac + db + dc is also considered
a 4-literal gate (d + &). This model is different from the
one used in [4] where technology mapping was targeted at

250

library zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(signa1s)JCPU
i = 2 i = 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi=4

- in -
- 2/2 -

2/2 -

In -
214 -
3D -
111 -
211 -

n.i. 5/59 2/26

n.i. 51130 4/91
101126 4/26 3/20

-
-
-
-
-
-

8/274 1/39 -

- 213 -

- 114.0 -
213 - -
n.i. 31450 11203
n.i. n.i. n.i.
218 -
212 111 -

5/10 213 -
4/23 -
3/19 116 -

61130 -

-

-

-
91247 2/20 1/12
4/12 114 114

101129 3/15 -
n.i. n.i. n.i.
111
111

- -
- -

8131 4/11 -

7/93 2/11 -
ion6 3/20 116

wrdatab
Total

Siegel [151
i = 2

Yes
no
no
Yes
no
no
Yes

Yes

no
Yes
no

Yes
Yes
Yes
no

no

no
no

i #gates with n literals
l n = 2 3 4 5 6 7

4 2
2 2
3 2
5 2
2 2
5 2
1 1
2 2
4 4 1
4 2 1 1 1
2 2
5 1 2 3 1 1
3 2 2 1 1
8 1
6 2

10 10 3 1
10 7 7 1 1
4 3
1 1

1 3
2 4
2 1
5 4
2 3 2
1 2 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 3
8 6 4 2 1
3 1

1
4 4
2 5 1
5 7 1

Circuit

alloc-outbound
chu133
chul50
converta
dff
ebergen
half
hazard
master-read

mp-forward-pkt
mro
IWl

nak-pa
nowick
pe-rcv-ifc
pe-send-ifc
ram-read-sbu f
rcv-setup

sbuf-ram-write
sbuf-send-ctl
sbuf-send-pkt2
seqmix
seq4
trimos-send
tsend-bm
vbe5b
vbe5c
vbe6a
vbelOb

"U

rpdft

Table 1 : Experimental results

the implementation in FPGA 4-input lookup tables. Due to
this fact, it is difficult to make direct comparison with the
solutions from [4]. The difference between our approach
and that of [4] can be easily shown by the example in
Figure 13. For the STG of Figure 13 output signals e and
y are implemented by 3-input AND gates. Our tool finds
their decomposition into 2-input AND gates, in which both
outputs e and y are used to acknowledge switchings of a
new signal z. No valid decomposition (preserving speed-
independence) exists when z is acknowledged by only one
output (either y or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz). The method from [4] looks for the
decomposition within a single signal network and hence
will fail to decompose 3-input AND gates.

The first set of columns in Table 1 indicates the com-
plexity of the circuit before decomposition. The second set
of columns reports the number of signals inserted for de-
composition using gates with at most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi literals (i = 2,3,4),
and the CPU time required to find the solution (in seconds,
for a Sparcstation 20). The number of inserted signals
shows also the number of iterations in technology mapping
-- the circuit is resynthesized every time a new signal is in-
serted. The next column summarizes the results presented
by Siegel [15] about the implementability of the circuit

litsllatches (i = 2)
non-SI SI

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6l3 1514
1312 1311
1611 1712
2113 15l3
14/2 1412
21R 2313
7/2 312

1412 1412
37p 3719

13l3 1413

54/7 4819
2414 2414
2113 1811

2414 2314
911 1111

2210 2211
2413 2916
1313 2715
2813 3013
3816 4716
2215 23p
3316 4118

13D 1312
713 613

3816 19p
43p 33p
5215 5416

637195 6401109 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1

SIS 1
2210
2810
2410
5710
2610
3410
1910
2810
9310

2910

9310
3510
2010

3710
1110
2210

3210
3810
7010
5 110
7210

3510
1610
8210
9510

with only 2-input gates. All realizations have been verified
to be speed-independent.

From the 32 examples, only 5 were not implemented
(n i) with 2-literal gates. Only one 5-input AND gate in
pe-send-ifc and two 5-literal gates in tsend-bm were not
decomposed when attempting to implement these circuits
with 4-literal gates. We significantly improve over the
results presented in [15], and only one circuit @e-rcv-
$I could not be realized with 2-literal gates from that
benchmark suite.

The global-acknowledgment allows the method to ef-
fectively decompose complex gates with high fan-in (6 or 7
literals). This is shown by circuits like mrl and vbelOb that
were implemented with 2-literal gates. Figure 14 illustrates
this fact, depicting the circuit mrl before and after logic
decomposition into 2-literal gates.

The effectiveness of sequential decomposition is illus-
trated in Figure 15. The insertion of a new latch was crucial
to allow the decomposition of a gate that could not be
decomposed by the approach presented in [15].

The final columns present a rough estimation of the cost
for speed-independence-preserving logic decomposition.
The cost is evaluated as the number of literals of the

251

d- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb+-- d+- y+- a- - y- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc+-- d-

c- - d+- z- + b- - z+ - c+- a+- c- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 4
a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 13: Example abcd STG a) 3-AND gate implemen-
tation b) 2-AND gate implementation c) invalid “local”
decompositions d,e).

combinational gates and the number of C elements of
the circuit. The column “non-SI” reports the cost of
decomposing the original implementation of the circuit
into 2-literal gates without preserving speed-independence
(techdecomp -a 2 command in SIS). The column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“SI”
reports the cost of the decomposition preserving speed-
independence. In some cases, such as vbe6a, the number
of literals is reduced because the decomposition strategy
allows sharing logic among different covers. In most
cases extra cost is added to preserve speed-independence.
However, if we consider that the area of a C element is
roughly equivalent to a 3-input AND gate, we can conclude
that the area cost of preserving speed-independence is not
higher than 5%.

The last column shows, for the sake of comparison, the
cost of performing technology mapping against a 2-input
library (which is roughly the same as a 2-literal library)
using the bounded wire delay model, after delay padding
([lo]). If we consider the cost of a C element to be 3 literals,
the total cost of the speed-independent implementations in
the 2-literal library is 640 + 109 x 3 = 967 literals, which
is considerably smaller (and probably faster, because there
is no need to add delay buffers).

7 Conclusions and future work
In this paper we have shown a solution to the problem

of multi-level logic synthesis and technology mapping for
asynchronous speed-independent circuits. The method is
based on both combinational and sequential decomposition,
for each of which we apply a two-step approach.

The first step (Section 3) chooses a candidate for de-
composition: algebraic kernels, non-cube-free sub-SOPS,
sub-cubes etc. Different versions are evaluated and the
“best“ is taken -- say, it corresponds to the new signal
z. Combinational decomposition for synchronous circuits
stops here. In the case of sequential decomposition two
candidates are considered simultaneously.

Figure 1 4 mrl before and after logic decomposition into
2-literal gates.

The second step (Sections 4 and 5) performs actual
decomposition -- it attempts to fmd an optimized speed-
independent implementation based on the candidate ob-
tained at step (1). This is based on partitioning the state
space into four sets, in which signal z is stable and is
changing, while ensuring the speed-independence of the
expanded specification (a necessary condition for speed-
independent implementability). A new implementation
is then derived for each signal, thus achieving global
optimization and acknowledgement. The complexity argu-
ments in Section 4.3 show that there is a good chance that
z will get exactly the same function which was extracted at
step (1). However, there is a chance also that this function
will be smaller (thanks to boolean decomposition). Mul-
tiple acknowledgments for z appear automatically at this
function generation step. Functions for signals which were
not decomposed at step (1) may also change. Whenever a
combinational decomposition fails to simplify the overall
complexity (due to the lack of control in the insertion of
the opposite transition z-), the procedure applies a se-
quential decomposition (where z- is used to simplify one
more cover). As a result, the actual function for z may
correspond to a very general sequential decomposition.
Moreover this is not a local, but “global“ decomposition
since other signals may change as well.

The method is implemented in the tool petrify. The re-
sults shown in the last section, to the best of our knowledge,
show that the method appears to be the most effective and
efficient amongst those available to date for the standard
set of asynchronous benchmarks For example, it is for the
fxst time that such examples as vbelO and wrdatab have
been decomposed into two-input AND gates by a software
tool.

We are currently working at improving the method to
make it complete (i.e. answering the key question of what is

252

I t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b-

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA
a+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd- a- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
'! /

\\
k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 15: Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAebergen before and after logic decom-
position into 2-literal gates.

the largest class of State Graphs that can be implemented in
a given library) and at extending the basic implementation
architecture to other types of sequential elements, such as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S/R flip-flops or D latches.

References
[l] P. A. Beerel and T. H-Y. Meng. Automatic gate-level

synthesis of speed-independent circuits. In Proceedings of
the International Conference on Computer-Aided Design,
November 1992.

[2] Peter A. Beerel and Teresa H.-Y. Meng. Logic transfor-
mations and observability don't cares in speed-independent
circuits. In Proceedings of TAU 1993, September 1993. - .

R.K. Brayton, G.D. Hatchel, and A.L. Sangiovanni-
Vincentelli. Multilevel logic synthesis. Proceedings of
IEEE, 78(2):264--300, February 1990.

S. Bums. General conditions for the decomposition of
state holding elements. In International Symposium on
Advanced Research in Asynchronous Circuits and Systems,
Aizu, Japan, March 1996.

S. Bums and A. Martin. A synthesis method for self-
timed VLSI circuits. In Proceedings of the International
Conference on Computer Design, 1987.

J. Coltadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Complete state encoding based on the
theory of regions. In International Symposium on Ad-

vanced Research in Asynchronous Circuits and Systems,
Aizu, Japan, March 1996.

[7] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Technology mapping of speed-
independent circuits based on combinational decomposition
and resynthesis. In Proc. of European Design and Test
Conference, Paris(France), March 1997.

[8] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno,
and A. Yakovlev. Technology mapping for speed-
independent circuits. Technical Report TR 96-2-005, Aizu
University, 1996.

[9] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen,
and A. Yakovlev. Basic gate implementation of speed-
independent circuits. In Proceedings of the Design Automa-
tion Conference, 1994.

[101 L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms
for synthesis and testing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof asynchronous circuits. Kluwer
Academic Publishers, 1993.

[113 D. E. Muller and W. C. Bartky. A theory of asynchronous
circuits. In Annals of Computing Laboratory of Harvard
University, pages 204-243, 1959.

[12] Chris J. Myers, Peter A. Beerel, and Teresa H.-Y. Meng.
Technology mapping of timed circuits. In Asynchronous
Design Methodologies, pages 138-- 147. IEEE Computer
Society Press, May 1995.

[131 EMc Pastor, Jordi Cortadella, Alex Kondratyev, and Ono1
Roig. Structural methods for the synthesis of speed-
independent circuits. In Proc. of European Design and
Test Conference, pages 340 -- 347, Paris(Fmce), March
1996.

[14] M. Sawasaki, C. Ykman-Couvreur, and B. Lin. Extemally
hazard-free implementations of asynchronous circuits. In
Proceedings of the Design Automation Conference, June
1995.

[15] P. Siegel and G. De Micheli. Decomposition methods
for library binding of speed-independent asynchronous de-
signs. In Proceedings of the International Conference on
Computer-Aided Design, pages 558-565, November 1994.

[I61 P. Siegel, G. De Micheli, and D. Dill. Automatic technology
mapping for generalized fundamental mode asynchronous
designs. In Proceedings of the Design Automation Confer-
ence, June 1993.

[17] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man.
A generalized state assignment theory for transformations
on Signal Transition Graphs. In Proceedings of the In-
ternational Conference on Computer-Aided Design, pages
112--117, November 1992.

[18] V. I. Varshavsky, M. A. Kishinevsky, V. B. Marakhovsky,
V. A. Peschansky, L. Y. Rosenblum, A. R. Taubin, and
B. S . Tzirlin. Self-timed Control of Concurrent Processes.
Kluwer Academic Publisher, 1990. (Russian edition: 1986).

253

