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ABSTRACT 
In this paper, a new methodology for the optimal design of the 
secondary geometric parameters (shape of links, size of the 
platform, etc.) of parallel kinematic machine tools is proposed. 
This approach aims at minimizing the total mass of the robot 
under position accuracy constraints. This methodology is 
applied to two translational parallel robots with three degrees-
of-freedom (DOF): the Y-STAR and the UraneSX. The 
proposed approach is able to speed up the design process and 
to help the designer to find more quickly a set of design 
parameters. 

1 INTRODUCTION 
Parallel kinematic machines (PKM) are commonly claimed to 
offer several advantages over their serial counterparts, such as 
high structural rigidity, better payload-to-weight ratio, high 
dynamic capacities and high accuracy [1–3]. Therefore, they 
are prudently considered as promising alternatives for many 
modern material processing operations, especially in 
automotive and aerospace industry, in which high accuracy 
positioning and high-speed motions of a work tool are 
required. Thus, PKM have gained essential attention of a 
number of companies and researchers. However, most of the 
existing PKM still suffer from two major drawbacks, namely, 
a complex workspace and highly non-linear input/output 
relations [4, 5]. 

For most of PKM, the performances vary considerably for 
different points in the workspace and for different directions at 
one given point. This is a serious disadvantage for machining 
applications [6, 7], which require regular workspace shape and 
acceptable performances throughout. In milling applications, 

for instance, the machining conditions must remain constant 
along the whole tool path [8]. Nevertheless, in many research 
papers, this criterion is not taken into account in the 
algorithmic methods used for the optimization of robots [9, 
10]. 

Our previous work [11] was focused on the optimal design 
of the primary geometric parameters (length of links, shape of 
the base, etc.) of robots for given geometric, kinematic and 
kinetostatic properties (e.g. size of the workspace, maximum 
speeds, forces transmission, accuracy). Contrary to many 
works on optimal design of parallel robots (see for example 
[12, 13]), it was proposed to use technology oriented indices 
in order to define the optimal design parameters. This work 
was the first step of an optimization process. Indeed, the 
previously proposed algorithm does not allow obtaining any 
information about the value of the secondary design 
parameters (e.g. shape of links, size of the platform, etc.). For 
finding these values, other constraints should be considered, 
such as constraints derived from the robot dynamics 
(acceleration capacities), its elastostatic behaviour or its 
natural frequencies. 

Thus, this paper is the continuity of work [11]. Here, a new 
methodology for the optimal design of the secondary design 
parameters of parallel kinematic machine tools is proposed. 
This approach aims at minimizing the total mass of the robot 
under position accuracy constraints. The main contribution of 
this paper is in the area of CAD methodology and application 
of the operation research methods to the integrated design 
optimization of complex mechanical structures, such as 
parallel robots. 

mailto:Anatol.Pashkevich@emn.fr
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The paper will be divided as follows. In the second part, the 
design problem and methodologies are explained. In the third 
section, the performance measures, design constraints and 
objectives are presented and the optimization procedure is 
described. It is applied to an industrial case study in part four. 
Finally, in the last section, conclusions are drawn. 

2 DESIGN PROBLEM AND METHODOLOGY 
Design of a robot involves simultaneous optimisation of 

many types of criteria that may evaluate the kinematic, the 
kinetostatic or also the dynamic properties. However, the 
design of a manipulator, once its architecture is known, may 
be decomposed into two steps: 
- Step 1: find the values of the primary geometric parameters 

(length of links, base radii, joint limits, etc.) using 
geometric, kinematic and kinetostatic constraints and 
objectives (workspace, velocity, effort transmission, etc.); 

- Step 2: find the values of the secondary geometric 
parameters (cross-section, shape of links, etc.) using 
dynamic, elastostatic and/or elastostatic constraints and 
objectives (acceleration capabilities, maximal deformations 
of the tool, natural frequencies of the structure, etc.). 

Step 1 has been studied in many works [9-13]. Indeed, as it 
is based on simple geometric, kinematic and kinetostatic 
models, this step is mostly the simplest to achieve. This is not 
the case of the second optimization level which requires more 
complicated and time-consuming models. For example, in 
order to obtain a very accurate elastostatic model, finite 
element analysis (FEA) should be used. However, because of 
the huge number of elements used for the meshing of the 
robot, such model cannot be integrated in a design 
optimization process. 

Here, a design methodology that uses more efficient models 
is proposed. This will allow obtaining near-optimal results in a 
reasonable computational time. Then, these results may be 
introduced in more accurate, but more time-consuming 
models, in order to verify that they respect the design 
specifications. If they do not, two solutions are possible: (i) to 
improve the accuracy of the model used in the optimization 
loop or (ii) to modify the design constraints (with safety 
coefficient) in order to obtain acceptable results. It should be 
mentioned that, even if several optimization loops are 
necessary, this approach will considerably speed up the design 
process. 

To formulate the design problem, let us define the 
manipulator geometry by the mapping g:   W, where  = 
1 × … n and  = p1 × … pn denote respectively the 
configuration space and the workspace. i are the joint 
coordinates and pi are the coordinates of the end-effector. n is 
the number of degrees of freedom (DOF). Besides, for each 
workspace point P  W, let us define the matrices Kd(P, ), 
Ks(P, ), Kv(P, ), that describe various mechanical properties 
of the manipulator (dynamics, stiffness, etc.) for any given set 
of the design parameters . Let us also assume that for each 
type of the matrices K,   {d, s, …}, there are defined 
physically consistent scalar measures (K),   {i, a, …} 
that may be directly included in the design objectives or 
constraints. Some examples of such measures (input efforts, 
accuracy of the tool, etc.) are presented in the following sub-
sections. 

Similarly, for the global evaluation of the manipulator, let 
us introduce the performance measures (g, ),   {m, e, n, 
…}, that depend both on the adopted geometrical structure g 
and the physical parameters of the links . Examples of the 
global measures include the total mass of the manipulator, the 
maximal admissible input effort, the minimal admissible 
natural frequency, etc. 

Then, following the general methodology adopted for the 
considered application area (high-speed machining), the 
design optimisation problem can be stated as achieving the 
best value of the performance indices 

   ,min),(
π

πg  (1) 

subject to the constraints 
     ,,),( SP πK  (2) 

that must be satisfied for all points of the workspace W which 
includes the manufacturing task. Since in practice this problem 
cannot be solved by the direct search methods, in the 
following subsections, there will be presented the 
discretisation scheme and relevant optimisation algorithms 
allowing to obtain desired solutions in reasonable time. 

3 PERFORMANCE MEASURES AND DESIGN 
CONSTRAINTS 

In the following of this paper, it is assumed that the primary 
design parameters are already known. Thus, let us now present 
the procedure for optimization of the secondary design 
parameters. 

3.1 Design constraints and objectives 
Several indices may be used in order to define the secondary 
geometric parameters of the robots. As an example, it is 
possible to choose the maximal deformations under a load 
(variable or constant), the first natural frequency, which 
indicates the way a mechanism tends to vibrate, the input 
efforts, that are needed in order to observe the dynamic 
capacities of the mechanism, etc. All these indices are strongly 
related to the shape of the links of the robot and their material 
properties (density, stiffness, etc.). However, some of them 
seem to be more important, such as the required input efforts 
and the maximal deformations. Indeed, if manufacturers have 
no problems to define a fixed strong value for a maximal 
admissible accuracy or for the dynamics capacities of the 
robot (acceleration), this is not the case with the natural 
frequencies, for which the minimal admissible value may vary 
up to 50%, depending on the manufacturer’s opinion. 
Therefore, in the following of this paper, proposed indices are 
only based on the computation of the maximal deformations 
and maximal input efforts. 

Now, we have to choose if the maximal deformations and 
the maximal input efforts will be used as constraints or as 
objectives. Indeed, it seems quite obvious to use the maximal 
deformations as constraints because, mostly, the desired 
accuracy of the mechanism is given. For the input efforts, the 
question is a bit more complex. The input efforts allow 
characterizing the dynamic properties of the robot 
(acceleration capabilities) and also to choose the well-
appropriated actuator during the design process. If the actuator 
is powerful enough to accept the desired input efforts, the 
mechanism will be able to accelerate properly. If not, the 
mechanism will accelerate more slowly. Of course, most 
powerful actuators will be more expensive. So, the input 
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efforts should not be considered as mechanical constraints of 
the mechanism, but as design objectives in order to minimize 
the cost of the robot and also its power consumption. 

In the next parts, the design constraints and the design 
objectives are defined. 

3.2 Design constraints: the deformations 
The modelisation of the deformations used in this part has 
been presented in [14]. This model, which combines 
advantages of the traditional methods (the finite element 
analysis [15, 16], the matrix structural analysis [17, 18] and 
the virtual joint method [19, 20]) is based on a multi-
dimensional lumped-parameter model that replaces the link 
flexibility by localized 6-DOF virtual springs that describe 
both the linear/rotational deflections and the coupling between 
them. In addition, it employs a new solution strategy of the 
kinetostatic equations, which allows computing the stiffness 
matrix for the overconstrained architectures, including the 
singular manipulator postures. This gives almost the same 
accuracy as FEA but with essentially lower computational 
effort because it eliminates the model re-meshing through the 
workspace. 

This model states that the deformations ti of the extremity 
of the leg i of the manipulator are related to the efforts fi 
applied to its extremity via the relation: 
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where qi represents the passive joints displacements of the 

leg i, i

K  is the stiffness matrix describing the rigidity of all 

the elements of the leg i and i

J , i

qJ  are the Jacobian matrices 

relating the displacements of the extremity of the leg i to the 
spring  deflections i and passive joint displacements qi, 
such as 
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After the stiffness matrices Ki for all kinematic chains are 
computed, the stiffness of the entire manipulator can be found 
by simple addition: 

 



n

i

im

1

KK . (5) 

Then, once Km is known, the deformations t of the tool 
under a load f may be computed as: 

 fKt
1δ  m . (6) 

Here, it is clear that the matrix Km depends on the position 
of the end-effector, and as a consequence, that the 
deformations vary with the position of the robot in its 
workspace.  

We would like to mention that the vector t is a six 
dimensional vector, of which three first components, denoted 
by the vector tt, represent the translational deformations of 
the tool of the robot, and the three last components, denoted 
by the vector tr, its rotational deformations.  

So, using the proposed elastostatic modelisation, let us 
express the design constraints. The vector containing all or 
some components of the vector tt (tr, resp.) is denoted as p 
(, resp.). pmax (max, resp.) is the maximal admissible 

value for the norm of the vector p (, resp.) wherever in the 
workspace W. Thus, the design constraints may be written as: 

 maxδ)δ(max pp
W

, (7a) 

 maxδ)δ(max Φ
W

. (7b) 

3.3 Design objective: minimisation of the input 
efforts 
The input efforts of a manipulator depend on its position, 
velocity and acceleration, as well as the shape and material 
density of its links. However, it is clear that, at a design stage, 
one cannot consider the velocity and the acceleration of the 
manipulator, as it depends on the required application. So the 
number of sets of admissible velocities and accelerations is 
infinite. Moreover, these parameters may be also optimized in 
a next step [21], but only when the type of application is 
given, which is not the case now. 

From the shape Si and material density i of a link i, one 
may found its mass and matrix of inertia. It could be shown 
that the parameters that have the most influence on the input 
efforts of a manipulator (for given positions, velocities and 
accelerations) are the masses of the links. The influence of the 
axial moments of inertia is negligible compared to the 
influence of the masses. Therefore, the problem of minimizing 
the input efforts may be reduced to the minimization of the 
total mass mrobot of the robot: 

,min),(
,ρS

ρS robotm where S = [S1,… , Sn]
T,  = [1,… , n]

T(8) 

(n being the total number of links) subject to the constraints 

 maxδ)δ(max pp
W

 and maxδ)δ(max Φ
W

. (9) 

In the next part, the algorithm used for the design procedure 
is presented. 

3.4 Design procedure 
The simplest way to find the design parameters is to apply the 
following straightforward algorithm: 
 

for  =  min to  max 

compute the deformations p(P, )  under a load f for 
any point P of the workspace W 

if maxδ)),(δ(max pP πp
W

 and maxδ)),(δ(max πΦ
W

P  

then 

compute mrobot() 
end 

end 

 )(minarg ππ
π robot

opt
m  

 
The main drawback of this algorithm is that, as it computes 

the deformations of the robot for all workspace points P, it is 
very time-consuming. Thus, it should be simplified. 

Two ways may be followed in order to accelerate the 
computing process. The first one consists in assuming that the 
largest deformations will appear at the boundary of the studied 
workspace. Thus, only a short number of points are tested. The 
assumption is realistic because, kinematically speaking, i.e. 
analyzing the Jacobian matrix, the properties of most of robots 
are better in the centre of the workspace than on its boundary. 
As the stiffness matrix of the robot depends partially on the 
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Jacobian matrix, the assumption is quite realistic. However, 
there are no direct proofs of that. But this considerably speeds 
up the routine process. 

The second way is to use the goal attainment programming. 
The goal attainment optimization allows generating specific 
Pareto-optimal solutions. Let us apply the goal-attainment 
technique that yields the following nonlinear programming 
formulation: 

 
π,

min


  (10) 

subject to 

 ihhfwf iiii  ;)(;)( 00 ππ   (11) 

Here,  is an unrestricted scalar variable, 0iw  are designer 

selected weighting coefficients, and 0
if  are the goal to be 

realized for each design objective. For computational 
conveniences, the design constraints have been transformed in 

the scalar form 0)( ihh π . In this formulation, minimization 

of  tends to force the specifications to meet their goal. If, at 
the solution point,  is negative, the goals have been over-
attained; if  is positive, then the goals have been under-
attained. The method is appealing since it is possible for the 
designer to specify unrealizable objectives and still obtain a 
solution which represents a compromise. For more 
information about the goal-attainment optimization, the reader 
may refer to [22]. 

4 APPLICATION EXAMPLES 

4.1 Industrial problem 
Let us demonstrate the efficiency of our design approach on 

a concrete problem coming from the industrial sector of the 
region of Nantes (France). 

One of the most important activity areas of this region is the 
manufacturing of bathroom components (shower cabin, 
washbasin, bathtub, etc. as shown in Fig. 1). Most of parts 
used during the assembly process of the bathroom component 
are flat and made of thermosetting materials. The main 
operations achieved on these parts is trimming, i.e. the 
suppression of the edges of the parts in order to obtain a good 
surface roughness. 

The machines tools that are used for the trimming of these 
bathroom components must be designed such as they attain the 
following characteristics: 

- workspace W
abc of size {2.5 m × 2.5 m × 0.5 m}; 

- ||vxy|| = 60 m/min (vxy contains the components of the 
platform velocity vector v in the xy plane); 

- ||fxy|| = 300 N (fxy contains the components of the external 
effort vector f in the xy plane); 

- ||pxy|| = 0.25 mm (pxy contains the components of the 
platform deformations vector p in the xy plane). 

Looking at these requirements, and from our industrial 
experience, several types of robots may be envisaged, such as 
the Y-STAR [23], the UraneSX [24], the Orthoglide [3], the 
Hybridglide [25], the 3-UPU [26], etc. However, because the 
workspace is not a cube, but a flat parallelepiped, it appears 
that only two kinds of architectures, that have non-orthogonal 
arrangement of legs and that are already used in machining 
process, seem to be best adapted: the Y-STAR (Fig. 2) and the 
UraneSX (Fig. 3). It should be mentioned that, in our study, 
the prismatic guides of the UraneSX are vertical. 

       
 

Figure 1. Typical examples of bathroom components. 
 

In our previous work [11], the optimal primary geometric 
parameters have been found, taking into account the above 
requirements. The values of the optimal lengths of legs for the 
two robots were 2.16 m for the Y-STAR and 4.62 m for the 
UraneSX. The value of the optimal radius of the base 
circumcircle for the UraneSX was 2.77 m. 

Starting from these parameters, it is proposed to achieve the 
optimization of the secondary geometric parameters of these 
two robots. The assumption is made that the base, the platform 
and the feet are designed such as they may be considered 
rigid. The only deformable links are the bars of the 
parallelograms. This assertion is quite realistic when 
considering the huge length of the legs. So, the only 
parameters to optimize are: 
- the radius of platform circumcircle (i.e. the circle passing 

through the points Bi of Figs. 2a and 3a), denoted as RTool; 
- the length 2d of the small links of the parallelograms (see 

Figs. 2a and 3a); 
- the cross-sections SBar of the long bars of parallelograms 

(see Figs. 2a and 3a) 
Let us first present the elastostatic modelisation of the two 

robots. 

4.2 Elastostatic modelisation 
As presented in Figs. 2 and 3, both manipulators have similar 
architectures (Fig. 41). They may only be differentiated by the 
position and orientation of the axes of the actuated prismatic 
pairs. Therefore, their elastostatic models may be obtained in 
similar ways. 

As the feet, base and platform are considered rigid, each 
chain of Fig. 4 may be decomposed into two subchains (Fig. 
5) which are linked to the same foot. The subchains may be 
described as: 
(a) a rigid link between the manipulator base and the i

th 
actuator (part of the base platform) described by the 

constant homogeneous matrix i

BaseT ; 

(b) a 1-DOF actuating joint which is defined by the 

homogeneous function matrix  i

a q0V , where i
q0  is the 

actuated coordinate; 
(c) a rigid foot linking the actuating joint and the axis of the 

parallelogram, which is described by the constant 

homogeneous matrix i

FootT ; 

 

                                                      
1 On this picture, P stands for an actuated prismatic joint, and U for a passive 
universal joint. 
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(a) 

 
 

(b) 

 
 

Figure 2. The robot Y-STAR: (a) kinematic chain and (b) 
prototype. 

 

 
(a) 

 
 

(b) 

 
 

Figure 3. The robot UraneSX: (a) kinematic chain and 
(b) prototype. 

 
 

Figure 4. Architecture of the Y-STAR and the UraneSX. 
 

 
 

Figure 5. Modelisation of the subchains. 
 

(d) a 2-DOF passive U-joint at the beginning of the bar of 
the parallelogram, allowing two independent rotations 

with angle i
q1  and i

q2 , which is described by the 

homogeneous matrix function  ii

U qq 21 ,V ; 

(e) a rigid bar linking the two axis of the parallelogram, 
which is described by the constant homogeneous matrix 

BarT ; 

(f) a 6-DOF virtual spring describing the bar mechanical 
stiffness, which is defined by the homogeneous matrix 

function  ii

s 50 ,...,V  where  iii

210 ,,  ,  iii

543 ,,   are 

the virtual spring coordinates corresponding to the spring 
translational and rotational deflections, respectively; 
matrix Vs is composed of six elementary transformations; 

(g) a 2-DOF passive U-joint at the end of the bar of the 
parallelogram, allowing two independant rotations with 

angle i
q3  and i

q4 , which is described by the 

homogeneous matrix function  ii

U qq 43 ,V ; 

(h) a rigid link from the manipulator leg to the end-effector 
described by the constant homogeneous matrix 

transformation i

ToolT . In the following simulations, the 

controlled point of the end-effector is considered to be 
located at the extremity of a milling cutter of length 
equal to 20 cm. 

The corresponding mathematical expression defining the 
end-effector location subject to variations of all above defined 
coordinates of a single kinematic chain i may be written as 
follows: 
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   
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In the rigid case, the virtual joint coordinates ii

50 ,...,  are 

equal to zero, while the passive and active coordinates 
ii

qq 40 ,...,  are obtained through the inverse kinematics, ensuring 

that all matrices Ti are equal to the prescribed one that 
characterizes the desired spatial location of the moving 
platform (kinematic loop-closure equations). Particular 
expressions for all components of the product (12) may be 
easily derived using standard techniques for homogeneous 
transformation matrix. 

Now, matrices i

J , i

qJ  presented at Eq. (3) have to be 

found. The matrix i

J  may be obtained from the 

differentiation of the matrix T
i with respect to the spring 

parameters i
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where the first and the third multipliers are the constant 
homogenous matrices which do not include the displacement 

i

j , and the second multiplier corresponds to the derivative of 

the elementary translation or rotation corresponding to i

j . In 

the right-hand term, symbol “ ' ” stands for the derivation of 
the variables with respect to i

j . Therefore, 
ixp' , iyp'  and 

izp'  

(resp. 
ix' , iy'  and 

iz' ) correspond to the small translations 

along (resp. rotations about)  x, y and z axes of the extremity 

of the leg i due to the variation of the parameter  i

j . 

The Jacobians i

qJ  can be computed in a similar manner, but 

the derivatives are evaluated in the neighbourhood of the 

“nominal” values of the passive joint coordinates i

jq   (i = 1, to 

4) corresponding to the rigid case (these values are obtained 
from the inverse kinematics. 

Once these matrices are obtained, the stiffness matrix of the 
robots may be easily obtained using expressions (3) to (5). 

4.3 Computation of the total mass 
The total mass of the robot is obviously the sum of the masses 
of each of its links, i.e. the masses of the three feet plus the six 
axes and bars of the parallelograms plus the platform. 

The length of the bars of the parallelograms is already 
known here. But this is not the case of their shape, which 
should be properly defined by an analysis of the effort 
transmission and deformations of the mechanism. Indeed, 
looking at the two robots under study, it appears that the bars 
of the parallelograms have only to support traction/ 
compression and torsion solicitations.  

It is known (and it could also be easily demonstrated) that 
the best appropriated shape of bars able to best resist to these 
 

 

 

Figure 6. Attachment of the bars of the parallelogram 
onto the platform. 

 

types of solicitations is the hollow cylinder. Thus, once this 
shape is fixed, one can compute the mass of one bar of a 
parallelogram: 

   BarBarBarBarBarBarBarBar SlrRlm   22 . (14) 

where Bar is the density of the material, lBar is the length of 
the bars, RBar is the external radius of the cross-section, and 
rBar the internal radius (RBar and rBar are parameters that should 
be defined during the optimization process). SBar is the value 
of the cross-section. It should be mentioned that, for any fixed 
value of SBar, the cross-section that has the best torsional 
stiffness is the cross-section with the largest value of RBar.  

Therefore, for one given maximal value max
BarR  of RBar, rBar 

should be equal to 

   /
2max

BarBarBar SRr  . (15) 

The mass of the feet is directly linked to their shape and 
length (which is considered equal to 2 d, where d is a 
parameter that should be defined during the optimization 
process). In a first approximation, it is considered that these 
feet should have the shape of cylinders. This shape is not the 
best one, but at this design stage, it is sufficient to give an 
approximation of their mass. It will be refined in another step 
using CAD/FEA software. So, their mass is equal to 

 dkRdm FootFootFoot 1
2 22   . (16) 

where Foot is the density of the material, and RFoot is the 
external radius of the cross-section. The parameter k1 regroup 
all constant terms of expression (16). 

Finally, the mass of the platform will also vary with its 
shape. It is commonly considered that the platform may be 
kinematically represented by a circle. Therefore, it will be 
considered here that its shape is a cylinder. Once again, this is 
not the best solution, but at this design stage, it is sufficient to 
give an approximation of their mass. It will be also refined in 
another step using CAD/FEA software. So, its mass is equal to 

 2
2

2
ToolToolToolTool RkRhm   . (17) 

where Tool is the density of the material, h is the height of the 
cylinder and RTool is the platform radius (which is a parameter 
that should be defined during the optimization process). The 
parameter k2 regroup all constant terms of expression (17). 

Finally, the total mass of the platform is equal to 

 2
2166 ToolBarBarBar RkdkSlm   . (18) 
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It should be mentioned here that, to avoid interferences 
between two adjacent parallelograms links, the radius RTool of 

the platform should be superior to 3/2d  (Fig. 6). 

In the next subsection, a design procedure that allows 
finding the optimal design parameters SBar, d and RTool will be 
proposed. 

4.4 Optimization results 
Before using the optimization algorithm proposed in section 
3.4, the lower and upper bounds of the search intervals for the 
parameters d, SBar and RTool have to be fixed. These intervals 
are: 
- d  [0.1 m, 0.7 m]; the lower limit of 0.1 m is set because 

of design issues. Indeed it is difficult to design 
parallelograms with small axes and a lower limit for d of 
0.1 m is considered as a minimal acceptable value; 

- RTool  [ 3/2d , 0.8 m]; 

- SBar  [10-5 m², 0.01 m²]. 
The obtained results are presented below. 

4.4.1 Comparison between the alternative solutions 
At this step, as the exact form of the feet and of the platform is 
not known, one way to proceed is to make the parameters k1 
and k2 vary. This will allow the designer to test several 
potential designs with CAD/FEA software and to find, in the 
last step of the optimization process, the most adapted one. 

Here, the used values of parameter k1 are 25, 100 and 200. 
These values correspond to axes of parallelogram made of 
aluminium, of which radius is equal 5 cm, 10 cm and 15 cm 
respectively.  

The lower value of 5 cm is chosen because, in our previous 
work [11], it was shown that the maximal rate between the 
force applied to the platform and the force applied to the feet 
was about 10. It means that, if the force applied to the 
platform is 300 N, the maximal force applied to the feet will 
be of 3000 N. Let us consider a beam of length 0.4 m. The 
value of 0.4 m is chosen here as it corresponds to the medium 
value of the search interval for parameter d. It could be shown 
that the deformation of a beam under a load of 3000 N, of 
which the circular section’s radius is 5 cm, is a bit less than 
0.25 mm (0.25 mm being the maximal desired value of the 
end-effector deformation). The other values for the radius (10 
cm and 15 cm) are used because the exact form of the feet is 
not known. Thus, it is preferable to make the radius vary, in 
order to test several potential design with CAD software and 
to find the most adapted one. 

The used values of parameter k2 are 250, 500, 750 and 
1000. These values correspond to platform of height 
comprised 3 cm, 6 cm, 9 cm and 12 cm. As it is difficult to 
know the real shape of the platform, the lower value of 3 cm is 
chosen because it is approximately the width of the platform 
of the Orthoglide robot [3] manufactured by Symetrie® and 
located at the IRCCyN (France). The other values are used 
because the exact form of the platform is not known. Thus, it 
is preferable to make the height of the platform vary, in order 
to test several potential design with CAD software and to find 
the most adapted one. 

In a first step, let us analyze the evolution of the design 
parameters as a function of the desired accuracy of the 
platform. It is proposed to vary the value of pmax from 0.01 

mm to 0.5 mm. For any set of parameters k1, k2 and pmax, the 
values of the optimal design variables are computed. The less 
time-consuming algorithms proposed in section 3 are used. 
The results are presented at tables 1 and 2. It is only presented 
one table per robot for the two algorithms proposed above, 
because the obtained results in the two cases are identical. 
Thus, the assumption made in section 3 for accelerating the 
computing process was correct, i.e. in this case, the worst 
points for accuracy are located at the boundary of the 
workspace. 

It may be observed for the UraneSX (Y-STAR, resp.) that, 
for any fixed value pmax ≤ 0.1 mm (pmax = 0.01 mm, resp.), 
the values of design variables SBar, d and RTool evolve as a 
function of the parameters k1 and k2. This is not the case for 
pmax = 0.5 mm (pmax ≥ 0.05 mm, resp.). In this case, the 
design parameters remain constant whatever is the values of k1 
and k2. The optimal value of d is 0.1 m, which was the lower 
bound fixed in our optimization algorithm. As previously said 
in section 4.4, this lower limit was fixed because of design 
issues. The reason for which all the values of the design 
variables SBar, d and RTool are constant for pmax = 0.5 mm 
(pmax ≥ 0.05 mm, resp.) is that optimal solutions will appear 
for d < 0.1 m, but it is not possible to pass though this limit. 
Thus, because of the huge impact of the feet platform masses 
on the total mass of the robot, the algorithm converge to the 
sizes of platform and feet that will keep the total mass as small 
as possible. 

It could also be observed that, when the parameters k1 and 
k2 increase, i.e. when the cross-section of the feet and the 
height of the platform cylinder increase, the optimal robots 
will be obtained when the values of the length d of the axes of 
the parallelograms and of the platform radius RTool decrease. 
This is due to the fact that the mass of the feet and of the 
platform largely increase with the increase in the parameters d 
and RTool. When this appears, it may also be observed that the 
cross-section of the bars of the parallelograms increases. This 
phenomenon is due to the fact that, the smaller the length d of 
the axes, the poorer the torsional stiffness of the 
parallelograms. Therefore, it is necessary to increase the cross-
section of the bars in order to assure the good stiffness of the 
entire mechanism. 

Finally, it should be mentioned that, for identical sets of 
parameters k1, k2 and pmax, the mass of the Y-STAR is lower 
than that of the UraneSX. 

4.4.2 Optimization results for bathroom components 
milling 
In order to be sure that the obtained robot will not suffer from 
a lack of accuracy due to non modelized phenomena (such as 
clearance, elasticity of joints, etc), some safety coefficient is 
applied to the value of ||pxy||. The corrected value is fixed to 
0.1 mm.  

First, the height of the platform was fixed to 3 cm, i.e. k2 = 
250. For pmax = 0.1 mm, the maximal value of d is 0.22 m. It 
could be shown that the maximal deformation of the foot, 
represented by a aluminium beam of length 0.22 m, under a 
load of 3000 N (see section 4.4.1), of which cross-section’s 
radius is 10 cm, is about 0.002 mm, i.e. it is insignificant 
compared with the deformations of the bars of the 
parallelogram. Thus, parameter k1 is fixed to 100.  
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Table 1. Values of the secondary geometric parameters 
of the UraneSX, for bars of the parallelograms made of 

aluminum and for max
BarR = 7.5 cm. 

 

pmax 

(mm) 
k1 k2 

m 
(kg) 

SBar 

(cm²) 
d 

(m) 
RTool 

(m) 

0.01 

25 

250 168 17,93 0,5 0,29 
500 185 19,29 0,42 0,24 
750 197 20,76 0,36 0,21 

1000 208 21,37 0,34 0,20 

100 

250 202 19,73 0,4 0,23 
500 214 20,76 0,36 0,21 
750 223 22,07 0,32 0,18 

1000 232 22,88 0,3 0,17 

200 

250 238 21,37 0,34 0,20 
500 247 22,88 0,3 0,17 
750 254 22,88 0,3 0,17 

1000 261 23,80 0,28 0,16 

0.05 

25 

250 49 4,75 0,28 0,16 
500 55 5,21 0,24 0,14 
750 59 5,51 0,22 0,13 

1000 62 5,87 0,2 0,12 

100 

250 67 5,87 0,2 0,12 
500 71 5,87 0,2 0,12 
750 73 6,30 0,18 0,10 

1000 76 6,84 0,16 0,09 

200 

250 86 6,84 0,16 0,09 
500 88 6,84 0,16 0,09 
750 89 7,51 0,14 0,08 

1000 91 7,51 0,14 0,08 

0.1 

25 

250 30 2,75 0,22 0,13 
500 34 3,15 0,18 0,10 
750 36 3,42 0,16 0,09 

1000 38 3,42 0,16 0,09 

100 

250 44 3,42 0,16 0,09 
500 45 3,75 0,14 0,08 
750 47 4,17 0,12 0,07 

1000 48 4,17 0,12 0,07 

200 

250 56 4,70 0,1 0,06 
500 57 4,70 0,1 0,06 
750 58 4,70 0,1 0,06 

1000 59 4,70 0,1 0,06 

0.5 

25 

250 10 0,94 0,1 0,06 
500 11 0,94 0,1 0,06 
750 12 0,94 0,1 0,06 

1000 13 0,94 0,1 0,06 

100 

250 18 0,94 0,1 0,06 
500 19 0,94 0,1 0,06 
750 20 0,94 0,1 0,06 

1000 20 0,94 0,1 0,06 

200 

250 28 0,94 0,1 0,06 
500 29 0,94 0,1 0,06 
750 30 0,94 0,1 0,06 

1000 30 0,94 0,1 0,06 

 

Table 2. Values of the secondary geometric parameters 
of the Y-STAR, for bars of the parallelograms made of 

aluminum and for max
BarR = 7.5 cm. 

 

pmax 

(mm) 
k1 k2 

m 
(kg) 

SBar 

(cm²) 
d 

(m) 
RTool 

(m) 

0.01 

25 

250 163 40,22 0,38 0,22 
500 173 42,06 0,32 0,18 
750 180 43,63 0,28 0,16 

1000 185 45,57 0,24 0,14 

100 

250 188 43,63 0,28 0,16 
500 194 45,57 0,24 0,14 
750 198 46,71 0,22 0,13 

1000 202 47,97 0,2 0,12 

200 

250 212 47,97 0,2 0,12 
500 215 49,36 0,18 0,10 
750 217 50,86 0,16 0,09 

1000 218 55,45 0,1 0,06 

0.05 

25 

250 40 10,53 0,1 0,06 
500 41 10,53 0,1 0,06 
750 42 10,53 0,1 0,06 

1000 43 10,53 0,1 0,06 

100 

250 48 10,53 0,1 0,06 
500 49 10,53 0,1 0,06 
750 49 10,53 0,1 0,06 

1000 50 10,53 0,1 0,06 

200 

250 58 10,53 0,1 0,06 
500 59 10,53 0,1 0,06 
750 59 10,53 0,1 0,06 

1000 60 10,53 0,1 0,06 

0.1 

25 

250 22 5,23 0,1 0,06 
500 23 5,23 0,1 0,06 
750 23 5,23 0,1 0,06 

1000 24 5,23 0,1 0,06 

100 

250 29 5,23 0,1 0,06 
500 30 5,23 0,1 0,06 
750 31 5,23 0,1 0,06 

1000 32 5,23 0,1 0,06 

200 

250 39 5,23 0,1 0,06 
500 40 5,23 0,1 0,06 
750 41 5,23 0,1 0,06 

1000 42 5,23 0,1 0,06 

0.5 

25 

250 7 1,04 0,1 0,06 
500 8 1,04 0,1 0,06 
750 9 1,04 0,1 0,06 

1000 9 1,04 0,1 0,06 

100 

250 14 1,04 0,1 0,06 
500 15 1,04 0,1 0,06 
750 16 1,04 0,1 0,06 

1000 17 1,04 0,1 0,06 

200 

250 24 1,04 0,1 0,06 
500 25 1,04 0,1 0,06 
750 26 1,04 0,1 0,06 

1000 27 1,04 0,1 0,06 
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Table 3. Values of the optimal secondary geometric 
parameters for the UraneSX and Y-STAR robots. 
 

 UraneSX Y-STAR 
SBar (cm²) 3.42 5.23 
d (m) 0.16 0.1 
RTool (m) 0.09 0.06 
m (kg) 44 29 

 

Taking into account these parameters and extracting data 
from tables 1 and 2, the optimal design parameters are 
presented in table 3. 

Our simulations show that manufacturing a Y-STAR for 
high-speed machining of composite will allow creating robots 
with a lower mass.  

4.5 Discussion 
From the obtained results, it should be mentioned several 
comments. For reason of simplicity and reduction of 
computational time, it has been considered that the only 
deformable parts were the links of the parallelograms and that 
all other elements where rigid. This assumption about the feet 
and platform is quite realistic because, generally, they are 
designed such as they have very little deformations. However, 
the deformations of the bearings and axes that will be used in 
order to create the universal joints have not been taken into 
consideration. These parts have generally smaller cross-
sections than the others; therefore they may lead to non 
negligible deformations of the robot. Thus, the proposed 
model is not sufficient to fix the desired cross-section of the 
links, and more refined FEA model should be created in order 
to validate the results. However, these models are complicated 
and an optimization algorithm using them will be much more 
time consuming than that proposed here. 

So, it should be concluded that the proposed design 
procedure is not sufficient to definitely fix the design of a 
robot. However, the algorithm will give the designer an idea 
of the near-optimal solution that should be confirmed by a 
FEA analysis. This will be used in order to readjust the values 
of parameters ki and pmax. After several loops between the 
FEA software and the optimization algorithm, the designer 
will converge to an optimal solution. This optimal solution 
could be obtained using only FEA model, but the proposed 
algorithm will considerably accelerate the design process. 

5 CONCLUSIONS 
In this paper, a new methodology for the optimal design of the 
secondary geometric parameters of parallel kinematic machine 
tools was proposed. This approach aims at minimizing the 
total mass of the robot under position accuracy constraints. 
This methodology was applied to two translational parallel 
robots with three DOF: the Y-STAR and the UraneSX. The 
proposed approach will help the designer to find more quickly 
an optimal set of design parameters and they will allow 
considerably accelerating the design process. 

To conclude, we would like to mention that our next task in 
the design optimization of robots will be the analysis and 
comparison of the results obtained during this optimization 
process with several other architectures. We also would like to 
work on the definition of more meaningful criteria (different 
from the total mass) for the characterization of the robots 
dynamic properties. Finally, another research perspective is to 

more deeply focus on the improvement of the elastic models 
accuracy, especially in the neighbourhood of singular 
configurations. Indeed, it appears that near singularities, the 
elastic behaviour of robots becomes nonlinear. As a result, the 
classical deformation models are no more accurate enough. 
Therefore, it is necessary to solve this problem. 
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