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ABSTRACT

Motivation: The large number of sequenced genomes required the
development of software that reconstructs the consensus sequences
of transposons and other repetitive elements. However, the available
tools usually focus on the accurate identification of raw repeats
and provide no information about the taxonomic position of the
reconstructed consensi. TEclass is a tool to classify unknown
transposable elements into their four main functional categories,
which reflect their mode of transposition: DNA transposons, long
terminal repeats (LTRs), long interspersed nuclear elements (LINEs)
and short interspersed nuclear elements (SINEs). TEclass uses
machine learning support vector machine (SVM) for classification
based on oligomer frequencies. It achieves 90–97% accuracy in the
classification of novel DNA and LTR repeats, and 75% for LINEs and
SINEs.
Availability: http://www.compgen.uni-muenster.de/teclass, stand
alone program upon request.
Contact: abrusan@uni-muenster.de

1 INTRODUCTION
Transposable elements (TEs) are present in the vast majority of
multi-cellular organisms. Their correct identification is a critical
step in the annotation of newly sequenced genomes. However,
in order to annotate repeats, their consensus sequences first have
to be identified. Traditionally TE consensi were reconstructed
manually, but in recent years several tools have been developed
to reconstruct TEs in newly sequenced genomes, for example
RepeatScout (Price et al., 2005), RECON (Bao and Eddy, 2002)
or RepeatModeler (http://www.repeatmasker.org/RepeatModeler.
html), which together with other tools integrates them into one
pipeline. The identification of repetitive sequences usually results in
the raw TE consensus sequences, but does not provide information
about the type or mechanism for transposition of the reconstructed
repeat. So far only a few tools, for example RepeatModeler, make an
attempt to classify the newly reconstructed consensi, using sequence
similarity to known repeats. Similarity based classification of TEs
is efficient for TEs which originate from species which have repeats
closely related to other known repeats. As the price of sequencing
drops, more and more species are sequenced, especially from the so
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far neglected parts of the phylogenetic tree. However, in the case
of taxonomic groups which until now received less attention, newly
identified TEs frequently show no clear similarity to known repeats,
and thus their classification requires other approaches.

The problem of classification of novel repeats is largely
similar to the classification/assembly problems of microbial
metagenomic research—since the vast majority of microorganisms
are unculturable at present, and a very large fraction of the
newly sequenced microbial DNA shows no sequence similarity to
sequences of known organisms. One solution for this problem is
using oligomer profiles during the classification (McHardy et al.,
2007) and assembling the sequences with a similar profile, since
the oligomer composition of many organisms is distinct. TEs were
reported to have different sequence composition than genes (Andrieu
et al., 2004), and we have developed a simple and fast tool that uses a
machine learning approach to classify unknown repetitive elements
using the oligomer frequencies of the repeats. The tool (TEclass) can
classify unknown TEs to their main taxonomic branches, which also
reflect their mechanism of transposition: DNA transposons, Long
Terminal Repeats (LTRs) and non-LTR repeats: long interspersed
nuclear elements (LINEs) and short interspersed nuclear elements
(SINEs).

2 METHODS
The classifiers were built using TE sequences available in RepBase (Jurka
et al., 2005, RepeatMasker edition), the largest database of eukaryotic
repetitive sequences. Since many entries in RepBase are highly similar to
each other, and sometimes represent only different evolutionary stages of the
same TE lineage, for the sequences that are more than 90% similar to each
other we used only the longest one during classifier building. The length of
TEs varies almost two orders of magnitude, from a few hundred bases to
well above 10 kb, and many repeat types have characteristic length ranges.
We analyze repeats in different size categories: 0–600, 601–1800, 1801–4000
and >4000 bp and built independent classifiers for all these length classes. We
use LIBSVM (Chang and Lin, 2001) as the support vector machine (SVM)
engine, with a Gaussian kernel. The classification process is binary, with the
following steps (Fig. 1): forward versus reverse sequence orientation > DNA
versus Retrotransposon > LTRs versus non-LTRs for retroelements > LINEs
versus SINEs for non-LTR repeats. The last step is performed only for repeats
with lengths below 1800 bp, because we are not aware of SINEs longer
than 1800 bp. Separate classifiers were built for each length class and for
each classification step. In each classification step, the sequence of a TE is
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Fig. 1. Classification steps of TEclass. If the tested TE sequence is
classified as reverse, it is reverse-complemented, and the subsequent steps
are performed on this sequence.

represented as a vector of oligomer frequencies, which was used as the input
for the SVM engine.

Two complete sets of classifiers were built using tetramers and pentamers,
which are used in two separate rounds of the classification. The first step of
the analysis is different from the rest both in the building of the classifiers and
in the classification itself, because RepBase contains only sequences in the
forward direction, but one cannot assume the same a priori about the tested
TE consensi. The classifiers used in the first step were built with the RepBase
repeats and their reverse complemented sequences. If an unknown repeat is
classified as reversed, the further steps of the classification are performed
with its reverse complemented sequence. Repeat identification is performed
in two rounds. In the first, the models based on tetramer frequencies are used,
and in the second, round the models based on pentamers. The result of the
classification is the last step where the two rounds are in agreement, i.e. if
the first classification round classifies a TE as LTR while the second as LINE
it is reported as a retroelement.

3 RESULTS AND DISCUSSION
Cross validation efficiency for the different classifiers varies
between 77% and 97%, with the lowest efficiency in the forward
versus reverse split. We found no dramatic difference between the
performance of the models based on tetra, or pentamers. In most
cases, selection of a subset of the oligo-features did not result
in improved classification efficiency, thus the models include the
full sets of oligomers (256 tetramers and 1024 pentamers). The
classification efficiency for ‘unknown’ repeats was determined as
follows: first, the classifiers were built using the 12.11 version of
RepBase (released on 14 December , 2007), and the efficiency of
classification was determined for the repeats that were added to the
database later, until the 13.06 release (1 August , 2008; 1604 new
repeats). The performance of TEclass is different for different repeat
types; >90% of the DNA transposons and LTRs were classified
correctly (Table 1), while on non-LTR repeats it achieved only
∼75%. The lower sensitivity of LINE/SINE classification is mainly
due to the accumulation of errors during the classification process.
Alone, LINEs and SINEs can be separated accurately: the cross
validation efficiency is 92.4% for short (<600 bp) and 96.8% for
medium length repeats (600–1800 bp). Note that this classification
is not performed for repeats longer than 1800 bp, because SINEs are

Table 1. Classification efficiency of TEs

Classifiers 2007 Classifiers 2008

No. Percentage
correct

No. Percentage
correct

DNA 417 90.9 2323 99.9
Retroelements 988 97.1 5646 99.8
LTR 860 94.3 4303 99.9
Non-LTR 128 75 1319 99.8
LINE 112 74.1 942 99.7
SINE 16 81.2 377 99.7
All classified 1405 91.5 7969 99.9
Indecisive 198 89

The first test set was the sequences that were added between 14 December 2007 and 1
August 2008 to RepBase, and these classifiers were built independently using the 2007
edition of RepBase, which did not contain these sequences. We also classified all TEs
in the 2008 edition of RepBase, with classifiers built with the same repeats.

shorter than that. However, before this classification happens, a TE
consensus sequence has to be also classified as a retroelement and
subsequently as a non-LTR repeat; all these steps are error prone.
We also classified the entire 13.06 release of RepBase with classifiers
built using the same repeats; using these classifiers, TEclass achieved
almost 100% classification efficiency (Table 1), only ∼1.1% of the
repeats could not be classified. This proves the high potential of
the presented method and the usefulness in the annotation of new
genomes forged with poorly characterized repetitive elements. The
most significant shortcoming is probably that it cannot distinguish
between transposable and non-TEs, thus assumes that all input
sequences are TE consensi. Most tandem repeats, tRNAs and many
satellites can be safely identified before building a putative TE
consensus sequence, however, if very abundant, duplications of
non-coding sequence, which can have essentially any sequence
composition may be reported as putative TE consensi by TE
reconstruction tools like RepeatScout or RECON. Separating such
non-TE but repetitive sequence from TEs seem to be impossible
with SVM classifiers.
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