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Technology to advance infectious
disease forecasting for outbreak
management
Dylan B. George 1, Wendy Taylor2, Jeffrey Shaman3, Caitlin Rivers4,

Brooke Paul5, Tara O’Toole1, Michael A. Johansson 6, Lynette Hirschman7,

Matthew Biggerstaff8, Jason Asher9 & Nicholas G. Reich 10

Forecasting is beginning to be integrated into decision-making processes for

infectious disease outbreak response. We discuss how technologies could

accelerate the adoption of forecasting among public health practitioners,

improve epidemic management, save lives, and reduce the economic impact of

outbreaks.

“Data gaps undermine our ability to target resources, develop policies and track
accountability. Without good data, we’re flying blind. If you can’t see it, you can’t solve
it.” Kofi Annan1

Data, analytics are force multipliers for outbreak response
Present capacity to develop, evaluate, manufacture, distribute and administer effective medical
countermeasures (e.g., vaccines, diagnostics, therapeutics) is inadequate to meet the burden of
both recurrent and emerging outbreaks of infectious diseases. When such interventions are
unavailable, public health measures (e.g., contact tracing, outbreak investigations, social dis-
tancing) and supportive clinical care remain the only feasible tools to slow an emerging outbreak.
Decision-making under such circumstances can be greatly improved by the use of appropriate
data and advanced analytics such as infectious disease modeling or machine learning. Fur-
thermore, these analyses can guide decision-making when medical countermeasures become
available, allowing them to be used in more effective ways. Data analyses already underpin public
health actions such as anticipating resource requirements, refining situational awareness and
monitoring control efforts2–5. New applications of data science and statistical analyses to disease
outbreaks could provide support to decision-makers during public health crises.

Forecasting is an emerging analytical capability that has demonstrated value in recent out-
breaks by informing policy and epidemic management decisions in real-time outbreak response.
During the 2014–2016 Ebola virus disease (EVD) outbreak in West Africa, there was a strong
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push to use clinical trials to confirm that Ebola vaccines could be
safe and efficacious (J. Asher, personal communication). Real-
time forecasts generated during the outbreak highlighted chal-
lenges for the design of the planned clinical trials. These studies
showed, based on forecasted incidence rates of EVD, that there
was a strong possibility that the trials being proposed during
September 2014 would not have sufficient case numbers to
demonstrate significant results. This forecasting sped up discus-
sions among senior leaders to pursue more productive, alternative
trial designs (J. Asher, personal communication).

In this Comment, we discuss major limitations of the current
set of tools used in forecasting outbreaks and highlight existing
and emerging technologies that have the potential to significantly
enhance forecasting capabilities. We focus on forecasting for
outbreak management, specifically the capacity to predict short-
term (i.e., days to weeks) trends of disease activity or incidence
(i.e., the number and location of new cases) in an ongoing out-
break. We do not address the prediction of outbreak emergence,
which is a separate endeavor with its own opportunities6 and
challenges7, nor do we consider projecting multi-year trends of
disease burden8.

From a data science perspective, the forecasting workflow
encompasses three general categories: data, analytics, and com-
munication (Fig. 1). Each step in the process has challenges and
opportunities.

Data collection
Effective data collection and curation is essential for analytics and
efficient outbreak management. Yet, for infectious disease forecast-
ing, data quantity, quality and timeliness persist as significant
challenges. Few epidemiological data are consistently reported,
broadly shared, and available for decision-making during outbreak
responses, especially early in outbreaks. Data collection can be a
slow process, particularly in low-resource settings lacking sufficiently
trained staff, with sporadic communications, limited healthcare
systems, and inconsistent electrical power. Improving collection
systems and advancing forecasting approaches that address these
limitations and leverage existing surveillance data are necessary.

Improving diagnostic capabilities at scale should be a priority
area of development. Recent advances have introduced the
capacity to collect and share near real-time diagnostic results. For

example, Quidel’s Sofia platform9 and BioFire’s FilmArray mul-
tiplex PCR10 both provide rapid diagnostic tests for respiratory
pathogens that are wirelessly connected to cloud-enabled data-
bases. These early examples demonstrate how rapid, aggregated,
and geo-coded diagnostic test results could improve real-time
tracking of population health trends. Additionally, they could
enable timely and targeted clinical trial recruitment. Determining
how to scale these capabilities could provide a significant source
of data to improve forecasts.

Data cleaning
Collected data is usually not in a form amenable for immediate
analysis that could support decision making, and must be pro-
cessed and cleaned. Data cleaning has been largely a manual, ad
hoc process in outbreak forecasting efforts. Therefore, technolo-
gies to clean data would be particularly valuable for forecasting.

Technologies that translate raw, unprocessed data into struc-
tured formats would be particularly useful. For instance, software
could extract data from line lists of cases or clinical notes in
electronic health records, or convert data stored in non-standard
formats into machine-readable data. Digitizing handwritten text
reliably, quickly and securely from clinical or epidemiological
records will be a persistent need for the foreseeable future.

Data sharing
Although tools are improving, epidemiological data sharing
remains a problem. Public health agencies provide data via their
websites and situational reports11,12. These efforts are critical for
supplying information to the public but the formats often cause
challenges for quantitative analysts. Typically, these reports are
provided with a considerable time lag, and are not machine-
readable nor provided in standard formats with metadata. This
impedes sharing and use of these data.

There have been instances where epidemiological data are
available via informal networks of people sharing spreadsheets
(D. B. George, personal communication); secure CSV file trans-
fers13; or unofficial APIs14,15. These approaches should be lauded,
but they are not long-term, enterprise solutions.

Open-science approaches to sharing data have shown promise
in recent outbreaks. Epidemiologists and modelers have begun
using publicly available repositories, such as GitHub, to aggregate
and share digitized data in standardized formats16–18. This
paradigm shift resulted in a rapid improvement in data-sharing
capability during the 2014–2015 West Africa Ebola outbreak
(D. B. George, personal communication). A team of influenza
forecasters in the U.S. also has used GitHub to share forecast data
to facilitate the creation of multi-model ensemble forecasts19,20.
The shift from informal means of sharing data to robust tech-
nologies using standardized, machine-readable formats enables
more rapid and meaningful engagement of a broader group of
analysts. Structured open-science approaches to data sharing that
are specifically tailored to forecasting applications should be
further supported and explored.

Analytics: training models
Over the past several years, academic research on infectious
disease forecasting has grown and models have successfully
generated predictions for pathogens such as influenza19–21, den-
gue13, Zika22, and Ebola2. But, scaling academic research to
support public health decision-makers in real-time has received
little attention and relatively scarce resources.

The U.S. Department of Health and Human Services has
built models for recent outbreaks using a combination of extra-
mural and internal analytical resources. However, the federal
government and state and local public health agencies find it
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Fig. 1 The forecasting workflow: Generating infectious disease forecasting

results that will be useful for managing outbreaks follows a workflow with

three main strata: data (blue circles), analytics (green circles), and

communication (gray circle). Taken together, these pieces build a workflow

that uses analytics to provide decision-makers with information that could

be used to plan response activities
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difficult to recruit and retain scientists capable of developing,
interpreting, and communicating quantitative results. Formalized
training in “outbreak science” for public health practitioners will
be a vital component in ensuring that the public and private
sector work-force can respond quickly in case of an emerging
epidemic threat23,24. Even when scientists are available in public
health agencies, the long and bureaucratic processes for acquiring
and securing software and data technologies present significant
challenges to using current and emerging data science tools.

Analytics: forecasting
The U.S. government wisely spent decades developing weather
forecasting capabilities and continues to invest in advancing the
personnel, infrastructure, data, analytics and decision frameworks
necessary for supporting these activities25. Similar efforts to
develop infectious disease forecasting capabilities need to occur.
To succeed, the technological architecture supporting forecasting
must be evaluated in the context of ongoing outbreak response.
To this end, since 2013 the U.S. Centers for Disease Control and
Prevention (CDC) has fostered an open collaboration, called
FluSight4, to improve the science and usability of epidemic
forecasts of influenza for public health decision-making21,26,27.
However, many public health agencies have limited technical
expertise or capacity to adopt, advance, and modify analytical
approaches and technologies by themselves. Maintaining progress
will require sustained, collaborative work and resources from
public health agencies, academia, and the private sector. Few
research funding agencies provide substantial and sustained
support for this type of translational work, despite a strong track
record of research productivity emerging from the CDC FluSight
challenge and other governmental forecasting challenges28. Nor
have donor foundations shown leadership in this crucial area of
epidemic response. If not provided with sufficient resources,
public health will remain decades behind most other sectors in its
use of advanced analytics.

Visualization and communication
Forecasting results must be communicated effectively to ensure
they produce actionable insights. Visualizations play a key role.
Academic groups have built data visualization tools to commu-
nicate forecasts29, but these largely rely on customized code.
Analysts who develop forecast models typically have limited time
to spend on visualization and lack advanced design skills. This
can lead to hard-to-understand visualizations and mis-
interpretation of results when used to support decision making.
However, recent work by CDC has progressively refined infor-
mation from forecasting results on seasonal influenza and
translated that information into actionable risk communications4.
Such efforts should be encouraged and supported.

Conclusions
Experience from the successful application of analytical technol-
ogies across multiple industries can inform the development of
technologies for infectious disease forecasting and outbreak sci-
ence. Improving technologies across the forecasting workflow will
significantly advance forecasting capabilities, enable involvement
from multiple stakeholders (e.g., industry, government, and aca-
demia), and allow the field to develop a robust forecasting
architecture. Such advances will improve public health response
to outbreaks, mitigate economic losses, and save lives.
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