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Technology, Sustainability, and Marketing of Battery 

Electric and Hydrogen Fuel Cell Medium-Duty and Heavy-

Duty Trucks and Buses in 2020-2040 

EXECUTIVE SUMMARY 

The objective of this study was to project the introduction of battery-electric and fuel 

cell/hydrogen technologies into the medium-duty (MD) and heavy-duty (HD) vehicle markets 

and to identify which markets will be most suitable for each of technologies and the factors 

(technical, economic, operational) which will be most critical to their successful introduction. 

The study considered trucks and buses of various types—delivery vans, transit buses, intercity 

buses, long haul and short haul tractor trailer trucks, and heavy-duty pickup trucks.  

The initial sections of the report contain detailed reviews of lithium battery and PEM fuel cell 

technologies and their application in the powertrains of trucks and buses. The fuel cell 

technology review includes hydrogen storage as a high-pressure gas and a cyro-compressed 

liquid and in liquid organic hydrogen carriers (LOHC). Efficient and cost–effective storage of the 

hydrogen on–board the vehicles is critical to the marketing of fuel cell/hydrogen powered 

trucks and buses.  

In the next section of the report, the energy consumptions (Wh/mi and kgH2/mi) for the trucks 

of various types are calculated using the ADVISOR vehicle simulation program. Simulation 

results were obtained for each truck type for several appropriate driving cycles. From the 

energy consumption results, the battery (kWh) and hydrogen (kg) storage required were 

calculated to meet specified ranges of the trucks and buses. The initial energy storage results 

were for vehicle operation on level roads and it was determined that to account for operation 

on grades and increased accessory loads, the energy storage required for a specified range 

should be about doubled to provide that range with confidence in real world operation.  

After determining the energy storage requirements, consideration was given to providing the 

infrastructure needed to charge the batteries onboard the trucks and refueling the trucks with 

hydrogen. The infrastructure at both truck/bus terminals and along highways were analyzed. In 

the case of battery-electric buses, both fast charging the batteries along the city routes and 

overnight charging at the bus terminal were considered. In the case of trucks powered by 

hydrogen fuel cells, refueling along an interstate highway was analyzed utilizing an electrolyzer 

connected to the grid to produce hydrogen on-site at large hydrogen refueling stations. These 

stations could produce and dispense hydrogen at about $5/kg if the cost of the grid electricity 

was $.1/kWh or less.  

Sustainability aspects of fueling trucks and buses were discussed in terms of the Low Carbon 

Fuel Standard (LCFS) being implemented in California. The LCFS is intended to fuel vehicles 

using fuels produced from renewable resources having a low carbon intensity (gm CO2/MJ). For 

the battery-electric and fuel cell/hydrogen trucks, this means refueling using primarily 
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electricity from solar and wind resources directly to charge batteries or indirectly to produce 

hydrogen using an electrolyzer. Both California and the United States are producing an 

increasing fraction of their electricity from solar and wind and at costs approaching that of 

electricity produced from natural gas. Hence there is reason to believe that when trucks and 

buses using batteries and fuel cells are marketed, renewable (sustainable) electricity/hydrogen 

will be available to fuel them. The future costs of the electricity and hydrogen at the present 

time are uncertain. 

The final sections of the report deal with the initial cost of the battery-electric and hydrogen 

fuel cell trucks and buses and their ownership costs and the prospects for marketing the 

electrified vehicles in 2020-2040. The initial purchase costs of the electrified vehicles depend 

primarily on the unit costs ($/kWh and $/kW) of the batteries and fuel cell systems. The 

operating cost ($/mi) of the vehicles depends primarily on the energy costs ($/kWh of 

electricity and $/kg of hydrogen) and their reduced maintenance costs. In general, the 

economic analyses indicate that none of the electrified trucks become cost competitive until 

the battery and fuel cell costs decrease to the lowest values (70-100/kWh for batteries and $80-

100/kW for fuel cells) assumed in the calculations even for the relatively low electricity 

($.10/kWh) and hydrogen ($5/kg) prices assumed. How soon the maturing technologies will 

reach those cost values is uncertain, but it seems likely to occur in the next 10-20 years. 

Even at the battery cost of $80/kWh, the long haul truck (300 miles), the short haul truck (150 

miles) and the pickup truck (150 miles) would not be competitive with the diesel trucks. 

Battery-electric vehicles of the other types would be cost competitive and their sales should be 

promising as their initial costs approach those of the conventional diesel vehicles and the 

energy costs ($/mi) of the battery-electric vehicles are less than the diesel vehicles. The 

maintenance costs of the battery-electric were assumed to be one-half (1/2) the cost per mile 

of the corresponding diesel truck. 

In the case of the fuel cell-electric trucks and buses, the fuel cell costs required for the 

electrified vehicles to become cost competitive were $80-100/kW. This is the cost of the 

complete fuel cell system including all accessories to the vehicle manufacturer/assembler. It 

does not include the cost of the hydrogen storage which was assumed to cost $ 200/kgH2. For 

the low fuel cell costs ($80-100/kW) and hydrogen at $5/k, the delivery van and buses are cost 

competitive with the diesel both in terms of initial cost and TCO. Under these conditions, the 

sales of the delivery vans and buses would be promising if the required infrastructure for 

hydrogen is available. The economics of the long-haul trucks using fuel cells and hydrogen are 

more promising than with batteries. First, the range of the fuel cell long haul truck has been 

increased to 600 miles from 300 miles using batteries. Second, the cost of the tractor with the 

low-cost fuel cell would be $156K compared to $227K with the batteries. However, the TCO of 

the fuel cell/hydrogen truck ($.97/mi) for hydrogen at $5/kg would be higher than of the 

battery-electric long-haul truck ($.71/mi). The TCO of the diesel truck is estimated to be 

$.78/mi. Hence the marketability of the fuel cell truck would be dependent on the price of 

hydrogen which would need to be less than $5/kg. The short haul truck (150 mile range) seems 

to be best suited to be battery-electric unless the cost of hydrogen is well below $5/kg or the 
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price of electricity for truck companies is considerably higher than the $.10/kWh value assumed 

in all the battery-electric economic calculations. 

In summary, the long-term economics of battery-electric buses and trucks looks more favorable 

than that for the fuel cell/hydrogen option if the range requirement (miles) for the truck can be 

met using batteries. This is primarily due to the significantly lower energy operating cost ($/mi) 

using electricity than hydrogen. The difference is, of course, dependent on the relative costs of 

the electricity and hydrogen. The differences in the initial costs of the battery-electric and fuel 

cell trucks depends on the range assumed for the respective vehicles. In general, the ranges of 

the fuel cell vehicles can be greater than the battery-electric vehicles for the same initial cost. If 

the energy costs are higher than assumed, the battery and fuel cell unit costs will have to be 

lower than those discussed in this study for the electrified vehicles to be cost-competitive with 

the diesel vehicles for the same diesel fuel cost.  
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1. Introduction 

The objective of this study is to project the introduction of battery electric and fuel cell 

technologies into the MD/HD vehicle markets and to identify which markets will be most 

suitable for each of technologies and the factors (technical, economic, operational) which will 

be most critical to their successful introduction. The degree to which the markets will utilize 

sustainable energy sources will be assessed. 

The study was performed in terms of the following tasks. 

Task 1: Projection of the characteristics of heavy-duty battery characteristics for use in 

buses and trucks 

Task 2: Projection of the characteristics of heavy-duty fuel cell systems for use in buses and 

trucks 

Task 3: Projection of the characteristics of hydrogen energy storage for buses and trucks  

Task 4: Projections of the cost of buses and various MD/HD trucks having specified ranges 

using batteries and fuel cells  

Task 5: Summary of the design and operational characteristics of battery charging and 

hydrogen refueling infrastructure for urban terminals and intercity stations 

Task 6: Sustainable energy availability and economics 

Task 7: Estimation of the ownership costs of buses and various MD/HD trucks meeting user 

requirements 

Task 8: Projection of the markets and prospects for the sale of battery powered and 

hydrogen fuel cell buses and trucks for 2020-2040  
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2. Battery characteristics for use in buses and trucks 

As indicated in Table 1 below, there are a number of lithium battery chemistry that could be 

used in MD/HD vehicles. These are the same chemistry that can be used in light-duty vehicles. 

In fact, for the most part, the same cells are used to assemble batteries for all the vehicles from 

the smallest to the largest vehicles. 

Table 1. Characteristics of lithium batteries of various chemistries [2] 

Lithium 

battery type Wh/kg Wh/L Cycle life 

Cost 

*$/kWh 

Power 

capability 

Fast 

charge 

capability 

NiCoMn 

(NCM) 

200-250 420-525 1000-2000 200-300 moderate Fair 

LiFePO4 

(LFP) 

100-140 220-310 2000-3000 200-300 Low Good 

LiTiOxide 

(LTO) 

45-100 85-190 10000-20000 400-500 High Excellent 

*cost in 2016-2017, battery costs will lower in 2020 and beyond 

One of the key questions to consider is whether it is appropriate to use the same lithium cells 

for all the vehicle types. To investigate this question, it is instructive to compare the batteries 

that would be used in a small vehicle like the Chevy Bolt with the battery for a HD short haul 

truck. Both battery packs use the same 56 Ah NCM cell used in Bolt which are supplied by LG 

Chem. The characteristics of the small battery pack (V, kWh, and kW) are the same as that in 

the 2017 Bolt. In the case of the battery pack for the short haul truck, the battery stores 500 

kWh and the truck has a maximum power of 320 kW. It is somewhat counter-intuitive that the 

cells in the Bolt are more highly stressed (higher W/kg) than the cells in the short haul truck EV 

during maximum effort accelerations requiring peak power from the battery. This is the case 

because the battery in the HD truck is much larger and contains ten (10) times more cells. 

Hence each cell in the larger battery does not work as hard. This is even true when the small 

and large vehicles are traveling at 60 mph. Hence it appears that there should be no problem in 

using the cells designed for use in the passenger cars in MD/HD trucks. In fact, it might be 

appropriate to design special cells for use in the trucks that have lower power capability and as 

a consequent can have higher energy density, longer life, and lower cost if manufactured in the 

same quantities as the smaller cells used in cars. 

One of the big differences shown in Table 2 is in the deep discharge cycles per year. The battery 

in the Bolt will experience only 50 deep discharge cycles/yr while the battery in the short haul 

truck will experience over 300 cycles/yr, because it will be deep discharged nearly every day. 

Hence in terms of years, the cycle life of the battery in the truck will be shorter than in the 

passenger car. The average power (W/kg) for the discharge of both batteries will be relatively 

low. 
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Table 2. Comparison of the physical and working characteristics of the battery in light-duty 

and heavy-duty vehicles 

Parameter Light-duty vehicle (Bolt) 

Heavy-duty vehicle  

(short haul truck EV) 

Energy stored (kWh) 60 500 

Pack voltage (V) 355 750 

NCM Battery cell Ah (1.04 

kg/cell) 

56 56 

Pack cell configuration 96s3p (288 cells) 192s13p (2500 cells) 

Total weight of cells (kg) 300 2600 

Cell energy density (Wh/kg) 200 200 

Maximum Power (kW) 150 320 

Power density (W/kg) 500 123 

Miles per year 12000 40000-85000 

Battery deep discharge 

cycles/yr 

50 (250 Wh/mi) 360 (2.1 kWh/mi) 

Average power (kW; W/kg)   

60 mph 15; 50 96; 37  

City driving 5; 17 21; 8 

The battery packs in the trucks will be much larger, have many more cells, and generate more 

heat to remove. For that reason, the thermal management and battery management (BMS) 

systems for the truck batteries will be more complex and expensive. The packaging of the large 

batteries will also have to more robust as the physical environment (vibration, exposure to the 

weather and road conditions) will be more extreme. Hence it appears that the same cells can 

be used in the batteries for cars and trucks, but the surrounding packaging and monitoring will 

be more demanding. 

The work on this task has involved both testing of lithium-ion cells of various chemistries in the 

UCD-ITS Battery Lab and detailed reviews of the literature concerned with present and 

projected characteristics of lithium batteries. Testing has been completed for a A123 LiFePO4 

cell, a LG Chem NCM cell, and a Toshiba LTO cell. One of the cell characteristics of particular 

interest is the cell resistance and how that influences its pulse current capability. Battery 

manufacturers often do not give information on the resistance of their cells. A paper was 

presented at EVS 32 [33] that summarizes the results of our recent battery testing. It is 

concerned with comparing the power capability of lithium batteries and supercapacitors.  

Contact was made with Microvast [1], a battery manufacturer headquartered in Texas, but with 

its engineering and manufacturing in China. Microvast has announced it will be building a large 

facility in Texas to assemble large battery packs for trucks and busses. Microvast is the only 

battery manufacturer in the world that specializes in batteries for trucks and buses. They design 

and manufacture the cells and then assembly them into battery packs. Until the last few years, 

Microvast has specialized in LTO batteries and emphasized fast charging applications. In more 
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recent years, Microvast has developed batteries with other chemistries than LTO. As indicated 

in Figure 1, Microvast now has developed products with cell voltages and energy densities 

similar to NCM like LG Chem. As indicated in Figure 2, their cells have a maximum voltage of 

4.25V and an energy density of 225 Wh/kg, 650 Wh/L. This performance is as good as any other 

manufacturer in the world and their battery modules and packs are designed for heavy-duty 

applications. The cells are designed for pulse discharges up to 6C and charging up to 3C (20 

minutes charge). The R&D road map from Microvast (Figure 1) shows a target of an energy 

density of 350 Wh/kg, 800-1000 Wh/L and 3C fast charging by 2022. Hence Microvast intends 

to have batteries available for trucks and buses with the same high energy density that the auto 

industry hopes to have available for passenger cars. 

 

Figure 1. Microvast roadmap for battery development to 2022 
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Figure 2. Microvast cell and module products for trucks  
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3. The characteristics of heavy-duty fuel cell systems for use in buses 

and trucks 

This section is concerned with the determining the characteristics of PEM (Proton Exchange 

Membrane) fuel cells for MD/HD trucks and buses. The company that has been developing fuel 

cell systems for those applications for several decades is Ballard in British Columbia, Canada. 

The physical characteristics of the Ballard fuel cell systems—dimensions, weight, and power, 

but not the operating characteristics like the V vs. I curve and system efficiency, are given in 

their publications [3-6]. Information/data on the 100 kW Ballard fuel cell are given in Figure 3 

and Table 3. 

 

 

Figure 3. The Ballard 100 kW heavy-duty fuel cell system [4] 

Table 3. Characteristics of the Ballard 100 kW heavy-duty fuel cell system 

Component Weight kg Volume L kW/kg kW/L 

Fuel cell module 285 528   

Coolant system 44 148   

Air subsystem 61 99   

Total 390 775 .256 .129 
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Ballard is testing their fuel cells in buses around the world [5] and those tests show that the 

Ballard fuel cells have excellent durability [6] of 25,000-30,000 hours in HD applications. 

It is thought that the Ballard fuel cells have a maximum efficiency of 55-60%. Information on 

the efficiency of the present generation of fuel cells is shown in the Figure 4. 

 

Figure 4. Fuel cell efficiency curves 

Note that the peak efficiency of the fuel cell is reached at a relatively low fraction of the 

maximum power of the fuel cell, but the efficiency curve is relatively flat. The power shown of a 

fuel cell is the net power after subtracting the power needed to operate the air system that 

provides air (oxygen) to the cathode (positive electrode) of the fuel cells. 

The basic operation of the fuel cell is given in terms of the V (voltage) vs. I (current density 

A/cm2) curve shown in Figure 5. The curve on the left is a generaic V vs. I curve and the one on 

the right is a V vs. I curve for an actual fuel cell. Note the large drop in the voltage for low 

currents due to polarization effects primarily at the air cathode. The ideal voltage of the fuel 

cell is about 1.2V and the initial voltage for present generation fuel cells is close to .9V. This 

means that the maximum efficiency would be 75% if there were no other loses or auxiliary 

loads. That is the reason the maximum efficiency occurs at a low power fraction. Progress in 

reducing the polarization voltage drop has been very slow. Most of the progress has been in 

reducing the Ohmic loses at the high currents by improving the solid/gel electrolyte between 

the anode and cathode and the diffusion of the gases in those electrodes. In vehicles, the fuel 

cell operates at power levels close to and higher than that for the maximum efficiency. 



 
8 

 

Figure 5. Fuel cell V vs. I curves 

Much of the research on fuel cells in recent years has been to reduce their cost ($/kw). The DOE 

has had an extensive study [7] of the projected cost of fuel cells for MD/HD vehicles that 

indicates the cost of fuel cells will be reduced in future years by a large factor reaching about 

$100/kW at production rates of 100,000 units/yr. (See Figure 6). Ballard has indicated that the 

cost of $100/kW was a reasonable expectation in the long-term future. 

 

Figure 6. Fuel cell cost projections [7]   
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4. The characteristics of hydrogen energy storage for buses and trucks 

4.1. Characteristics of presently available hydrogen storage technologies 

Sufficient hydrogen must be stored onboard the vehicle to meet the range requirement of the 

vehicle. At the present time, nearly all fuel cell vehicles store the hydrogen as a compressed gas 

at either 350 atm. (5000 psi) or 700 atm. (10000 psi). There has been consideration of storing 

the hydrogen as a liquid at near 20 deg K at low pressure (<10 atm.) or as a liquid at about 50 

deg K at high pressure (350 atm.). This later system is referred to as cryo-compressed hydrogen 

storage (see Figure 7) and has been studied/developed by BMW and DOE/ANL [8,9]. The 

present status of these various approaches to storing hydrogen are summarized in Figure 7 and 

Table 4. Note in Table 4 that the Toyota hydrogen storage [10] system (see Figure 8) meets the 

DOE targets for hydrogen storage in 2020. The cryo-compressed gas system seems to have a 

significant advantage in weight compared to hydrogen storage at 700 atm., but not in volume. 

 

Figure 7. The cryo-compressed gas storage unit being developed by BMW [8] 
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Figure 8. The Toyota/Mirai hydrogen storage unit [10] 

Table 4. Hydrogen storage characteristics using several available technologies 

Storage of 

25kgH2 

useable  

Compressed 

gas (350 atm.) 

BMW 

Toyota 

(700 atm.) 

Cryo-

compressed 

(350 atm) BMW DOE Goals 

Weight (kg) 430 439 250  

Volume (L) 1420 678 607  

    2020 ultimate 

kgH2/kg 

syst. 

.058  .057 .100 .055 .075 

KgH2/L syst. .018  .037 .041 .04  .07 

4.2. Liquid Organic Hydrogen Carriers for hydrogen storage 

As shown in Table 4, only the cryo-compressed approach to hydrogen storage shows promise of 

reaching the DOE volume goal for 2020 and none of the presently available technologies shows 

promise of meeting the ultimate volume goal of .07 kg H2/Lsys . The only hydrogen storage 

approach being developed which shows promise of significantly better performance than 

gaseous storage at 700 atm (10000 psi) is storing hydrogen in a liquid organic hydrogen carrier 

(LOHC) [11-15]. A wide range of lean hydrogen organic liquids [14,15] are being studied that can 

reversibly store and release up to 7 wt. % of hydrogen. The hydrogenated liquid would be 
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stored in a tank like gasoline and be transported to the refueling stations like gasoline. Hence 

the infrastructure for the LOHC fuel would be nearly the same as for gasoline. From the 

literature, the goals shown in Table 5 are reasonable for the development of the LOHC 

hydrogen storage system for vehicles. 

Table 5. Hydrogen storage system goals using LOHC 

H2 storage 

Technology DOE ultimate LOHC  700 atm. gas 

kgH2/kg syst. .075 .07-.10 .057 

KgH2/L syst. .07 .06- .09 .037 

At the present time, the R&D on LOHC systems are focused on identification and 

characterization of the best organic carrier material and the catalyst needed for the 

dehydrogenation (release of hydrogen) in the vehicle. Current research data [12] indicates 

hydrogen wt.% of up to 10% may be possible in the relatively near-term. The dehydrogenation 

process requires a temperature of 120-150 deg C and pressure less than atmospheric. R&D on a 

dehydrogenation reactor for use in a vehicle has been started, but a reactor does not seem to 

have been demonstrated in a vehicle [12,13] to date.  

LOHC is a promising approach for hydrogen storage for both vehicle and grid applications, but it 

is still relatively early in its development.  
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5. The characteristics of buses and various MD/HD trucks having 

specified ranges using batteries and fuel cells. 

This section involves the start of the development of detailed EXCEL spreadsheets to calculate 

the characteristics and economics of the various types of electrified trucks and buses using 

batteries and fuel cells, the capacity and cost of the infrastructure needed to refuel the 

electrified vehicles both at a home base and on the road, projected markets for the ZEV 

vehicles, and potential for the use of renewable fuels in the vehicles.  

This task was concerned primarily with the determination of the design characteristics of the 

vehicles and the powertrains for the trucks and buses of various types. The initial step in the 

development of the spreadsheet is the determination of the vehicle characteristics and the 

calculation of the vehicle energy consumption for various types of driving. The energy 

consumption of the vehicles was calculated using a vehicle simulation program ADVISOR [16-

19] using the road load inputs given in Table 6. The energy consumption results are summarized 

in Table 7. These energy consumption values will be used to calculate the kWh of electricity and 

kg of hydrogen needed to meet the range requirements of the various vehicles. The ADVISOR 

simulation results are consistent with the limited test data available for the various types of 

MD/HD electric vehicles. 

Table 6. Road load characteristics of MD/HD buses and trucks 

Vehicle type 

Electric 

motor 

kW 

CD/  

A m2 fr 

WV 

Kg 

Accessories 

kW 

City Delivery      

2030 125 .6 / 7.8 .007 6900 1.5 

2050 125 .55 / 7.2 .006 6750 1.5 

City transit bus      

2030 250 .65 / 7.1 .0075 15000 6 

2050 250 .55 / 7.1 .005 14000 6 

Inter-city bus      

2030 250  .6 / 7.7 .0075 15000 6 

2050 250  .55 /7.2 .005 14000 6 

Heavy-duty truck 

(long- and short-haul) 

     

2030 300 .55 /9.5 .0055 29500 1.5 

2050 300 .45/ 9.5 .005 29000 1.5 

HD pick- up truck      

2030 250 .41 / 3.1 .0075 3950 .8 

2050 250 .40 / 3.1 .006 3875 .8 
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Table 7. Energy use of battery-electric and fuel cell vehicles of various types on level ground 

Vehicle type *2030 2050 

MD delivery truck (city)   

Battery- powered (kWh/100 mi) 85 72 

Fuel cell (kgH2 /100 mi) 5.6 5.2 

Diesel mpg 10.5 12.5 

Transit bus (city)   

Battery- powered (kWh/100 mi) 230 215 

Fuel cell (kgH2 /100 mi) 9.6 9 

Diesel mpg 6.5 7.3 

Inter-city bus (highway)   

Battery- powered (kWh/100 mi) 123 95 

Fuel cell (kgH2 /100 mi) 166 130 

Diesel mpg 10.1 11.9 

HD long-haul truck (highway)   

Battery- powered (kWh/100 mi) 240 200 

Fuel cell (kgH2 /100 mi) .15  

Diesel mpg 8.7 10.1 

HD short-haul truck (city)   

Battery- powered (kWh/100 mi) 233 210 

Fuel cell (kgH2 /100 mi) 12.9 11.6 

Diesel mpg 8.2 9 

HD pick-up truck (city)   

Battery- powered (kWh/100 mi) 53 58 
*80% of battery capacity is used initially, 150 Wh/kg 2030, 225 Wh/kg 2050 

The roads on which the vehicles will be traveling are not all level (flat). To investigate the effect 

of grade on energy consumption, ADVISOR simulations have been made for the various types of 

battery-electric trucks and for city and highway driving on roads with grades of .5 and 1%. The 

results of the simulations are shown in Table 8. To include the effect of most small to modest 

grades, a factor of 1.3 will be included in later calculations of energy requirements for specified 

vehicle ranges to account for use on non-level roads. ADVISOR simulation results for the diesel 

long haul truck indicated that their fuel economy decreased by about 45% on a 1% grade.  



 
14 

Table 8. The increase in energy consumption (Wh/mi) for city and highway driving on grades 

for electric trucks of various types  

Type of driving 

and grade 

Truck type 

City delivery Transit bus 

Long haul 

truck HD pick up 

City driving     

0 1.0 1.0 1.0 1.0 

.5% 1.13* 1.2 1.24 1.19 

1% 1.26 1.37 1.5 1.37 

Highway driving     

0 1.0 1.0 1.0 1.0 

.5% 1.23 1.15 1.39 1.25 

1% 1.36 1.36 1.8 1.5 

*Ratio = (Wh/mi)grade / (Wh/mi)0 

It also is of interest to consider the effect of improved cell energy density on the weight and 

volume of the battery pack especially compared to the weight of the tractor (3535 kg). The 

effect of the cell energy density on the battery pack characteristics are shown Table 9. Even for 

a cell energy density of 350Wh/kg, the weight of the battery pack (1200 kWh) for 500 miles on 

level roads will be greater than that of the diesel-powered tractor. Lithium batteries with a cell 

energy density of 350 Wh/kg will likely not be available for use in vehicles for at least 5 years.  
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Table 9. Battery pack characteristics for different cell energy densities 

kWh stored 

in battery 

Cell energy 

density 

(Wh/kg/Wh/l) 

Cell weight 

kg 

Cell volume  

L 

Pack weight* 

kg 

Pack volume** 

L 

100 kWh      

 148/320 676 313 811 422 

 225/495 444 202 533 273 

 350/770 286 130 343 176 

400 kWh      

 148/320 2703 1250 3244 1688 

 225/495 1778 808 2134 1091 

 350/770 1143 519   

800 kWh      

 148/320 5405 2500 6486 3375 

 225/495 3556 1616 4268 2182 

 350/770 2285 1039 2742 1403 

1200 kWh      

 148/320 8108 3750 9730 5063 

 225/495 5333 2424 6400 3272 

 350/770 3423 1558 4108 2103 
*Weight packaging factor 1.2 

*Volume packaging factor 1.35 

The vehicle spreadsheets developed can be used to quickly determine the effect of input 

parameters such as vehicle range and battery energy density (Wh/kg) on the energy storage 

requirements (electricity kWh and hydrogen kg) and the weight and volume of the battery and 

the fuel cell for the various types of trucks. The output tables for the city delivery truck, transit 

bus, and long-haul truck are shown in Tables 9–11.
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Figure 9. Battery and fuel cell weights and volumes for the city delivery truck 



 
17 

 

Figure 10. Battery and fuel cell weights and volumes for the transit bus 
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Figure 11. Battery and fuel cell weights and volumes for the long haul truck. 
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6. The design and operational characteristics of battery charging and 

hydrogen refueling infrastructure for urban terminals and intercity 

stations 

6.1. Battery charging for Electric Transit Buses  

Most electric transit buses being sold in the United States have ranges of 100-200 miles and 

battery packs that store 200-300 kWh of electrical energy. The batteries in these buses would in 

most cases be recharged overnight in a bus depot. Another class of electric transit buses being 

sold are intended to have the batteries recharged at selected locations along the route of the 

bus in 5-10 minutes. The battery pack in these buses store only 50-110 kWh of energy and have 

a range between battery recharges of 20-40 miles. The use of the smaller battery greatly 

reduces the cost of the battery and the fast recharge of the battery at selected known locations 

reduces any range anxiety of the bus company. The short-range buses use Lithium Titanate 

Oxide (LTO) batteries and the long-range buses use Lithium Nickel Cobalt Manganese (NCM) 

batteries. The LTO batteries have a relatively low energy density of about 100 Wh/kg, but very 

long cycle life of over 10,000 cycles and the ability to accept very fast charge (several minutes) 

without damage. The NCM batteries have a high energy density of 200-250 Wh/kg and a cycle 

life of 1000-2000 cycles. The optimum charge time of the NCM battery is of one hour or longer. 

Recent sales data for electric buses indicate that in the United States the transit agencies 

strongly prefer the long-range buses and charge the batteries overnight at their terminal. 

We have performed fast charge testing on both NCM and LTO cells. The results are shown Table 

10 and Table 11. The LTO cell can clearly be recharge in 10 minutes or less. Note that for the 

LTO batteries, the charge Ah to the maximum voltage (2.8V) changes only a small amount with 

charge rate even for a 6C charge. This not the case for the NCM cell. 

Table 10. Fast charge tests of a LTO cell 

Charge Current 

Charge Time 

minutes Ah to 2.8V 

Total Ah to 

charge time 

1C 20A 60 18.8 19.47 

2C 40A 30 17.71 18.8 

3C 60A 20 17.32 18.7 

4C 80A 15 16.92 18.5 

5C 100A (3V) 12 17.05 18.8 

6C 120A (3V) 10 18.1 19.4 
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Table 11. Fast charge tests of a NCM cell 

Charge Current 

Charge Time 

minutes Ah to 4.2V 

Total Ah to 

charge time 

1C 3A 60 2.4 2.97 

2C 6A 30 2.0 2.87 

3C 9A 20 1.86 2.78 

4C 12A 15 1.6 2.65 

The on-route charging of a Proterra [20] is shown in Figure 12. The connection with the bus is 

through an overhead pantograph that provides very high power (500 kW) to charge the battery 

in 7 minutes. 

 

Figure 12. Charging station for the Proterra Bus [20] 

EXCEL spreadsheet models for the analysis of the economics of MD/HD trucks and buses 

including the calculation of the cost of providing depot charging of the batteries have been 

developed. The input parameters for the models include the following: number of vehicles in 

the fleet, the average kWh needed to be charged, the average charging time, the period in 

which the vehicles are charged, the cost of the chargers for different charging power (kW), and 

the cost of the electricity including demand charges. The charging facility is assumed to consist 

of low power chargers (50 kW) or a combination of both low and high-power chargers (50 kW 

and 350 kW). The model calculates the capital cost of the charging facility, the charging power 

and energy per day for charging, and the cost of the electricity for charging the vehicle fleet. 

The model [21] can be run for one vehicle class (ex. Buses) or for the complete set of MD/HD 

vehicles. Examples of the output sheets for the charger model for a city transit bus and a 

delivery truck are shown in the Figure 13 and 14. The green shaded zones of the tables are the 

charger power (kW) that are the best economic choices for the particular case being analyzed. 

Also the input values in the green zone can be changed by the user and the table will 

recalculate. 
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Figure 13. Charging model results for a city transit bus 

Battery 

Size 

(kWh)

Max 

Charging 

Power 

(kW)

No of 

vehicles in 

the fleet

Charger 

Power 

(kW)

Time to 

charge 

(hrs)

No of 

ports

Number of free hours 

to charge vehicles (hrs)

Number of vehicles 

that can be charged on 

one charger

Cost of one 

charger ($)

No of 

chargers 

required

Cost of 

charging 

infrastructure

Charging 

Power/Day 

(kW)

Charging 

Energy/Day 

(kWh)

200 50 50 2.07 0.25 10 1 40000 41 1652000 2065 20650

200 50 100 2.07 0.50 10 2 50000 21 1032500 2065 20650

200 50 150 2.07 0.75 10 4 65000 14 894833 2065 20650

200 50 250 2.07 1.25 10 6 80000 8 660800 2065 20650

200 50 350 2.07 1.75 10 8 100000 6 590000 2065 20650

200 50 500 2.07 2.50 10 12 150000 4 619500 2065 20650

200 50 1000 2.07 5.00 10 24 300000 2 619500 2065 20650

No. of 

days

Charging 

Power/day 

(kW)

Charging 

Energy/day 

(kWh)

Energy 

Charges 

($/kWh)

Fixed 

Charges 

($/month)

Demand 

Charges 

($/kW)

Monthly Energy 

Charges ($)

Monthly Demand 

Charges ($)

Total Monthly 

Charges ($)

Energy 

Consumption 

(kWh/mi)

Range (mi)

Monthly 

Fleet Range 

(mi)

Operating 

Cost ($/mi)

30 2065 20650 0.15 100 15 92925 30975 124000 2.2 150 225273 0.55

413

Operating Expenses

Infrastructure Capital Expenses
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Figure 14. Charging model results for a MD delivery truck 

Battery 

Size 

(kWh)

Max 

Charging 

Power 

(kW)

No of 

vehicles in 

the fleet

Charger 

Power 

(kW)

Time to 

charge 

(hrs)

No of 

ports

Number of free hours 

to charge vehicles (hrs)

Number of vehicles 

that can be charged on 

one charger

Cost of one 

charger ($)

No of 

chargers 

required

Cost of 

charging 

infrastructure

Charging 

Power/Day 

(kW)

Charging 

Energy/Day 

(kWh)

100 50 50 1.56 0.50 10 3 40000 16 624000 780 7800

100 50 100 1.56 1.00 10 6 50000 8 390000 780 7800

100 50 150 1.56 1.50 10 10 65000 5 338000 780 7800

100 50 250 1.56 2.50 10 16 80000 3 249600 780 7800

100 50 350 1.56 3.50 10 22 100000 2 222857 780 7800

100 50 500 1.56 5.00 10 32 150000 2 234000 780 7800

100 50 1000 1.56 10.00 10 64 300000 1 234000 780 7800

No. of 

days

Charging 

Power/day 

(kW)

Charging 

Energy/day 

(kWh)

Energy 

Charges 

($/kWh)

Fixed 

Charges 

($/month)

Demand 

Charges 

($/kW)

Monthly Energy 

Charges ($)

Monthly Demand 

Charges ($)

Total Monthly 

Charges ($)

Energy 

Consumption 

(kWh/mi)

Range (mi)

Monthly 

Fleet Range 

(mi)

Operating 

Cost ($/mi)

30 780 7800 0.15 100 15 35100 11700 46900 0.83 150 225542 0.21

Infrastructure Capital Expenses

156

Operating Expenses
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Figure 15. Production, storage, and dispensing hydrogen at an on-road station 
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6.2. Production, storage, and dispensing hydrogen at an on-road station 

The long distance, long-haul trucks will store on-board hydrogen (70 kg) for a maximum range 

of about 500 miles and will require refueling to complete their daily trip of up to 800 miles. The 

refueling time for hydrogen will not be a problem—10-15 minutes at a rate of 5 kgH2/minute. It 

is assumed that each of the stations along the 500 mile section of the highway will service on 

average 1/10 of the 5000 trucks traveling along the highway. These calculations are for a busy 

interstate highway, like Route I-5 between the Bay Area and Los Angeles, after the fuel cell 

truck technologies are mature. They will indicate the volume of hydrogen needed and the 

capital cost of providing it.  

Each station will need to dispense 35000 kg (500 x 70) of hydrogen per day. It is further 

assumed that the hydrogen will be produced onsite with an electrolyzer. If the electrolyzer has 

an efficiency of 65%, the electricity from the grid required by the electrolyzer will be 1.166 x106 

kWh (1166 MWh). If the electrolyzer operates 24 hr/day, the continuous power would be about 

50 MW for each of the 10 stations along the 500 mile section of highway. Continuous operation 

of the electrolyzer will require storage of about half of the hydrogen produced or about 17500 

kg. This storage will be at a relatively low pressure (about 500-1000 psi). This is a very large 

station. For the large amount of hydrogen required by this station, production of hydrogen on-

site is the most economical approach. Large stations using electrolyzers have been analyzed by 

NREL in [22-24]. The components needed to control the flow of the hydrogen from production 

to dispensing have been analyzed in NREL reports [23,24]. However, the magnitude of the daily 

hydrogen dispensed in the stations being evaluated is more than an order of magnitude greater 

than treated in the NREL studies. Hence estimates of the costs resulting from extrapolating 

from the NREL results will be uncertain, but they should be enlightening for comparison with 

economic estimates for fast charging stations for battery-electric heavy-duty trucks. 

A schematic of the station is shown in Figure 16. The electrolyzer produces 1458 kgH2 /hr. For 

purposes of the analysis, it is assumed that the hydrogen is dispensed to trucks during a 12 

hour period. During the remainder of the day, the hydrogen is put into low pressure storage. It 

is further assumed that the hydrogen needed to refuel the average number of trucks per hour 

(50 trucks- 3500 kgH2) will be maintained in high pressure storage at 800 atm in order to fuel 

trucks at 700 atm. As shown in Figure 16, the station will have both low- and high-pressure 

compressor systems. To service, on average 50 trucks per hour, the station will need at least 15 

dispensing hoses—20 hoses would be better to handle periods of high demand. The hose 

systems would be designed to provide fueling at 5kgH2/minute and have pre-cooling of -40C 

[27]. The components to construct the hydrogen station outlined above are not currently 

(2018) commercially available in the sizes needed. The cost data given in [23,24] have been 

extrapolated to estimate the cost of the components needed in this station. For most of the 

components, the costs used from [24] were those labeled “future” for 2025. 
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Figure 16. Schematic of the hydrogen refueling station  

The costs of the components in the station are summarized in Table 12. The station is sized to 

refuel trucks requiring 35,000 kgH2 per day at a pressure of 700 atm. It has been assumed that 

every truck is fueled once each day (500 trucks per station) and that the fueling time is done in 

10-15 minutes and there are 20 hoses per station. The total cost of the station is estimated to 

be $75 million, which corresponds to $2127/ kgH2. As shown in Figure 17, this unit cost is 

consistent with the results shown in [24]. The cost of electricity (assumed to be $.1/kWh) for 

the refueling is $360 corresponding to $5.14/ kgH2. As indicated in Figure 17, the effect of the 

fixed operating costs on the cost of the hydrogen will be small compared to the electricity costs. 
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Table 12. Estimated cost of a highway hydrogen refueling station for long-haul trucks 

Component Unit cost Size parameter Cost 

$million 

Electrolyzer $800/kW 50 MW 40 

Low pressure  

Storage 

$725/kgH2 17500 kgH2  12.7 

Low pressure compressor $700/ kgH2/hr 1500 kgH2/hr 1 

High pressure 

 Storage 

$1000/ kgH2 3500 kgH2 3.5 

High pressure compressor $2000/kgH2/hr 3500 kgH2/hr, 900 atm. 7 

Dispenser hoses and pre-

cooling 

$430,000 for 3 

hose unit 

5 kgH2/min., -40C  

20 hoses 

3 

    

Total w/o installation $1900/kgH2  67 

Total with installation $2127/ kgH2  75 

Present value  

(10%, 10 yr) 

  177 

    

Electricity for hydrogen 

compression (4kWh/ kgH2)  

70 kgH2 280 kWh .4/ kgH2 

($.10/kWh) 

Electricity for producing 

hydrogen by electrolyzer 

70 kgH2 3597 kWh $5.1/ kgH2 

($.10/kWh) 

 

Figure 17. Capital costs for the hydrogen refueling station [24] 
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6.3. Comparison of the costs of the hydrogen station and fast charger 

infrastructure 

The range of the fuel cell powered trucks are about 500 miles and that of the battery-electric 

trucks are about 300 miles. These ranges for the fuel cell and battery-electric trucks were 

selected as later economic analyses in the report indicate they can become cost competitive 

with diesel trucks for mature fuel cell and battery technologies. The refueling stations are 

spaced so that either type of truck can be refueled conveniently. Both stations are sized to 

handle 500 trucks per day accounting for the difference in refueling time—45 minutes for the 

battery powered trucks and 10-15 minutes for the hydrogen fuel cell trucks. The capital cost per 

station for refueling the hydrogen fuel cell trucks is estimated to be $75 million and that of the 

battery-electric trucks to be $24 million [2, 25]. The size (MW) of the substation needed for the 

hydrogen refueling would be 50 MW and for the fast charger station would be 60 MW. The 

substation for the hydrogen refueling would operate continuously and that for the battery 

trucks would be drawing power from the grid only during fast charging events. The fast charger 

would use 555 kWh for each battery charge and the hydrogen station would use about 3900 

kWh per hydrogen refueling. Hence the hydrogen stations are more costly and energy intensive 

than the battery fast charging stations. The high capital cost of the hydrogen refueling stations 

has a relatively small effect on the cost of the hydrogen ($/kg). Over ten years of dispensing 

hydrogen at the station, the contribution of the capital cost would be only $.60/kg. 
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7. Sustainable energy availability, greenhouse gas emissions, and 

economics 

This section involves consideration of the availability of fuels and electricity from sustainable 

sources, such as solar and wind for electricity and bio-mass for diesel fuel, and the greenhouse 

gas (GHG) emissions from the various fuel/energy sources. The GHG emissions will be discussed 

in terms of the Low Carbon Fuel Standards (LCFS) [26]. The availability of sustainable energy 

sources for battery-electric and hydrogen fuel cell vehicles is an important reason for 

converting vehicles to operate on those powertrains. 

7.1. LCFS considerations 

The LCFS are expressed in terms of the carbon intensity (gmCO2/ MJ) of the various 

fuels/energy attained using the different pathways available for producing them. A summary of 

the carbon intensities is shown in Table 13. Note that the carbon intensities vary over a wide 

range. The GHG/CO2 emission reduction for a specific vehicle/fuel combination is given by the 

following: 

Delta (gmCO2/ mi) = (gmCO2/ kWh)D (kWh/mi)Dveh - (gmCO2/ kWh)altfuelveh (kWh/mi)altfuel 

Substituting EER= (kWh/mi)D /(kWh/mi)altfuel , 1 kWh =3.6 MJ, and introducing $/tonne CO2, 

($/kWh)altfuel = ((EER x (gmCO2/MJ)D – (gmCO2/MJ)altfuel) x 3.6 x10-6x ($/tonne CO2) 

ERR is the energy efficiency ratio relating the energy use per mile of the vehicle using the 

reference fuel/energy to the same vehicle using the alternative fuel/energy. Note from Table 14 

that all cases using an electric driveline are significantly more efficient than using an 

engine/transmission driveline [26]. The ERR value shown in the Table 14 for trucks and buses is 

5.0. 

Table 15 indicates that the value of 5.0 for ERR for delivery trucks and transit buses using diesel 

engines is consistent with the UCD simulation results for battery-electric vehicles given in [30]. 

However, the EER value for electric long-haul trucks is much lower. The results for the 

calculation of the ERR values for hydrogen fuel cell vehicles are also shown in Table 15. The 

values for ERR for the fuel cell vehicles are 2.2-2.6 much less than for the battery-electric 

vehicles. This is the case because the maximum efficiency of the fuel cell is only marginally 

higher than that of the diesel engine (50% compared to 42% for the diesel engine). Note from 

Table 13 that the carbon intensity of hydrogen produced from natural gas or non-renewable 

electricity is greater than diesel fuel (120-150 gCO2 /MJ for hydrogen and 90 gCO2 /MJ for 

diesel). The effective carbon intensity of the hydrogen is not markedly less than diesel fuel for 

an ERR value of 2.5 (135/2.5 = 54). Hence from the GHG point-of-view for trucks and buses, 

battery-electric powertrains produce much less carbon than fuel cell vehicles unless the 

hydrogen is produced from solar or wind electricity. 
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Table 13. Carbon intensity values for various fuels, electricity, and hydrogen from different 

pathways of production 2017 [26] 
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Table 14. EER values for different vehicle types and alternative fuel/energy combinations [26] 

 

Table 15. ERR values for trucks and transit buses based on UCD vehicle simulation results 

Vehicle Delivery truck Transit bus Long haul truck 

Diesel engine    

Mpg 2017 2030 9.6-11 3.7-4.6 8.7-10.1 

MJ/mi 2017 2030 14.0-12.2 36.4-29.2 15.4 -13.3 

Battery-electric    

kWh/mi 2017 2030 .83-.7 2.2-1.8 2.4 – 2.2 

MJ/mi 2017 2030 2.99-2.52 7.92-6.48 8.6 – 7.9 

ERR 2017 2030 4.68-4.76 4.6-4.51 1.79 – 1.68 

Hydrogen fuel cell    

kWh/mi 2030-2050 19.9-21.4 8.4-9.5 5.25 

MJ/mi 2030-2050 6 - 5.6 14.2 – 12.6 7.14 

ERR 2030 2.3 2.56 2.15 
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7.2. Availability of renewable fuels and electricity  

The goal of the LCFS (Low Carbon Fuel Standard) program [26] is to replace fuels and electricity 

produced from fossil energy sources with fuels and electricity from renewable sources with 

much lower carbon intensity. The renewable energy sources are bio-mass and solar and wind-

based electricity. At the present time, bio-mass is utilized to produce bio-diesel fuel and the 

renewable electricity can be used to charge the batteries in battery-electric vehicles and to 

produce hydrogen using an electrolyzer.  

The carbon intensity of bio-diesel (renewable diesel) is usually given in terms of direct CO2 

emissions from the collection and processing of the bio-mass and the indirect CO2 emissions 

from changes in the land use of the ground where the bio-mass is grown. The direct and 

indirect carbon intensities from renewable diesel from various bio-mass are shown in Table 16. 

If the indirect GHG emissions from renewable diesel are included, the carbon intensity of 

renewable diesel can be higher than regular diesel fuel. Even with this uncertainty in the carbon 

intensity of renewable diesel (bio-mass based), the production of bio-diesel in the United States 

has increased to nearly 2.6 billion gallons (3.5 x 105 MJ) in 2018. In 2016, California used 250 

million gallons of renewable diesel fuel (7% of the total diesel).  

 

Figure 18. Bio-diesel production in the United States 
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Table 16. Carbon intensities of renewable diesel from various bio-mass 

Bio-mass 

Carbon intensity-

Direct 

Carbon intensity-

indirect 

Waste oils 10-20 0 

Soy beans 50 29 

Palm oil 55 71 

canola 50 15 

jatropha 32 NA 

Rape seed 45 NA 

The largest source of renewable energy is electricity from solar and wind. This is true for both 

the United States and California. The rapid growth of the generation of renewable electricity in 

the United States is shown in Figure 19. The renewable electricity generation in the United 

States and California for 2018 are summarized in Table 17. Using 10% of the renewable 

electricity in California in 2018, we could recharge about 55000 battery-electric trucks and 

refuel 14000 fuel cell trucks assuming 50000 miles/yr and 1.5 kWh/mi for the battery-electric 

truck and 12 mi/kgH2 for the fuel cell truck. 

 

Figure 19. U.S. annual renewable electricity generation 2008-2018 
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Table 17. Electricity generated from solar and wind in 2018 in the United States and California 

 United States California 

Total (GWh) 386 x103 41 x103 

Solar (GWh) 100 x103 27 x103 

Wind (GWh) 286 x103 14 x103 

Total generated GWh 4100 x103 195 x103 

7.3. The economics (costs) of renewable fuels and electricity 

For ZEV and near-ZEV trucks at the present time, the renewable fuels include bio-diesel from 

non-food crops having a low carbon intensity and hydrogen from renewable electricity. Ethanol 

is a renewable fuel that is mixed (up to 15%) with gasoline on a commercial basis, but it is not 

used primary to reduce GHG emissions of cars or trucks. The results of a recent study of the 

costs of the renewable bio-fuels with low carbon intensity is given in [27]. It was found that the 

cost of commercial bio- diesel was about $3.70/gge (gal. gasoline equivalent). The cost of 

advanced bio-fuels processed from cellulosic bio-mass are not yet commercial and their cost is 

much higher, being in the range of $4–8/gge depending on the bio-mass being used (see Figure 

20). 

 

Figure 20. Recent production costs of bio-fuels from bio-mass [27] 
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The Levelized Cost of Energy (LCOE) is a method of comparing the cost of different complex 

energy technologies over their lifetime. It is the total life cycle cost of electricity for a given 

technology divided by the total life cycle electricity produced, expressed as dollars per million 

watt hours ($ per MWh). On a utility scale, the levelized cost of producing electricity from 

powerplants of different technologies and energy sources are shown in Figure 21 and Table 18. 

Figure 21 indicates that the levelized cost of electricity from conventional technologies/sources 

(6-8 cents/kWh) is less than renewable sources except for land-based wind sources (8 

cents/kWh). However, Table 18 indicates that the levelized cost of electricity produced from 

both PV solar and land-based wind are about 6 cents/kWh, which is close to the cost of 

electricity from combined cycle natural gas (5 cents/kWh). The latter costs of renewable 

electricity are those most often quoted in the literature for the future. During periods in which 

the generation of renewable electricity greatly exceeds that needed to meet total demand, the 

price of electricity from solar or wind can be very low—1 to 2 cents/kWh or even lower. Hence 

at any given time or place, the price of renewable electricity is uncertain. 

 

Figure 21. Estimated levelized cost of electricity from powerplants using various technologies 

and energy sources in 2018 
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Table 18. Levelized cost of energy from various sources and technologies 

 

In California, there is a LCFS credit for low carbon fuels and electricity based on their carbon 

intensity and the market price of carbon on the LCFS trading market. The LCFS credit can be 

calculated from the following relationship:  

LCFS credit ($/kWh) = ((CI)diesel x EER – (CI)elec.) x 3.6 x10-6 x ($/tonne CO2) (1) 

For (CI)diesel = 90, (CI)elec = 10, ERR=5, $/tonne CO2 = 100, the LCFS credit = $.16/ kWh. LCFS credit 

values calculated from Eq (1) agree closely with those given by the CARB LCFS Calculator 

available on the internet. Note that the LCFS credit is quite sensitive to the EER value that can 

value significantly with vehicle type (see Table 15). Since the LCFS credit can be quite large, it 

should be considered in calculating the operating energy cost of the electrified vehicles. 
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8. The ownership costs of buses and various MD/HD trucks meeting 

user requirements 

This section is concerned with the determination of the ownership costs of the battery-electric 

and hydrogen fuel cell trucks. The ownership costs depend on the initial purchase price of the 

vehicles and their operating costs (energy and maintenance costs) and the depreciation of the 

vehicle and the batteries in a specific time period (5 years in the present analysis). The method 

used in the ownership analyzes are presented in detail in the following pages. This approach 

has been used in previous cost studies [2,28-30]. 

The initial cost of the battery-electric trucks can be estimated as shown below. 

(Vehcost)batelec. = glider + Electric drive component cost + battery cost 

Glider = Price Diesel Vehicle – cost of engine and transmission of the diesel vehicle 

Electric drive cost = $/kW x kW of EM x system integration factor 

Battery cost = $/kWh x battery kWh x system integration factor 

Battery kWh = (kWh/mi) on level x bat. oversize factor x minimum range requirement (miles)  

The system integration factor is intended to account for the cost of integrating the component 

into the vehicle and the overhead and profit associated with that component.  

For the battery-electric vehicle, the estimation of the size of the battery (its kWh) for a specified 

vehicle range is key to calculating the initial cost of the vehicles. The vehicle range is the 

minimum dependable range of the vehicle for expected vehicle operating conditions—speed, 

driving cycle, ambient temperature, and terrain—over the lifetime of the battery. Hence the 

energy use of the vehicle (kWh/mi) used to calculate the energy storage requirement of battery 

should not be the kWh/mi for a level road and near minimum accessory loads. In addition, the 

battery sizing should include the effect of battery deterioration over its lifetime and some 

margin to assure the battery has some remaining charge at the end of the day’s driving. These 
considerations will result in oversizing the battery.  

As discussed in Section 5, the average energy use should be increased by a factor of at least 1.3 

to account for variations in road grade, traffic, and accessory loads. A second reason to oversize 

the battery is due to battery degradation and the need to maximize the cycle life of battery. The 

standard criteria for end-of-life of the battery is a loss of 20% in capacity (kWh). Hence to 

maintain a constant range over the lifetime of the battery it will need to be oversized by 1/.8 or 

by a factor of 1.25. Otherwise, it will be necessary to reduce the expected range of the electric 

vehicle gradually as the battery ages. In addition, it is advisable not to discharge the oversized 

battery to zero state-of charge (minimum cell voltage) at any time to maximize the range as the 

battery degrades. This means limiting the maximum energy discharged from the battery to less 

than 80% of that initially stored in the battery, which would result in an oversize factor of about 

1.33. Otherwise, the battery cycle life will be less than projected by the manufacturer. The two 

factors would result in a total oversize factor as high as 1.3 x1.33 =1.76.  
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For the hydrogen fuel cell vehicles, the initial vehicle cost is given by 

(Vehcost)H2 FC. = glider + Electric drive cost + Power battery cost + fuel cell system cost 

fuel cell cost = ($/kW x kW of fuel cell x integration factor 

hydrogen storage cost = $/kgH2stored x kg stored H2 x integration factor  

kg stored H2 = (kg/mi)on level x H2 oversize factor 

fuel cell system cost = fuel cell cost + hydrogen storage cost 

power battery cost =($/kWh)powerbat x (kwh)powerbat x integration factor 

The ownership cost of the electric vehicles can be calculated for short periods like 5-7 years 

which is typical for buyers of long haul trucks or for the lifetime of the vehicle (12-15 years) 

which is more typical for fleet owned vehicles. In this study, the 5 year period was selected to 

calculate the lifetime cost for two reasons. First, it is typical for first owners of long haul trucks 

and second, it should not require a battery replacement, which adds an uncertainty to the truck 

economics. In calculating the depreciated value of the battery-electric buses and trucks, it has 

been assumed that the diesel and battery electric trucks are depreciated by 50% in the 5-year 

time period being considered. In the case of the battery electric truck, the cost of the battery is 

subtracted from the depreciated value of the truck and the battery is assumed to have 

depreciated to 15% of its initial cost. Hence 

Vehicle Deprecation5 years = .5 (Vehcost - battery cost) + .85 battery cost 

In calculating the depreciated value of the fuel cell buses and trucks, it is assumed that the 

diesel and fuel cell trucks are depreciated by 50% in the 5-year time period being considered. 

The fuel cell system cost is subtracted from the fuel cell truck cost and the fuel cell cost is 

depreciated by 50%. 

Vehicle Deprecation5 years = .5 (Vehcost – fuel cell system cost) + .5 fuel cell cost 

The costs of electricity and hydrogen per mile to operate the battery-electric and fuel cell 

vehicles are  

($/mi)elec = ($/kWh)elec x (kWh/mi)veh on level x (bat over energy use factor) 

($/mi)H2FC = ($/kgH2) x (kgH2/mi)veh on level x (H2 over use factor) 

It is expected that the maintenance cost of the electrified vehicles will be lower than that of the 

baseline diesel vehicles they replace by a factor of MFR. The maintenance cost of the electrified 

vehicles will be  

($/mi)maint elec = ($/mi)maint diesel x (1- MFR)  

In the 5-year period being considered, it is assumed the vehicles will operate a fixed miles per 

year.  

(miles traveled)5 years = 5yr. x (miles of operation/yr) 
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The total operating cost of the electric vehicles is  

($/mi) = Vehicle Deprecation /(miles traveled) + ($/mi)elec + ($/mi)maint. elec  

The corresponding relationship for the diesel truck is  

($/mi)diesel = .5 Vehcost)diesel + ($/gal)diesel / (mpg)diesel + ($/mi)maint diesel 

The payback miles for the electrified vehicles can be calculated from the following:  

(payback miles) =(Vehcost) elec - Vehcost)diesel )/(($/mi)diesel fuel - ($/mi)elec) + 

($/mi)maint diesel x MFRelec ) 

The factors used in the battery-electric and hydrogen fuel cell truck design and economic 

analysis equations are given in Table 19. The payback miles calculation results in a positive 

number only when the cost of the electrified vehicle is greater than that of the baseline diesel 

powered vehicle.  

Table 19. Factors used in the vehicle design and economic spreadsheet models 

Parameter Battery-electric trucks Hydrogen fuel cell trucks 

Integration factor 1.5-1.15 1.5-1.15 

Bat/H2 storage over 

size factor 

1.8 1.6 

Energy over use 

factor 

1.3 1.3 

Vehicle depreciation 

factor 

.5 .5 

Energy storage 

depreciation factor 

.85 .5 

Maintenance 

reduction factor 

.5 .5 

Time period for 

economic analysis 

5 years (battery cycle 

life 1500 cycles) 

7 years (fuel cell stack life 

25000 hours) 

It is of interest to calculate the number of deep discharge cycles the battery pack in the battery-

electric trucks would experience in the 5 year period of the economic analysis. The total 

throughput for the battery in the electric truck in 5 years will be  

(battery throughput)5 years = (miles traveled)5 years x (kWh/mi)lev x (bat over use factor) 

The corresponding number of deep discharge cycles of the battery is 

Battery deep discharge cycles = (battery throughput)5 years / (battery kWh) 

The fuel cell stack life (hours) required for a long haul truck service life of 7 years is 

(Fuel cell stack service life) 7 years = 7 yrs x 12 hr/day x 300 day/yr = 25200 hrs. 
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EXCEL spreadsheet models for the truck designs and related economic analyzes have been 

written for various types of trucks and buses. The model treats the design and economics of 

each type of truck separately and then summaries the economic results for all the truck types 

on a separate spreadsheet for specific economic inputs for the design and components. The 

vehicle design and economic spreadsheets showing inputs and outputs for the delivery truck, 

transit bus, and the Pickup truck are shown in Figure 22-24 and the summary economic output 

for all the truck types is shown Figure 25.
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Figure 22. Spreadsheet model output for the city delivery truck 
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Figure 23. Spreadsheet model output for the transit bus 
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Figure 24. Spreadsheet model output for the HD Pickup truck 
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Figure 25. Spreadsheet summary output for all the truck and bus types
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9. The markets and prospects for the sale of battery-electric and 

hydrogen fuel cell buses and trucks for 2020-2040. 

The results of the spreadsheet economic models for the various types of battery-electric and 

fuel cell-electric buses and trucks can be used to project the prospects for sales of the various 

vehicles in 2020-2040. The economic analyses of the electrified vehicles indicated that the main 

driving forces for the sales prospects are the battery and fuel cell costs as those technologies 

mature over the next 20-25 years and the energy costs for electricity ($/kWh) and hydrogen 

($/kg) as they are produced from renewable sources. It will also be critical that the 

infrastructure needed for both battery charging and hydrogen refueling be developed so that 

electricity and hydrogen will be conveniently available at prices needed to make the economics 

of the electrified buses and trucks competitive with the diesel-powered vehicles. The 

economics of battery-electric and fuel cell-electric trucks of various types are summarized in 

Table 20 and Table 21 for the battery and fuel cell cost driving factors. From the tables, the cost 

factors that will make the electric trucks and buses competitive with the conventional diesel 

vehicles are apparent for the various types of vehicles. The energy prices assumed in the 

economic calculations were $.10 /kWh for electricity and $5/kg for hydrogen and $4/gal. for the 

diesel fuel. 
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Table 20. Summary of the economic model results for battery-electric trucks for different 

battery costs ($/kWh)* 

Vehicle type Nom. 

Range 

(mi) 

Miles/yr. Battery 

cost 

($/kWh) 

Vehicle 

cost($) 

TCO $/mi 

for 5 yr. 

Breakeven 

miles 

City Delivery       

Diesel  20000  55000 .97  

Battery-electric 150 20000 200 102382 .94 110563 

 150 20000 100 62675 .63 17332 

 150 20000 70 55707 .58 1600 

Transit Bus       

Diesel  50000  400000 2.42  

Battery-electric 150 50000 275 539453 2.10 168140 

 150 50000 150 442747 1.73 48716 

 150 50000 100 417082 1.64 19476 

Intercity Bus       

Diesel  60000  400000 2.14  

Battery-electric 350 60000 275 657550 2.01 317693 

 350 60000 150 473006 1.52 86185 

 350 60000 100 437254 1.42 44000 

Long Haul Tractor       

Diesel  134000  134000 .78  

Battery-electric 300 100000 275 585000 1.42 >106 

 300 100000 150 291595 .84 534637 

 300 100000 100 227081 .71 315771 

Short Haul Tractor       

Diesel  65000  119000 .86  

Battery-electric 150 65000 275 335349 1.11 773000 

 150 65000 150 245229 .86 333509 

 150 65000 100 164641 .68 147321 

HD pickup truck       

Diesel    42000 .68  

Battery-electric 150 24000 200 84403 .65 146139 

 150 24000 100 60459 .52 65077 

 150 24000 70 56837 .48 45290 
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Table 21. Summary of the economic model results for fuel cell trucks for different fuel cell 

costs ($/kW)* 

Vehicle type Nom. 

Range 

(mi) 

Miles/yr. Fuel cell 

cost 

($/kWh) 

Vehicle 

cost ($) 

TCO $/mi 

for 5 yr. 

Breakeven 

miles 

City Delivery 
      

Diesel  20000  55000 .97  

Fuel cell electric 150 20000 175 77386 .91 129807 

 150 20000 80 54855 .77 ------ 

Transit Bus 
      

Diesel  50000  400000 2.42  

Fuel cell electric 300 50000 250 456551 2.04 115085 

 300 50000 125 406592 1.90 12429 

 300 50000 100 400842 1.8 1588 

Intercity Bus 
      

Diesel  60000  400000 2.14  

Fuel cell electric 500 60000 250 484735 2.39 ------ 

 500 60000 125 421008 2.05 167273 

 500 60000 100 415258 2.04 121488 

Long Haul Tractor       

Diesel  134000  134000 .78  

Fuel cell electric 600 100000 250 249900 1.32 ----- 

 600 100000 125 165176 .98 ------ 

 600 100000 100 157988 .97 ------ 

Short Haul Tractor 
      

Diesel  65000  119000 .86  

Fuel cell electric 150 65000 250 202112 1.24 ----- 

 150 65000 125 142691 1.07 ----- 

 150 65000 100 135503 1.06 ------ 

HD pickup truck 
      

Diesel    42000 .68  

Fuel cell electric 150 24000 175 84442 .68 248672 

 150 24000 80 658538 .56 87016 

*hydrogen cost $5/kg 

The primary measures of the competitiveness of the various electric vehicle options are the 

purchase price differential of the electrified vehicles and their total ownership costs ($/mi) for 

the first 5 years of operation compared to the conventional diesel vehicles. These cost values 

are given in Table 20 and Table 21 for ranges of battery and fuel cell costs. The operating costs 

($/mi) would be somewhat lower for a 15 year time period than for 5 year period. 

In general, the results in the tables indicate that the electrified trucks do not become cost 

competitive until the battery and fuel cell costs decrease to the lowest values assumed in the 
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calculations even for the relatively low electricity and hydrogen prices assumed. How soon the 

maturing technologies will reach those cost values is uncertain, but it seems likely to occur in 

the next 10-20 years. 

In the case of the battery-electric buses and trucks, the battery costs [31, 32} required were 

$80-100/kWh. This is the cost of the complete pack to the vehicle manufacturer/assembler. 

Even at that battery cost, the long haul truck (300 miles), the short haul truck (150 miles) and 

the pickup truck (150 miles) would not be competitive with the diesel trucks. Battery-electric 

vehicles of the other types—buses and delivery trucks—would be cost competitive and their 

sales should be promising as their initial costs approach those of the conventional diesel 

vehicles and the energy costs ($/mi) of the battery-electric vehicles are less than the diesel 

vehicles. The batteries in all the vehicles have been oversized for the specified vehicle range to 

account for the uncertainty in energy use in real world travel which should make the vehicle 

ranges more realistic. The maintenance costs of the battery-electric and fuel cell/hydrogen 

trucks were assumed to be one-half (1/2) the cost per mile of the corresponding diesel truck. 

Information on the maintenance costs of the various types of trucks is limited, but it seems to 

be much higher for diesel transit buses than other types of HD vehicles.  

In the case of the fuel cell-electric trucks and buses, the fuel cell costs [7] required were $80-

100/kW. This is the cost of the complete fuel cell system including all accessories to the vehicle 

manufacturer/assembler. It does not include the cost of the hydrogen storage which was 

assumed to cost $ 200/kgH2. For the low fuel cell costs ($80-100/kW) and hydrogen at $5/kg, 

the delivery van and buses are cost competitive with the diesel both in terms of initial cost and 

TCO. Under these conditions, the sales of the delivery vans and buses would be promising if the 

required infrastructure for hydrogen is available. As in the case of batteries, the hydrogen 

storage on-board the vehicles was oversized by 1.6 to account for uncertainties in energy 

consumption.  

The economics of the long haul trucks using fuel cells and hydrogen is more promising than 

with batteries. First, the range of the fuel cell long haul truck has been increased to 600 miles 

from 300 miles using batteries. Second the cost of the tractor with the low cost fuel cell would 

be $156K compared to $227K with the batteries. However, the TCO of the fuel cell long haul 

truck ($.97/mi) would be higher than that of the conventional diesel ($.78/mi) for hydrogen at 

$5/kg. Hence the marketability of the fuel cell truck would be dependent on the price of 

hydrogen which would need to be less than $5/kg. The short haul truck (150 mile range) seems 

to be best suited to be battery-electric unless the cost of hydrogen is well below $5/kg or the 

price of electricity for truck companies is considerably higher than the $.10/kWh value assumed 

in all the battery-electric economic calculations.  

The market situation for HD pickup trucks seems similar to that of short haul trucks in that at 

$.1/kWh for electricity and $5/kg for hydrogen, the pickup trucks (150 mile range) seem best 

suited to be battery-electric rather than fuel cell/hydrogen. The key factor is that for the energy 

costs assumed, the operating energy cost of the battery-electric pickup truck, as is the case for 

all the trucks, is much less than the corresponding fuel cell/hydrogen truck.  
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10. Conclusions 

The objective of this study was to project the introduction of battery-electric and fuel 

cell/hydrogen technologies into the medium-duty (MD) and heavy-duty (HD) vehicle markets 

and to identify which markets will be most suitable for each of technologies and the factors 

(technical, economic, operational) which will be most critical to their successful introduction. 

The study considered trucks and buses of various types—delivery vans, transit buses, intercity 

buses, long haul and short haul tractor trailer trucks, and heavy-duty pickup trucks. 

Sustainability aspects of fueling trucks and buses were discussed in terms of the Low Carbon 

Fuel Standard (LCFS) being implemented in California. The LCFS is intended to encourage 

fueling vehicles using fuels produced from renewable resources having a low carbon intensity 

(gm CO2/MJ). For the battery-electric and fuel cell/hydrogen trucks, this means refueling using 

primarily electricity from solar and wind resources directly to charge batteries or indirectly to 

produce hydrogen using an electrolyzer. There is reason to believe that when trucks and buses 

using batteries and fuel cells are marketed, renewable (sustainable) electricity/hydrogen will be 

available to fuel them.  

The initial cost of the battery-electric and hydrogen fuel cell trucks and buses and their 

ownership costs and the prospects for marketing the electrified vehicles in 2020-2040 were 

evaluated using EXCEL spreadsheet models. The initial purchase costs of the electrified vehicles 

depend primarily on the unit costs ($/kWh and $/kW) of the batteries and fuel cell systems. The 

operating cost ($/mi) of the vehicles depends primarily on the energy costs ($/kWh of 

electricity and $/kg of hydrogen) and their reduced maintenance costs. In general, the 

economic analyses indicate that the electrified trucks do not become cost competitive until the 

battery and fuel cell costs decrease to the lowest values (70-100/kWh for batteries and $80-

100/kW for fuel cells) assumed in the calculations even for the relatively low electricity 

($.10/kWh) and hydrogen ($5/kg) prices assumed. How soon the maturing technologies will 

reach those cost values is uncertain, but it seems likely to occur in the next 10-20 years. 

Even at that battery cost of $80/kWh, the long haul truck (300 miles), the short haul truck (150 

miles) and the pickup truck (150 miles) would not be competitive with the diesel trucks. 

Battery-electric vehicles of the other types would be cost competitive and their sales should be 

promising as their initial costs approach those of the conventional diesel vehicles and the 

energy costs ($/mi) of the battery-electric vehicles are less than the diesel vehicles.  

In the case of the fuel cell-electric trucks and buses, for fuel cell costs of $80-100/kW and 

hydrogen at $5/kgH2, the delivery van and buses are cost competitive with the diesel both in 

terms of initial cost and TCO. Under these conditions, the sales of the delivery vans and buses 

would be promising if the required infrastructure for hydrogen is available. The economics of 

the long haul trucks using fuel cells and hydrogen is more promising than with batteries. First 

the range of the fuel cell long haul truck has been increased to 600 miles from 300 miles using 

batteries. Second the cost of the tractor with the low cost fuel cell would be $156K compared 

to $227K with the batteries. However, the TCO of the fuel cell/hydrogen truck ($.97/mi) for 

hydrogen at $5/kg would be higher than of the battery-electric long haul truck ($.71/mi). The 
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TCO of the diesel truck is estimated to be $.78/mi. Hence the marketability of the fuel cell truck 

would be dependent on the price of hydrogen which would need to be less than $5/kg. The 

short haul truck (150 mile range) seems to be best suited to be battery-electric unless the cost 

of hydrogen is well below $5/kg.  
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Data Management 

Products of Research  

Most of the data used in this study were generated during the course of the study using either 

vehicle simulation programs that have been used at UC Davis over the last 10-15 years or EXCEL 

spreadsheet models that were developed as part of the study. The results of the vehicle 

simulations and the spreadsheet models are given in table form throughout the report. 

Data Format and Content  

The data are presented in the tables in the report in forms suitable to describe its proper 

interpretation and understanding in each section of the report. 

Data Access and Sharing  

The EXCEL spreadsheet models are provided as part of the data sharing with the report and can 

be used by anyone reading the report. 

Reuse and Redistribution  

The data used in the report are available to all readers. The same is true of the EXCEL 

spreadsheet models are available in the dataset provided with the report. 
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