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Abstract 60	

The breakup of Pangea in the Jurassic saw the opening of major ocean basins at the expense 61	

of older Tethyan and Pacific oceanic plates. Although the Tethyan seafloor spreading history has 62	

been lost to subduction, proxy indicators from multiple generations of Tethyan ribbon terranes and 63	

the active margin geological histories of volcanism and ophiolite obduction events can be used to 64	

reconstruct these ancient oceanic plates. The resulting plate reconstructions reconcile observations 65	

from ocean basins and the onshore geological record to provide a regional synthesis, embedded in a 66	

global plate motion model, of the India-Eurasia convergence history, the accretionary growth of 67	

Southeast Asia and the Tethyan-Pacific tectonic link through the New Guinea margin. 68	

The global plate motion model captures the time-dependent evolution of plates and their 69	

tectonic boundaries since 160 Ma, which are assimilated as surface boundary conditions for 70	

numerical experiments of mantle convection. We evaluate subducted slab locations and geometries 71	

predicted by forward mantle flow models against P- and S-wave seismic tomography. This 72	

approach harnesses modern plate reconstruction techniques, mantle convection models with 73	

imposed one-sided subduction, and constraints from the surface geology to address a number of 74	

unresolved Tethyan geodynamic controversies.  75	

Our synthesis reveals that north-dipping subduction beneath Eurasia in the latest Jurassic 76	

consumed the Meso-Tethys, and suggests that northward slab pull opened the younger Neo-Tethyan 77	

ocean basin from ~155 Ma. We model the rifting of ‘Argoland’, representing the East Java and 78	

West Sulawesi continental fragments, which were transferred northward in latest Jurassic times 79	

from the northwest Australian shelf – likely colliding first with parts of the Woyla intra-oceanic arc 80	

in the mid-Cretaceous, and accreting to the Borneo (Sundaland) core by ~80 Ma. The Neo-Tethyan 81	

ridge was likely consumed along an intra-oceanic subduction zone south of Eurasia from ~105 Ma, 82	

leading to a major change in the motion of the Indian Plate by ~100 Ma, as observed in the Wharton 83	

Basin fracture zone bends.  84	
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We investigate the geodynamic consequences of long-lived intra-oceanic subduction within 85	

the Neo-Tethys, requiring a two-stage India-Eurasia collision involving first contact between 86	

Greater India and the Kohistan-Ladakh Arc sometime between ~60 and 50 Ma, followed by 87	

continent-continent collision from ~47 Ma. Our models suggest the Sunda slab kink beneath 88	

northwest Sumatra in the mantle transition zone results from the rotation and extrusion of Indochina 89	

from ~30 Ma. Our results are also the first to reproduce the enigmatic Proto South China Sea slab 90	

beneath northern Borneo, as well as the Tethyan/Woyla slab that is predicted at mid-mantle depths 91	

south of Sumatra. Further east, our revised reconstructions of the New Guinea margin, notably the 92	

evolution of the Sepik composite terrane and the Maramuni subduction zone, produce a better 93	

match with seismic tomography than previous reconstructions, and account for a slab at ~30°S 94	

beneath Lake Eyre that has been overridden by the northward advancing Australian continent. Our 95	

plate reconstructions provide a framework to study changing patterns of oceanic circulation, long-96	

term sea level driven by changes in ocean basin volume, as well as major biogeographic dispersal 97	

pathways that have resulted from Gondwana fragmentation and accretion of Tethyan terranes to 98	

south- and southeast-Eurasia.  99	

 100	

 101	

Keywords:  102	

Tethys, Pangea, tectonics, geodynamics, Sundaland, Southeast Asia 103	

  104	
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 105	

1 Introduction 106	

 107	

Southern Eurasia, Southeast Asia and New Guinea represent a unique example of long-term 108	

tectonic convergence between multiple tectonic domains that has resulted in a complex assemblage 109	

of continental fragments, intra-oceanic arcs, ophiolite belts and marginal basins (Figs. 1 and 2). The 110	

Southeast Asian continental promontory, known as Sundaland, has grown through successive 111	

accretionary episodes resulting from the breakup of Pangea (Acharyya, 1998; Audley-Charles, 112	

1988; Metcalfe, 1994), and subsequent northward transfer of Gondwana-derived continental ribbon 113	

terranes and microcontinents on the Tethyan oceanic “conveyors” towards Eurasia. Importantly, the 114	

region records a complex interaction between the Tethyan and (proto-) Pacific tectonic domains, 115	

which has opened and consumed successive oceanic basins and gateways (Metcalfe, 1999), and has 116	

had major consequences for biogeographic dispersal pathways such as the origin of the Wallace 117	

Line (Burrett et al., 1991; de Bruyn et al., 2014; Lohman et al., 2011), oceanic circulation (Gaina 118	

and Müller, 2007; Gourlan et al., 2008; Heine et al., 2004), global climate and sea level (Morley, 119	

2012b; Wang, 2004; Xu et al., 2012), and the development of economic resources (Goldfarb et al., 120	

2014; Zaw et al., 2014).  121	

Plate tectonic reconstructions play a pivotal role in unravelling the complexity of this region 122	

and provide a platform to address long-standing geological questions in a geodynamic context. We 123	

apply a modern approach of modelling entire plates, their evolving plate boundaries and the terranes 124	

they carry. This study aims to synthesise previously published onshore and offshore geological 125	

constraints, as well as incorporate decades of developments in plate tectonic reconstructions, into a 126	

modern plate motion model to document the post-Pangea geodynamic evolution of southern 127	

Eurasia, Southeast Asia and New Guinea since the Late Jurassic in a regional and global context. 128	

Despite significant technological and methodological advancements in plate reconstruction 129	
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approaches, very few reconstructions of the eastern Tethys exist in an open-access digital form that 130	

can be tested and expanded by the scientific community.  131	

As part of this work, we release detailed plate reconstructions for the eastern Tethys (from 132	

the India-Eurasia collision zone eastward to Papua New Guinea, Figs. 1-3) that are embedded in a 133	

self-consistent global plate motion model, as a collection of digital geometry files and rotation 134	

parameters compatible with the open-source and cross-platform plate reconstruction tool, GPlates 135	

(www.gplates.org). We provide a brief background to previous regional tectonic reconstructions in 136	

Section 1.1, as well as tomographic and numerical modelling approaches in Sections 1.2-1.3 that 137	

have been used to gain insight into the tectonic and geodynamic processes controlling the regional 138	

evolution. In Sections 2 to 4, we outline our approach of building modern plate reconstructions for 139	

the three key regions that comprise the eastern Tethys, including i) the India-Eurasia convergence 140	

zone, ii) Southeast Asia, and iii) the New Guinea margin, and compare our approach and findings 141	

with previous work. In Section 5, we show how modern plate reconstructions that incorporate 142	

evolving plate boundaries can be used with numerical models of mantle flow to predict mantle 143	

structure, study the distribution of ancient slabs, and test alternative plate motion scenarios where 144	

geological constraints are vague or interpretation is ambiguous. In Sections 6 and 7 we highlight the 145	

implications of our work in a regional and global context, and provide some key findings from our 146	

modelling of the tectonic and geodynamic evolution of the entire eastern Tethyan domain. 147	

The coupled global plate reconstructions and mantle flow models provide a context for 148	

better understanding the latest Jurassic rifting events from northern Gondwana (Metcalfe, 1994; 149	

Pigram and Panggabean, 1984), which opened the Neo-Tethys at the expense of the Meso-Tethys 150	

ocean basin (Fig. 4a). This rifting episode transferred the ‘Argoland’ ribbon continent, which 151	

included East Java, West Sulawesi and Mangkalihat (Hall, 2012; Zahirovic et al., 2014), north 152	

towards Eurasia, while also marking the onset of major intra-oceanic subduction systems along 153	

southern Eurasia and northern New Guinea. In the absence of preserved seafloor spreading histories 154	

for Neo-Tethyan evolution, we test alternative scenarios of subduction using geodynamic models of 155	
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mantle flow that are compared with the present-day mantle structure interpreted from seismic 156	

tomography.  157	

The improvement in the methods applied to plate reconstructions and increasing levels of 158	

detail in complex regions have implications for linking plate tectonic evolution with the deep 159	

mantle and other Earth systems, and have been extensively used to better understand biogeographic 160	

dispersal and evolutionary pathways (Monod and Prendini, 2015; Rolland et al., 2015), long-term 161	

climate and sea level change (Herold et al., 2014; Huber and Goldner, 2012; Lee et al., 2013; 162	

Müller et al., 2008; Scotese et al., 1999; Spasojevic and Gurnis, 2012; van der Meer et al., 2014), 163	

and paleo-bathymetry and oceanic gateway evolution (Gaina and Müller, 2007). Improved plate 164	

tectonic reconstruction techniques have enabled the quantification of time-dependent convergence 165	

rates (Lee and Lawver, 1995; Sdrolias and Müller, 2006; Whittaker et al., 2007), and inferences on 166	

regional and global plate re-organization events (Matthews et al., 2011; Matthews et al., 2012), as 167	

well as providing insight into the size distribution of tectonic plates (Morra et al., 2013) and factors 168	

controlling the speed of tectonic plates (Zahirovic et al., 2015). The plate reconstructions presented 169	

in this work have important implications for our understanding of the mid-Cretaceous seafloor 170	

spreading pulse (Seton et al., 2009) that may have led to higher eustatic sea levels (Müller et al., 171	

2008), the proposed major regional and global plate reorganization at ~105-100 Ma (Matthews et 172	

al., 2012) that may be linked to the subduction of the Neo-Tethyan mid oceanic ridge. In addition, 173	

plate reconstructions of the Tethyan domain have consequences for understanding the atmospheric 174	

carbon budget resulting from the initiation and abandonment of major Andean-style and intra-175	

oceanic Tethyan subduction zones (Jagoutz et al., 2016; van der Meer et al., 2014). 176	
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 177	
Fig. 1. Regional tectonic setting of southern Eurasia, Southeast Asia and New Guinea. The plate 178	

boundaries are modified from Bird (2003), the topography is from Amante et al. (2009), and the 179	

seafloor fabric is from Matthews et al. (2011). Southeast Asian sutures (blue) and ophiolites are 180	

modified from Hutchison (1975), with additional ophiolites for New Guinea from Baldwin et al. 181	

(2012), and for Southeast Asia from Pubellier et al. (2004). The Tethyan sutures in the Indian 182	

segment of the margin (violet lines) are from Yin and Harrison (2000). ANI – Andaman-Nicobar 183	

Islands, Ba – Bangka Island, BI – Billiton Island, BNSZ – Bangong-Nujiang Suture Zone, CIR – 184	

Central Indian Ridge, CS – Celebes Sea, DG – Dangerous Grounds, GoT – Gulf of Thailand, HAL 185	

– Halmahera, ISZ – Indus Suture Zone, Koh-Lkh – Kohistan-Ladakh, KP – Khorat Plateau, LS – 186	

Luconia Shoals, ManTr – Manus Trench, MaTr – Izu-Bonin-Mariana Trench, MDB – Minami 187	

Daito Basin, MIN – Mindoro, MN – Mawgyi Nappe, MoS – Molucca Sea, MP – Malay Peninsula, 188	
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MS – Makassar Straits, MTr – Mussau Trench, Na – Natal, NGTr – New Guinea Trench, NI – 189	

Natuna Island, ODR – Oki Daito Ridge, PA – Philippine Arc, PAL – Palawan, PTr – Palau Trench, 190	

PVB – Parece Vela Basin, RB – Reed Bank, RRF – Red River Fault, SEIR – Southeast Indian 191	

Ridge, ShB – Shikoku Basin, ShSZ – Shyok Suture Zone, Si – Sikuleh, SP – Scott Plateau, Sul – 192	

Sulawesi, SuS – Sulu Sea, WB – West Burma, WP – Wombat Plateau, WZFZ – Wallaby Zenith 193	

Fracture Zone, YTr – Yap Trench, YTSZ – Yarlung-Tsangpo Suture Zone. 194	

 195	

 196	

Fig. 2. Regional tectonic framework of Southeast Asia and New Guinea, with high-resolution 197	

Global Multi-Resolution Topography of depths shallower than 100 m from Ryan et al. (2009). The 198	

Cretaceous Luk Ulo-Meratus sutures are depicted as the thick black line through Java and Borneo. 199	

Abbreviations follow those used in Fig. 1. LC-EP PSP – Late Cretaceous(?)–early Paleogene 200	

Philippine Sea Plate seafloor crust, WCT – West Caroline Trough. 201	
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 202	

 203	

 204	

Fig. 3. Tectonic framework and topography of New Guinea. AUm – April Ultramafics, BiS – 205	

Bismarck Sea, CIOB – Central Irian Ophiolite Belt, CO – Cyclops Ophiolite, EauR – Eauripik Rise, 206	

FIN – Finisterre Terrane, MO – Marum Ophiolite, OSF – Owen Stanley Fault, PUB – Papuan 207	

Ultramafic Belt, SPK – Sepik Terrane, Sol. Sea – Solomon Sea, TPAA – Torricelli-Prince 208	

Alexander Arc, WO – Weyland Overthrust. Other abbreviations follow Fig. 1.  209	

 210	



	 	 Page 11 of 129 

 211	

Fig. 4. A wide range of tectonic reconstructions have been proposed for the eastern Tethys between 212	

the India-Eurasia convergence zone and New Guinea. A) The Late Jurassic rifting event along 213	

northern Gondwana has been modelled as a westward propagating rift from New Guinea towards 214	

Argoland, and joining up as a triple junction in between India and Australia in the model of 215	

Metcalfe (2009). The rifting mechanism is implied as northward slab pull from Tethyan subduction 216	

along southern Eurasia. B) The model of Hall (2012) instead invokes a south-dipping subduction 217	

zone along northern Gondwana in the latest Jurassic, leading to the opening of the Neo-Tethys as a 218	

large back-arc basin. The related Incertus Arc likely represents the Kohistan-Ladakh (KLA) and 219	

Woyla arc systems in the Neo-Tethys. C) By the Late Cretaceous, subduction polarity reverses 220	

across the Incertus Arc to produce northward slab pull along a north-dipping intra-oceanic 221	
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subduction zone. The Hall (2012) model imposes a subduction hiatus along southern Sundaland 222	

between 90 and 45 Ma, which requires the segmentation of the Neo-Tethys across a transform that 223	

cross-cuts Tethyan seafloor fabric at ~90°E (I-A Transform). D) The model of Lee and Lawver 224	

(1995) presents eastern Tethyan plate reconstructions since 60 Ma in a South China fixed reference 225	

frame. The size of Greater India is similar as proposed in Hall (2012), but is about twice the 226	

northward extent presented in this study, largely to accommodate an India-Eurasia continent-227	

continent collision at ~55 Ma. The Lee and Lawver (1995) model also presents all plate rotation 228	

parameters, which enables the reproducibility and testability of this model. A common feature 229	

between the models (A-D) is relatively less detail for the New Guinea region, which has been 230	

difficult to reconstruct due to the lack of data and the dominance of complex interactions between 231	

Asian and Pacific subduction systems.  232	

 233	

1.1 Plate tectonic models of the eastern Tethys  234	

 235	

As many generations of plate reconstructions have been proposed for the eastern Tethyan 236	

tectonic domain, it is useful to understand the historical context and help categorize successive 237	

generations of models that have been proposed. Even before the acceptance of plate tectonic 238	

principles, Southeast Asian geology was of great interest due to significant hydrocarbon (Halbouty 239	

et al., 1970; Wennekers, 1958) and metallogenic (Brown, 1951; Leith, 1926; Matthews, 1990; 240	

Penrose, 1903) discoveries. Early attempts to explain the geology of Southeast Asia led to a large 241	

number of competing hypotheses. Fairbridge (1963) explained the geological affinities between 242	

Southeast Asia and Gondwana by invoking a range of mechanisms from now-abandoned ideas of 243	

mantle contraction, mantle expansion, rising and sinking land bridges, galactic expansion, to then 244	

emerging ideas of continental drift. A few years on, Audley-Charles (1966) provided the first 245	

synthesis of stratigraphic evidence to describe the region’s Mesozoic paleogeographic evolution in 246	
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the context of continental drift, with special reference to paleo-latitude indicators from paleo-247	

climatic and paleo-magnetic data.  248	

It was only in the 1970s that plate tectonic principles of subduction, seafloor spreading and 249	

transform tectonic boundaries (Forsyth and Uyeda, 1975; Le Pichon, 1968; McKenzie, 1969; 250	

McKenzie and Parker, 1967) were invoked in first-generation continental reconstructions (Table 1) 251	

to explain the present-day tectonic complexity of the eastern Tethys (Fitch, 1972; Hamilton, 1979; 252	

Katili, 1971). These models were subsequently used to create the first schematic “plate 253	

reconstructions” (Katili, 1975) that largely focused on the dominance of active volcanic arcs and 254	

associated subduction zones in controlling the tectonic complexity of the region. Importantly, the 255	

work of Katili (1975) identified a number of parallel and arcuate paleo-arc systems, which recorded 256	

post-Permian subduction of Tethyan oceanic crust. Pioneering work in the 1970s and 1980s applied 257	

paleomagnetic techniques to infer that parts of Southeast Asia originated from the northern 258	

Gondwana margin (McElhinny et al., 1981), and more specifically somewhere between north 259	

Africa and Greater India (the portion of India currently under-thrust beneath Eurasia) (Stauffer, 260	

1983). Although the origin of Southeast Asian continental fragments from Arabia or Africa in the 261	

Paleozoic have since been discounted (see Metcalfe, 1988; Metcalfe, 1994; Metcalfe, 1999; 262	

Veevers, 2004), these early works established the wider notion of Southeast Asian crustal accretion 263	

via the northward transfer of continental fragments originating from the northern Gondwana 264	

margins (Fig. 4A).  265	

 Pioneering reconstructions of Gondwana breakup, and the northward transfer of crustal 266	

fragments towards Asia, were largely presented as schematic scenarios portraying the drift of 267	

continents with consideration of some major regional plate boundaries. Pigram and Panggabean 268	

(1984) and Audley-Charles (1988) combined regional stratigraphic composite wells to identify a 269	

major Late Jurassic breakup unconformity across the NW Australian margin, which suggested that 270	

a number of continental fragments had detached to form the north Gondwana passive margin and 271	

open the “Mesozoic Tethys” ocean basin. Based on the interpretation of rift-drift sedimentary 272	
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sequences, including the timing of the post-breakup unconformity, Pigram and Panggabean (1984) 273	

provided schematic reconstructions of the Late Jurassic drifting episode and concluded that seafloor 274	

spreading initiated sometime in the Early Jurassic along New Guinea and Middle Jurassic along the 275	

NW Australian shelf. The generally northward transfer of Gondwana terranes opened successive 276	

Tethyan ocean basins including the rifting of a ribbon continent comprising Iran, North Tibet 277	

(Qiangtang) and Indochina to open “Tethys II” in the late Permian (Audley-Charles, 1988). A 278	

subsequent major rifting phase in the Late Jurassic opened the “Tethys III”, detaching fragments 279	

including South Tibet (Lhasa), West Burma, Malaya, Borneo, Sulawesi, Sumatra and a number of 280	

Banda allochthons (Audley-Charles, 1988). Importantly, the work of Audley-Charles (1988) and 281	

Audley-Charles et al. (1988) introduced a paleogeographic reconstruction framework using the 282	

computerised University of Cambridge Atlas plotting workflow, which we classify as a second 283	

generation reconstruction methodology (Table 1). This early generation of reconstructions assessed 284	

the prior continental affinities and inferred major rifting phases using biostratigraphic constraints, as 285	

well as made use of paleomagnetic syntheses and structural interpretations from seismic sections to 286	

infer rift and drift histories. 287	

 The third generation of plate reconstructions, largely developed in the late 1980s and 288	

throughout the 1990s (e.g., Besse and Courtillot, 1988; Daly et al., 1991; Jolivet et al., 1989; Lee 289	

and Lawver, 1994; Lee and Lawver, 1995), made use of extensive identifications of marine 290	

magnetic anomalies from the Indian Ocean and West Pacific calibrated to a geological timescale 291	

(e.g., Taylor and Hayes, 1980; Taylor and Hayes, 1983). The seafloor spreading histories, 292	

supplemented with paleomagnetic data from the continental blocks (e.g., Haile et al., 1977), were 293	

applied to make plate reconstructions using rigid body motions on the surface of a sphere (i.e., 294	

Euler rotations). The Jurassic to recent plate reconstructions of Besse and Courtillot (1988) and 295	

Scotese et al. (1988) were an important benchmark for subsequent plate motion models, as the work 296	

synthesised marine magnetic anomalies and continental paleomagnetism, yet also took into account 297	
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the plate boundary evolution. Pertinent to this study, the work of Besse and Courtillot (1988) and 298	

Scotese et al. (1988) enabled reproducibility by providing finite rotation parameters.  299	

Although the plate reconstructions of Lee and Lawver (1994) and Lee and Lawver (1995) 300	

covered only the Cenozoic evolution of Southeast Asia (Fig. 4d), these were the first detailed 301	

regional reconstruction that published testable and reproducible finite rotation parameters that 302	

quantitatively described the motion of Southeast Asian crustal elements, building on the more 303	

regional approach presented in Jolivet et al. (1989). The relative plate motions, provided as finite 304	

rotations, were linked into a plate motion hierarchy that tied back to the South China block, and 305	

thus only provide a regional perspective (Lee and Lawver, 1994; Lee and Lawver, 1995). However, 306	

the provision of Euler rotations significantly increased their utility even over more recent models as 307	

they allow for reproducibility and refinement by subsequent researchers.  308	

 A major improvement in regional plate reconstructions was presented in Hall (1996), and 309	

subsequent works by the same author (Hall, 2002; Hall, 2012) (Fig. 4B-C), where the regional plate 310	

reconstructions were embedded in a global plate circuit – that links Australia and India back to 311	

Africa, and Asian fragments through Eurasia, North America and Africa. Using a global plate 312	

circuit combines relative plate motions with a frame of reference with respect to the mantle using a 313	

hotspot frame (e.g., Müller et al., 1993), which enables linkages between the plate-mantle system. 314	

In the absence of hotspot tracks (i.e., before ~120 Ma), plate reconstructions make use of  315	

paleomagnetic reference frames (e.g., Hall and Spakman, 2015), which enable the reconstruction of 316	

paleo-latitudes of climate-sensitive data, and can be corrected for True Polar Wander to create more 317	

explicit links between the plate-mantle system in deep time. The reconstructions presented in Hall 318	

(1996) and Hall (2002) provide a regional post-Jurassic evolution of the India-Eurasia convergence 319	

zone, Southeast Asia and New Guinea embedded in a detailed synthesis of relevant data, and are 320	

presented in 1 Myr interval snapshots. Such high temporal resolution is important for capturing 321	

major plate boundary reconfigurations and resulting changes in plate motion magnitudes and 322	

directions, such as the change in India’s plate motions and northward advance from ~100 Ma 323	
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(Gibbons et al., 2015; Matthews et al., 2012; van Hinsbergen et al., 2011). Although the 324	

reconstructions are presented in 1 Myr intervals, no relative or absolute plate rotation parameters 325	

have been provided, which limits the testability of such models.  326	

These first- to fourth-generation plate reconstructions provide considerable detail and 327	

insight into the tectonic evolution of the eastern Tethys, but cannot be easily linked to methods that 328	

take into account the geodynamic evolution of the plate-mantle system. Schematic reconstructions 329	

cannot be linked to numerical models of convection as they usually lack the continuous network of 330	

plate boundaries through time that enables the use of plate velocities as surface boundary 331	

conditions. As plate motions are inextricably linked to mantle convection (Hager and O'Connell, 332	

1981; Turcotte and Oxburgh, 1972), and since much of the Tethyan seafloor spreading history has 333	

since been subducted (Hutchison, 1975; Şengör et al., 1988), some authors have inferred plate 334	

motion histories from high velocity seismic anomalies as given by mantle tomography models (Hall 335	

and Spakman, 2003; Hall and Spakman, 2015; Replumaz et al., 2004; van der Voo et al., 1999b; 336	

Wu et al., 2016). We expand on these approaches and make use of our most recent plate 337	

reconstructions coupled to numerical models of mantle convection that are validated using seismic 338	

tomographic images and a suite of onshore and offshore geological constraints.  339	

 340	

Table 1. Generations of continental and plate reconstructions depicting the kinematic and geodynamic evolution of 341	

Southeast Asia.  342	

Generation of 

reconstruction 

Description Examples 

First Schematic reconstructions of continental motions.  Pigram and Panggabean 

(1984) 

Metcalfe (1988) 

Second Continental reconstructions are made using digital approaches, 

with schematic paleo- plate boundaries.  

Audley-Charles et al. (1988) 

Rangin et al. (1990) 

Third Additionally provide regional reconstructions using seafloor 

spreading histories, constraints from onshore geology 

Besse and Courtillot (1988) 

Scotese et al. (1988) 
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(paleomagnetism, stratigraphy, seismic, structural, biogeography, 

etc.) and an incomplete network of plate boundaries. Although 

these models are classified as 3rd generation reconstructions, they 

have a significant advantage over any other reconstructions that do 

not provide Euler rotation parameters that are provided in 5th 

generation models. These models are important examples of 

reproducible and testable plate reconstructions of Southeast Asia. 

Jolivet et al. (1989) 

Lee and Lawver (1994) 

Lee and Lawver (1995) 

Fourth Regional reconstructions embedded in a global rotation hierarchy, 

constraining relative plate motions using seafloor spreading 

histories that are tied to an absolute hotspot or paleomagnetic 

reference frame. Synthetic seafloor spreading histories are 

generated in regions and times where seafloor has been subducted.   

Hall (1996) 

Hall (2002) 

Hall (2012) 

Stampfli and Borel (2002)# 

Fifth  A continuous global network of evolving plate boundaries is 

modelled, with complete model rotation parameters and digital 

geometry files released for testability and reproducibility. Such 

models can be linked to regional and global geodynamic numerical 

calculations that link plate tectonics with underlying mantle 

convection. Some of these models incorporate regional refinements 

that include retro-deformation of continental crust to provide better 

full-fit reconstructions of Pangea.  

Gurnis et al. (2012) 

Seton et al. (2012) 

Zahirovic et al. (2012) 

Zahirovic et al. (2014) 

Domeier and Torsvik 

(2014)^ 

Gibbons et al. (2015) 

This study 

Future Build on previous approaches with stronger emphasis on 

quantifying uncertainties, and using ensemble computer modelling 

that incorporates all constraints (offshore and onshore) 

simultaneously and all relevant uncertainties to derive a 

quantitative “best-fit” plate reconstruction that is fully consistent 

with plate boundary forces and mantle convection models. Global 

plate reconstructions incorporate all major regions of deformation 

to provide better full-fit reconstructions and address the 

oversimplification of plate rigidity assumptions. 

Such models are not yet 

available, and represent an 

aspirational goal to produce 

better plate tectonic 

reconstructions.  

^ The Domeier and Torsvik (2014) reconstructions cover the Late Paleozoic global plate motion history, and include 343	

major blocks of Southeast Asia.  344	
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# The model of Stampfli and Borel (2002) has linked plate boundaries and synthetic seafloor spreading histories, which 345	

are important components of 5th-generation models, but only provides snapshots without rotation parameters or 346	

(evolving plate boundary) geometries.  347	

 348	

1.2 Seismic tomography constraints 349	

 350	

Seismic tomographic techniques have provided an important link between the present-day 351	

arrangement of plate boundaries and deep mantle structure around Southeast Asia resulting from 352	

long-term subduction of Tethyan and Pacific lithosphere. High-resolution P-wave seismic 353	

tomographic models have demonstrated that the Sunda slab from the subduction of the Indo-354	

Australian oceanic plate penetrates to depths of ~1500 km (Li et al., 2008; Widiyantoro and van der 355	

Hilst, 1996), and that it is distinct from the older and deeper Tethyan slabs (Widiyantoro and van 356	

der Hilst, 1996). Due to the complexity of Tethyan convergence, and the lack of preserved seafloor 357	

spreading histories, interpretations of mantle structure provide an important additional insight into 358	

the past geometry and evolution of active margins in the region. For example, Hall and Spakman 359	

(2002) and Hall and Spakman (2003) used a P-wave seismic tomographic model to infer Cenozoic 360	

subduction histories in the vicinity of the northern Australian margin. Hall and Spakman (2003) 361	

interpreted the Bijwaard and Spakman (2000) P-wave seismic tomographic model to suggest north-362	

dipping subduction north of Australia along the Philippine Archipelago occurred between 45 and 363	

25 Ma, and inferred that little subduction occurred north of Australia since 25 Ma due to the 364	

likelihood of a margin dominated by strike-slip motion rather than convergence. Hall and Spakman 365	

(2015) recently attributed the 1600 km deep Sunda slab to subduction since 45 Ma, but discounted 366	

the possibility that the Proto South China Sea slab is in the upper mantle, and concluded that it is 367	

instead likely in the lower mantle at ~1200 km depth. Further south, a large east-west slab beneath 368	

Australia (including Lake Eyre) at ~800-1200 km depths has been interpreted to be the result of 369	

north-dipping subduction that ceased following accretion of the Sepik Terrane along New Guinea at 370	

~50 Ma (Schellart and Spakman, 2015).  371	
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The India-Eurasia Tethyan mantle structure was interpreted in van der Voo et al. (1999b) 372	

where a global P-wave seismic tomographic model (Bijwaard et al., 1998) was used to infer the 373	

subduction history related to post-Jurassic subduction (Fig. 5). The large slabs, with a generally 374	

northwest-southeast trend and largely at mid-mantle depths, were interpreted to be the result of two 375	

simultaneous north-dipping subduction zones in the Neo-Tethys (van der Voo et al., 1999b), a 376	

scenario which requires a two-stage India-Eurasia collision. Hafkenscheid et al. (2006) elaborated 377	

on this approach by quantifying Tethyan slab volumes and inferring average slab sinking rates in 378	

the mantle. Hafkenscheid et al. (2006) tested end-member scenarios of convergence, including 379	

long-lived Andean-style subduction following Norton (1999) and Şengör and Natal'in (1996). 380	

Instead, the analysis by Hafkenscheid et al. (2006) suggested that an additional intra-oceanic 381	

subduction zone, following Stampfli and Borel (2002), could better reproduce the volume and 382	

distributions of slabs interpreted from 3D seismic tomography. The preferred scenario in 383	

Hafkenscheid et al. (2006) invoked an arc-continent collision between Greater India and the Spong 384	

Arc, likely contemporaneous with the Kohistan-Ladakh Arc (McDermid et al., 2002), at ~65-385	

60	Ma, with continent-continent collision occurring at ~48 Ma, and infer a “free sinking rate” (i.e., 386	

when not attached to a subducting plate) of 3 and 2 cm/yr in the upper and lower mantle, 387	

respectively.  388	

 389	
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 390	

Fig. 5. A) Schematic synthesis of Tethyan subduction history accommodating India-Eurasia 391	

convergence, as interpreted from P-wave seismic tomography by van der Voo et al. (1999b). B) The 392	

three slab volumes in the lower mantle are interpreted as representing intra-oceanic subduction and 393	

a two-stage India-Eurasia collision. Figure adapted from van der Voo et al. (1999b). Note that the 394	

Tethyan ocean basin nomenclature in van der Voo et al. (1999b) differs slightly from the 395	

terminology used in this study. KLA – Kohistan-Ladakh Arc, YTSZ – Yarlung Tsangpo Suture 396	

Zone.  397	

 398	

 Incorporating 3D seismic tomographic interpretations, Replumaz et al. (2004) combined an 399	

assumption of vertical slab sinking with a tectonic reconstruction of Southeast Asia in a Siberia 400	

reference frame, and interpreted the pre-collision geometry of the southern Eurasian active margin 401	

using tomographic depth slices. The analysis of tomography linked to a “retro-deformation” model 402	
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of block motions in Southeast Asia (using available fault offsets and slip rates) for Cenozoic times 403	

suggests that the India-Eurasia continental collision occurred sometime between 55 and 40 Ma, 404	

based on changes in slab morphology, and suggests a sinking rate of 5 cm/yr in the upper mantle 405	

and 2 cm/yr in the lower mantle. The resulting upper mantle sinking rates are slightly higher than 406	

the values suggested by Hafkenscheid et al. (2006). A similar approach of age-coding slabs in P- 407	

and S-wave seismic tomographic depth slices, assuming constant and vertical slab sinking was used 408	

in Zahirovic et al. (2012) and Zahirovic et al. (2014) as a general estimate of the location of 409	

Tethyan subduction zones that were then implemented into a global plate motion model. One 410	

important distinction was the use of multiple P- and S-wave seismic tomographic models, which is 411	

an important consideration in determining the distribution of Tethyan slabs. To supplement the 412	

assumption of vertical slab sinking, Zahirovic et al. (2012) used numerical mantle convection 413	

models kinematically driven by time-dependent plate reconstructions, and found that an intra-414	

oceanic subduction scenario, as suggested by van der Voo et al. (1999b), Hafkenscheid et al. (2006) 415	

and Aitchison et al. (2007), better reproduced the Tethyan mantle structure than Andean-style 416	

subduction alone.  417	

 More generally, the approach of age-coding slabs in seismic tomographic depth slices has 418	

been applied globally to derive average slab sinking rates (Butterworth et al., 2014; van der Meer et 419	

al., 2010), and to propose a subduction reference frame using the assumption of vertical sinking and 420	

constant sinking rates (van der Meer et al., 2010). The cataloguing of global slab volumes by van 421	

der Meer et al. (2010) suggests that a ~15 to 20° longitudinal global shift of all continents is 422	

required to account for the observed distribution of post-Jurassic slabs in the mantle. Such an 423	

observation is an important first-order constraint of paleo-longitude in the absence of preserved 424	

hotspot tracks during the Late Jurassic and Early Cretaceous, and provides an estimated average 425	

global slab-sinking rate of 1.2 ± 0.3 cm/yr. A similar synthesis of slabs interpreted from seismic 426	

tomography in Butterworth et al. (2014) suggests a comparable average sinking rate of 1.3 ± 427	

0.3 cm/yr for the whole mantle. However, such an approach does not take into account the 428	



	 	 Page 22 of 129 

contrasting viscosities of the upper and lower mantle, or the effects of slab stagnation and lateral 429	

slab advection from mantle flow, which may be an important factor contributing to Tethyan mantle 430	

structure (Becker and Faccenna, 2011; Zahirovic et al., 2012). To address this, Butterworth et al. 431	

(2014) made use of global numerical modelling of mantle flow to test competing absolute reference 432	

frames against present-day seismic tomographic constraints, and suggest that the longitudinal 433	

correction argued in van der Meer et al. (2010) is likely too large. The numerical modelling 434	

approach in Butterworth et al. (2014) highlighted the need to account for variable slab sinking rates 435	

resulting from factors such as oblique convergence, diachronous collisions and suturing, as well as 436	

two orders of magnitude increase in viscosity between the upper and lower mantle. The slab sinking 437	

rates from numerical mantle convection models in Butterworth et al. (2014) suggests a global 438	

mantle sinking rate of 1.5 to 2.0 cm/yr, which is also consistent with the 2.0 ± 0.8 cm/yr mantle 439	

sinking rate inferred from mantle flow modelling (Steinberger et al., 2012). However, other work 440	

applying mantle flow modelling highlights the time-varying nature of slab sinking rates, which is an 441	

important consideration when interpreting slabs from the present-day snapshot in seismic 442	

tomography (Bower et al., 2013).  443	

 444	

1.3 Numerical modelling of Tethyan geodynamics  445	

 446	

The evolution of the Tethyan realm has been the focus of decades of research, to better 447	

understand the India-Eurasia collision and the complex tectonics of Southeast Asia and New 448	

Guinea. A wide range of physical (analogue) and numerical experiments at crustal, lithosphere and 449	

mantle scales have revealed important aspects of the plate-mantle system that are responsible for 450	

the geodynamics of the Tethyan, Eurasian and Pacific tectonic domains. Since our approach 451	

requires modelling in a spherical domain with assimilation of plate reconstructions, only numerical 452	

methods are appropriate to study the long-term eastern Tethyan subduction history in a regional and 453	

global framework.  454	
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Wide ranges of numerical approaches exist to model mantle behaviour – including forward 455	

or backward advection models (including inverse and adjoint approaches), forward models with 456	

data assimilation, and fully geodynamic models that do not have imposed boundary conditions. 457	

Forward models assume that the plate motion histories are a reasonably good recorder of plate-458	

mantle evolution, and use the plate motions as a surface kinematic boundary condition to predict 459	

mantle structure that can be compared to seismic tomography. Backward advection models use 460	

seismic tomography (as a present-day snapshot of the mantle) as an input where the seismic 461	

velocity anomalies are converted to density perturbations, assuming that the bulk of the anomaly 462	

has a thermal source, and the sign of gravity and time reversed to compute the past position of the 463	

mantle material (Glišović and Forte, 2014; Liu and Gurnis, 2008; Steinberger and O'Connell, 1998). 464	

The backward advection models take into account the complex present-day mantle structure, but 465	

can only be successfully used for times since ~70 Ma due to the inherent issues of irreversible 466	

thermal diffusion and the interaction of the boundary layers with internal flow (Bunge et al., 2003; 467	

Conrad and Gurnis, 2003; Steinberger and O'Connell, 1998). More advanced approaches using 468	

adjoint models overcome the limitations of irreversible backward advection (Liu and Gurnis, 2008; 469	

Spasojevic et al., 2009), but have yet to be applied to the Tethyan domain. Since our region of 470	

interest requires deeper time considerations, we use forward geodynamic flow experiments that are 471	

tested against mantle tomography. 472	

 473	

1.3.1 Numerical models of India-Eurasia convergence 474	

 475	

Following the interpretation of discrete Tethyan slab volumes at mid-mantle depths beneath 476	

India in P-wave seismic tomographic models by van der Voo et al. (1999b), a numerical approach 477	

using a 2D box  (with 16.5 km mesh resolution) was used by Jarvis and Lowman (2005) to interpret 478	

the inferred Tethyan mantle structure (Fig. 6). A number of experiments were conducted, 479	

specifically varying the poorly-constrained viscosity contrast between the upper and lower mantle, 480	
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with the results requiring a lower mantle that was at least 30 times more viscous than the upper 481	

mantle to maintain Tethyan slabs at mid-mantle depths (Jarvis and Lowman, 2005). The resulting 482	

upper and lower mantle viscosity contrast from Jarvis and Lowman (2005) was also consistent with 483	

earlier estimates of a 10 to 30 times more viscous lower mantle from global models fitting geoid 484	

anomalies over slabs (Hager, 1984).  485	

 486	

 487	

Fig. 6. Numerical 2D box model of India-Eurasia convergence, adapted from Jarvis and Lowman 488	

(2005), provided an important benchmark for quantifying and testing tectonic reconstruction 489	

scenarios of India-Eurasia convergence and Tethyan geodynamics.  490	

 491	

 Due to the limitation of a 2D box set-up, the India-Eurasia convergence modelled by Jarvis 492	

and Lowman (2005) required a simplified convergence history along a single transect despite a 493	

complex active margin with periods of oblique convergence. The applied velocity boundary 494	

condition led to symmetric downwellings rather than one-sided subduction. However, the work of 495	

Jarvis and Lowman (2005) highlighted the need for quantitative approaches to test plate 496	

reconstructions, while suggesting a lower limit on the viscosity contrast between the upper and 497	

lower mantle. The approach utilised simple kinematic boundary conditions for the convergence 498	

velocities, which were assumed to be ~17 and 6 cm/yr (Besse and Courtillot, 1988) before and after 499	

the India-Eurasia collision, respectively, at 42 Ma. Their subsequent numerical approach made use 500	

of a simple sinking slab in a 2D and 3D Cartesian box (Jarvis and Lowman, 2007), which suggested 501	
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a viscosity contrast of a factor of 100 to 300 between the upper and lower mantle to maintain 502	

Tethyan slabs in the mid-mantle. These results suggested that Jurassic slabs likely retain a thermally 503	

anomalous signature with respect to the ambient mantle, enabling their detection by seismic 504	

tomographic techniques.  505	

Becker and Faccenna (2011) used a 3D global approach to investigate the plate driving 506	

forces acting on the circum-Tethyan regions, and converted P- and S-wave seismic tomographic 507	

models to density anomalies driving instantaneous mantle flow models. They found that there was a 508	

dominant first-order mantle conveyor belt with northward velocities in the shallow mantle beneath 509	

India, sinking of mantle material near the suture zone, and accompanying southward flow that is 510	

interrupted by mantle upwelling in the region of the Carlsberg and Central Indian ridges. The work 511	

highlights the power of global models in capturing the complexity of slab interactions from circum-512	

Tethyan subduction, with results suggesting that large-scale mantle flow and an associated Tethyan 513	

conveyor supports ongoing indentation by India. Similarly, a 3D global spherical approach using 514	

CitcomS (Zhong et al., 2000) was applied in Zahirovic et al. (2012), where plate kinematic 515	

boundary conditions were applied from 140 Ma to test end-member subduction scenarios 516	

accommodating India-Eurasia convergence. The forward numerical model predictions were 517	

compared to slabs interpreted from seismic tomography (Zahirovic et al., 2012), and showed that 518	

the mantle structure could be better reproduced when taking into account intra-oceanic subduction 519	

and a two-stage India-Eurasia collision (Aitchison et al., 2007; Hafkenscheid et al., 2006; van der 520	

Voo et al., 1999b). This earlier work highlights the need to test end-member plate reconstruction 521	

scenarios using mantle flow models, and comparisons to mantle structure from seismic tomography 522	

as an additional criterion for reconciling surface geology.  523	

More recently, a 3D approach was also employed in Yoshida and Hamano (2015), who ran a 524	

forward convection model from Pangea times, but without applying a kinematic boundary condition 525	

or being able to incorporate one-sided subduction. Although many of the experiments failed to 526	

reproduce present-day arrangements of continents (such as predicting a problematic fit of 527	



	 	 Page 26 of 129 

Antarctica with South America), one aspect of the models reproduced the approximate present 528	

position of India and highlights the requirement of long-lived subduction along southern Eurasia 529	

since Pangea breakup (Yoshida and Hamano, 2015). When considering the motion of India towards 530	

Eurasia, the anomalously high velocities (more than 14 cm/yr) of India between ~80 and 65 Ma can 531	

be modelled numerically through a viscous coupling mechanism between two simultaneous north-532	

dipping subduction zones in the Neo-Tethys prior to India-Eurasia collision (Jagoutz et al., 2015). 533	

This modelling approach suggests that two subduction zones in the Neo-Tethys are required to 534	

account for the high convergence rates as long-lived (~20 Myr) accelerations cannot be explained 535	

by plume influences, which are likely to diminish over a shorter timeframe of several millions of 536	

years (van Hinsbergen et al., 2011).  537	

When considering the mantle-surface interaction from Tethyan tectonics,, the work of Pusok 538	

and Kaus (2015) used a 3D numerical box model that captured both subduction processes and the 539	

resulting topographic response to the India-Eurasia collision, providing insight on the formation of 540	

oroclines in the eastern and western syntaxes of the convergence zone, as well as the uplift of the 541	

Tibetan Plateau and lateral expulsion of continental material. Major advances are also being made 542	

in reducing the uncertainties in the rheology of the mantle and lithosphere in such numerical 543	

models, with the recent work (Baumann and Kaus, 2015) highlighting a new, and currently 544	

computationally-intensive, approach of parallel inversion of observables including the gravity field, 545	

topography and GPS velocities to better model the lithospheric and crustal rheology. Other 546	

advances in inverse methods have the potential to fully incorporate the details of slabs and their 547	

coupling to lithospheric plates with fault-zones between plates with fully non-linear rheologies, 548	

which remains one of the largest uncertainties in mantle convection modelling (Ratnaswamy et al., 549	

2015; Worthen et al., 2014). Such approaches provide a framework for geodynamic computations 550	

that capture realistic non-linear rheologies, including strain rate weakening and yielding, to better 551	

account for plate velocity observations, complex slab-trench interactions, and intra-plate 552	
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deformation that goes beyond the simplifying assumption of plate rigidity (Alisic et al., 2012; Alisic 553	

et al., 2010).   554	

 555	

1.3.2 Numerical modelling of Southeast Asia and New Guinea geodynamics  556	

 557	

Few geodynamic models of mantle-, lithospheric- and crustal-scale evolution exist for the 558	

tectonically complex and less constrained Sundaland and New Guinea regions than for other parts 559	

of the Tethyan tectonic domain. For example, the synthesis by van Ufford and Cloos (2005) of at 560	

least six competing proposed scenarios for the Cenozoic evolution of New Guinea highlights the 561	

uncertain chronology of major tectonic events, as well as poorly-constrained subduction polarities. 562	

As a result, much of the numerical modelling has been restricted to understanding the present-day 563	

geodynamic character of the region. Ghose et al. (1990) used focal mechanism solutions to build a 564	

3D finite element numerical experiment of subducted slabs and generalised mantle structure in the 565	

Sundaland region to compute the flow and stress field acting on the overriding continental 566	

promontory. The results indicate significantly higher plate coupling across the Sumatra segment of 567	

the Sunda Trench, resulting in a higher seismogenic potential than the Java region. This may be due 568	

to lower coupling assumed to be due to the lubricating effect of soft sediments in the trench (e.g., 569	

Clements and Hall, 2011), as well as the subduction of older Indian Ocean crust than along the 570	

Sumatra segment (Ghose et al., 1990).    571	

North of New Guinea, the geodynamic significance of the Philippine Sea Plate has been the 572	

subject of a number of studies that employ numerical modelling to quantify the effects of Izu-573	

Bonin-Mariana subduction initiation (Gurnis et al., 2004; Hall et al., 2003; Leng and Gurnis, 2015) 574	

on the Pacific Plate boundary forces, and its contribution to a change in Pacific Plate motion 575	

between ~50 and 40 Ma based on force balance calculations (Faccenna et al., 2012). Temporally 576	

linked to the inception of (proto-) Izu-Bonin-Mariana subduction, major changes in subduction 577	

along New Guinea in the Eocene have been invoked to explain the acceleration of Australia’s 578	
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northward motion (Schellart and Spakman, 2015; Zahirovic et al., 2014) from ~43 Ma (Williams et 579	

al., 2011). Schellart and Spakman (2015) identified a subducted slab at depths between ~800 and 580	

1200 km beneath Lake Eyre in eastern Australia, and argued based on a simple Stokes flow model 581	

that the topographic depression is caused by dynamic subsidence induced by the sinking of a slab 582	

that detached along New Guinea at ~55-45 Ma. However, the complex interaction of slabs from 583	

regional subduction zones plays an important role that can only be tested in regional and global 584	

geodynamic numerical simulations that capture the time-dependent evolution of Southeast Asian 585	

plate boundaries.  586	

 587	

2 Methods 588	

 589	

2.1 Plate tectonic reconstructions 590	

 591	

Reconstructions of the Tethyan domain have taken many forms over decades of research (see 592	

Section 1.1, Table 1, Fig. 4), with the post-Pangea plate reconstruction timeframe (since ~200 Ma) 593	

generally associated with lower uncertainties than earlier times due to greater preservation of 594	

oceanic crust (Zahirovic et al., 2015). Due to the ambiguity in reconstructing regions with no 595	

preserved seafloor spreading records and/or poor geological constraints, testing alternative 596	

scenarios becomes an avenue to evaluate the uncertainty inherent in plate reconstructions. In this 597	

study we present a new post-Jurassic plate motion model spanning the Tethyan region from the 598	

westernmost India-Eurasia convergence segment, in the vicinity of Kohistan-Ladakh, eastward to 599	

Southeast Asia (including Sundaland and the proto-South China Sea) and Papua New Guinea. The 600	

model is also compared to the previous synthesis of the region presented in Zahirovic et al. (2014)  601	

for Southeast Asia and New Guinea, and in Gibbons et al. (2015) for the India-Eurasia convergence 602	

zone, highlighting the alternative kinematic scenarios that can account for the constraints from 603	
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marine and onshore data (Supplementary Animation 1). The refinements presented in this study 604	

focus on an alternative model for the Neo-Tethys, transferring the East Java-West Sulawesi blocks 605	

from the Argo Abyssal Plain on the NW Australian shelf towards Sundaland, as well as refinements 606	

to the evolution of the Kohistan-Ladakh, Woyla, and Philippine intra-oceanic arcs, in the context of 607	

the evolving Sundaland and New Guinea continental margins (see Section 3).  608	

Relative plate motions are derived from preserved seafloor spreading histories (as in third and 609	

fourth generation reconstructions from Table 2), where seafloor magnetic anomalies are identified 610	

and combined with directional constraints from fracture zones to compute the Euler rotation that 611	

defines the relative rigid body motions on the surface of a sphere. We use the Global Seafloor and 612	

Magnetic Lineation Database of previously-published magnetic anomaly picks (Seton et al., 2014) 613	

and fracture zone geometries (Matthews et al., 2011), which were combined to compute relative 614	

plate motion parameters in previous studies (see discussion and references in Seton et al., 2012), 615	

preferably using the least-squares best-fit statistical method following Hellinger (1981) and Royer 616	

and Chang (1991). The rotation parameters are calibrated to the geomagnetic polarity reversal 617	

timescale of Gee and Kent (2007), which is an updated timescale compared to the one used in our 618	

previous plate reconstruction of the Tethyan region in Zahirovic et al. (2014) and Gibbons et al. 619	

(2015). In the absence of preserved seafloor spreading histories, we use onshore geological 620	

constraints to estimate the pre-rift position of continental fragments, the timing and trajectory of 621	

rifting, as well as the age and location of the accretion events (Tables 2-3). We construct synthetic 622	

oceanic plates that are consistent with plate tectonic driving mechanisms and reasonable relative 623	

plate motions across plate boundaries (e.g., convergence across subduction zones, divergence across 624	

mid-oceanic ridges, strike-slip motion along transform faults).  625	

The relative plate motions form a chain that is hierarchical and typically ties all plate motions 626	

back to Africa, largely due to the central position of Africa within Pangea and relative stability 627	

because it is surrounded by mid-oceanic ridges (Torsvik et al., 2008). The motion of Africa is 628	

expressed with respect to the underlying mantle, using Indo-Atlantic or global hotspot tracks since 629	
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~100 Ma to derive a frame of reference for the global plate motion model. For earlier times when 630	

no hotspot tracks are available, the True Polar Wander- (TPW) corrected paleomagnetic reference 631	

frame of Steinberger and Torsvik (2008) is used. Due to the lack of paleo-longitudinal constraints in 632	

a paleomagnetic reference frame resulting from the radial symmetry of the Earth’s magnetic dipole, 633	

we apply a 10° longitudinal shift gradually between 70 and 105 Ma to the TPW-corrected reference 634	

frame, following Butterworth et al. (2014) and van der Meer et al. (2010) to provide a better paleo-635	

longitudinal link between subduction zones and Jurassic and Cretaceous subducted slabs interpreted 636	

from seismic tomography. 637	

The combination of relative plate motions with an absolute reference frame enables the 638	

computation of absolute plate motions through time, modelled using the GPlates software (Boyden 639	

et al., 2011). Evolving plate boundaries are constructed using continuously-closing plate polygon 640	

algorithm (Gurnis et al., 2012), which provides global coverage of plates through time in 1 Myr 641	

intervals. The Tethyan plate motions are embedded in a global model, which is based on the 642	

synthesis in Seton et al. (2012) with regional refinements that are documented in Müller et al. 643	

(2016). The time-dependent plate boundaries, seafloor age-grids and plate velocities are assimilated 644	

into the numerical models of mantle convection, described in Section 2.3. By considering the 645	

evolution of the entire plate (Gurnis et al., 2012; Stampfli and Borel, 2002) rather than only 646	

focusing on continental blocks, plate reconstructions can be linked to geodynamic models (Conrad 647	

and Lithgow‐Bertelloni, 2004; Lithgow‐Bertelloni and Richards, 1998). The coupling of plate 648	

kinematics to geodynamic models provides the opportunity to reproduce the mantle structure 649	

interpreted from seismic tomography as well as reconstruct past mantle flow using the present-day 650	

surface geology and tectonics as constraints. 651	

 652	

Table 3. Constraints used to construct plate motion model.  653	

Region Event Timing Dating method/ 

interpretation 

Interpretations 

based on data and 
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models 

Australian NW Shelf Onset of rifting Sometime in Late 

Jurassic 

Stratigraphic rift-drift 

sequences 

Pigram and 

Panggabean (1984) 

Triple junction mid-

oceanic ridge 

configuration 

Latest Jurassic Geometrical 

requirement, and 

evidence of possible 

plume influence  

Audley-Charles 

(1988), Audley-

Charles et al. (1988), 

Gibbons et al. 

(2012),  Rohrman 

(2015) 

Onset of seafloor 

spreading 

155 ± 3.4 Ma K-Ar of basaltic 

basement  

Gradstein and 

Ludden (1992) 

West Sulawesi, East 

Java, Mangkalihat 

and easternmost 

Borneo 

Onset of rifting Late Jurassic  Biostratigraphic 

constraints in 

Paremba Sandstone 

and shallow marine 

sandstones in 

Bantimala Complex 

 

Sukamoto and 

Westermann (1992), 

Wakita (2000) 

Onset of seafloor 

spreading 

~158-155 Ma K–Ar of diorite, 

microgabbro and 

basaltic dyke 

Polvé et al. (1997)  

Oldest seafloor 

spreading magnetic 

anomalies 

M25A 

M26 

(~153-155 Ma) 

Magnetic anomaly 

identifications from 

shiptracks 

Heine and Müller 

(2005) 

Gibbons et al. (2012) 

Youngest preserved 

seafloor spreading 

magnetic anomaly in 

the Argo Abyssal 

Plain region 

M10Ny, 128.9 Ma 

 

Magnetic anomaly 

identifications from 

shiptracks 

 

Gibbons et al. (2012) 

Suturing of 

‘Argoland’ to 

~80 Ma Stratigraphy, K–Ar 

and U–Pb of 

Wakita (2000) 

Clements and Hall 
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southwest Borneo 

core 

metamorphics, 

synthesis of previous 

studies 

(2011) 

New Guinea Rifting on northern 

New Guinea 

(opening of Sepik 

ocean basin) 

Late Jurassic 

172 Ma 

 

~157 ± 16 Ma 

Jurassic granite in 

Bena Bena Terrane 

 

SSZ ophiolites in 

Central Ophiolite Belt 

Davies (2012) 

 

 

Permana (1998) 

Subduction influence 

on eastern New 

Guinea 

Early Cretaceous Kondaku Tuffs Dow (1977), 

Rickwood (1954) 

Onset of Sepik ocean 

basin subduction 

Maastrichtian 

(~71 to 66 Ma) 

 

 

68 Ma 

Stratigraphic 

correlation and dating 

using foraminifera 

 

High-temperature 

metabasites on West 

Papuan Ophiolite 

Worthing and 

Crawford (1996) 

 

 

Davies (2012) 

Sepik Terrane 

docking with New 

Guinea 

35-31 Ma 

 

 

~30 Ma 

Ar-Ar age of Emo 

metamorphics  

 

Cooling histories 

from exhumation  

Worthing and 

Crawford (1996) 

 

Crowhurst et al. 

(1996) 

South-dipping 

subduction  

~18-8 Ma Maramuni Arc 

volcanics  

Hill and Hall (2003), 

Page (1976) 

Halmahera Arc 

collision  

~14 Ma Compression in PNG 

Mobile Belt, apatite 

fission track 

geochronology 

Hill and Raza, 

(1999), Kendrick 

(2000) 

Lhasa Onset of Neo-

Tethyan subduction 

~170 Ma (to 137 Ma) Calc-alkaline granites 

and granitoids 

Zhang et al. (2012) 
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Onset of intra-

oceanic subduction 

along Kohistan-

Ladakh Arc 

~154 Ma Matum Das tonalite Schaltegger et al. 

(2003) 

Subduction along 

Zedong Terrane 

161.0 ± 2.3 Ma,  

~156 Ma,  

152.2 ± 3.3 Ma 

Dacite breccia, 

Andesite 

dyke/breccia,  

Quartz diorite, 

Andesitic dyke 

McDermid et al. 

(2002) 

Magmatic hiatus on 

Lhasa 

~137 to 109 Ma, ~75 

to 60 Ma 

Magmatic gap in 

Gangdese Batholith  

Ji et al. (2009), Wen 

et al. (2008), Chung 

et al. (2005) 

Initiation of 

Kohistan-Ladakh 

back-arc basin 

subduction along 

Lhasa 

~109 Ma Resumption of arc 

volcanism in 

Gangdese Batholith  

Ji et al. (2009),  Wen 

et al. (2008) 

Maximum southward 

position of Kohistan-

Ladakh Arc 

~100 Ma Equatorial paleo-

latitudes from mid- to 

Late Cretaceous red 

beds 

Zaman and Torii 

(1999) 

Kohistan-Ladakh 

collision with 

Greater India 

~60 to 50 Ma Cessation of calc-

alkaline magmatism, 

stratigraphic 

constraints of 

collision, slowdown 

in Indian Ocean 

seafloor spreading at 

~52 Ma, change in arc 

magma chemistry by 

~50 Ma 

Khan et al. (2009) 

Hu et al. (2015) 

Cande et al. (2010) 

Bouilhol et al. (2013) 
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Kohistan-Ladakh 

collision with 

Eurasia 

~47 to 40 Ma Slowdown in India-

Africa seafloor 

spreading, Indian 

Ocean microplate 

formation, completion 

of Andean-style 

subduction 

(Linzizong), change 

in arc magma 

chemistry by ~40 Ma 

Cande and Patriat 

(2015) 

Matthews et al. 

(2016) 

Chung et al. (2005) 

Bouilhol et al. (2013) 

West Burma Onset of Neo-

Tethyan subduction 

~163-152 Ma 

 

Jadeite 

geochronology 

Shi et al. (2008, 

2014) 

Onset of Neo-

Tethyan intra-

oceanic subduction 

~156-150 Ma Biostratigraphic ages 

of cherts constraining 

age of Naga Ophiolite 

formation 

Baxter et al. (2011) 

Subduction of Woyla 

back-arc basin 

~113-110 Ma 

(Albian) 

 

~105-90 Ma 

 

95 ± 2 Ma 

Albian unconformity 

on West Burma 

 

Wuntho-Popa Arc 

 

SSZ formation of 

Andaman Ophiolite 

Morley (2012a) 

 

 

Mitchell et al. (2012) 

 

Pedersen et al. (2010) 

Sumatra Onset of Neo-

Tethyan subduction 

~170 Ma 

 

 

~165-140 Ma (?) 

Onset of arc 

volcanism in Sumatra 

segment  

 

Minor UHP/VHP 

metamorphism  

McCourt et al. (1996) 

 

Parkinson et al. 

(1998) 

Subduction of Woyla 

back-arc basin 

From ~115 Ma 

 

Peak in UHP/VHP 

metamorphism in 

Parkinson et al. 

(1998) 
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~105-75 Ma 

 

Meratus and Luk Ulo 

sutures 

 

Wuntho-Popa Arc 

volcanism to the west, 

and Woyla intrusions 

 

 

 

 

Mitchell et al. 

(2012), McCourt et 

al. (1996), Wajzer et 

al. (1991) 

 

Woyla Arc accretion ~75-62 Ma Magmatic gap of arc 

volcanics on Sumatra  

McCourt et al. (1996) 

Onset of Sunda 

subduction 

62 Ma Arc volcanism on 

Sumatra 

McCourt et al. (1996) 

West Java/ 

East Borneo 

Onset of NeoTethyan 

subduction 

~180-165 Ma 

 

 

~170 Ma (Bajocian) 

 

~160 Ma 

Schist in Meratus 

Complex 

 

Radiolarians 

 

Zircon age spectra 

Wakita et al. (1998) 

 

 

Wakita et al. (1998) 

 

Clements and Hall 

(2007) 

Late stage of 

Woyla/Barito back-

arc basin subduction 

along Sunda 

continental margin 

~100 Ma 

 

 

~100-93 Ma 

Peak in zircon age 

spectra 

 

Cenomanian/Turonian 

Meratus Ophiolite 

obduction 

Clements and Hall 

(2007) 

 

Pubellier et al. 

(2004), Yuwono et 

al. (1988) 

Suturing of East Java ~80 Ma Stratigraphy, K–Ar 

and U–Pb of 

metamorphics, 

synthesis of previous 

studies 

Wakita (2000) 

Clements and Hall 

(2011) 

Onset of Sunda 65 Ma Subduction-related Guntoro (1999), van 
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subduction rocks on Sulawesi  Leeuwen (1981) 

Philippine Arc Onset of south-

dipping subduction 

along New Guinea 

(Sepik) 

156.3 ± 2.0 Ma and 

150.9 ± 3.3 Ma  

 

142 ± 4 Ma   

SSZ ophiolitic crust 

from the Lagonoy 

Ophiolite 

Ophiolite 

crystallisation from 

Gag Island, 

Halmahera 

Encarnación (2004) 

Continued arc 

volcanism  

126 ± 3 Ma and 119 

± 2 Ma 

 

99.9 ± 7.0 Ma  

 

 

100 ± 4 Ma  

 

SSZ volcanics from 

Cebu Island  

 

Ar-Ar age of the 

Calaguas Ophiolite 

 

Arc rocks reported 

from Obi Island on 

Halmahera 

Deng et al. (2015) 

 

 

Geary et al. (1988),  

Geary and Kay 

(1989) 

 

Hall et al. (1995b) 

 654	

2.2 Insights from seismic tomography  655	

 656	

The distribution of ophiolites, intra-oceanic arc fragments and a complex network of sutures 657	

within southern Eurasia (Figs. 1-3), Southeast Asia and New Guinea preserve the remnants of 658	

oceanic basins that have been lost to subduction. Although the consumption of oceanic basins 659	

leaves physical evidence in the form of arc volcanics, accreted seamounts and ocean floor 660	

sediments, and ophiolites, the present-day mantle structure illuminated using seismic tomographic 661	

methods holds additional clues to the geodynamic evolution of these regions (Hafkenscheid et al., 662	

2006; Replumaz et al., 2004; van der Voo et al., 1999a; van der Voo et al., 1999b).  663	

As an estimate of the location of subduction through time, depth slices of fast seismic velocity 664	

anomalies are age-coded according to an assumption of vertical slab sinking with an average 665	
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sinking rate. In this study we compare our revised plate reconstructions with the publicly-available 666	

P-wave seismic tomography depth slices from Li et al. (2008), assuming a sinking rate of 3 and 667	

2 cm/yr in the upper and lower mantle, respectively, following Hafkenscheid et al. (2006). 668	

Hafkenscheid et al. (2006) also noted that the upper mantle sinking rates are likely to be similar to 669	

the convergence rate at the trenches, which may suggest even higher sinking rates for the circum-670	

Tethyan region in the context of Australia’s 6-8 cm/yr, the Pacific’s ~8 cm/yr, and India’s ~5 cm/yr 671	

root mean square velocities since ~40 Ma (Zahirovic et al., 2015). To investigate, we test a higher 672	

end-member sinking rate of 8 cm/yr in the upper mantle, which is likely only meaningful for the 673	

Cenozoic as constrained by seafloor spreading histories and detailed hotspot tracks for the Pacific. 674	

The sinking rates applied in this study are significantly higher than the ~1.2-1.3 cm/yr whole-675	

mantle average global slab sinking rates (Butterworth et al., 2014; van der Meer et al., 2010), with a 676	

similar slower and constant sinking rate scenario applied to age-coding of slabs in P- and S-wave 677	

seismic tomography in Zahirovic et al. (2014). However, a faster sinking rate, with differential rates 678	

in the upper and lower mantle, was found to better reproduce the evolution of major Tethyan and 679	

Southeast Asian subduction zones (Zahirovic et al., 2014). Importantly, we note that the assumption 680	

of vertical and temporally constant sinking rates along a single subduction zone, not to mention 681	

across a range of subduction zones in a region, is likely an oversimplification and requires testing 682	

using numerical simulations of mantle flow, as was carried out in Butterworth et al. (2014).  683	

We compare our numerical mantle flow predictions to a number of P- and S-wave seismic 684	

tomography models, because tomographic models are typically constructed using a variety of 685	

methods, which incorporate different seismic phases and parameterisations (Grand, 2002; 686	

Romanowicz, 2008). P-wave models tend to have higher resolutions than S-wave models, due to the 687	

limited number of S-wave phases that can be used in seismic tomographic inversions (Widiyantoro 688	

et al., 1998). Beyond the inherent higher resolution of P-wave models in well-sampled continental 689	

regions, the Li et al. (2008) global seismic tomography model has additional coverage by 690	
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incorporating coverage using the Chinese Seismographic Network, leading to a better sampling of 691	

the Tethyan and Asian mantle.  692	

The limitation of P-wave models is that they tend to bias their sampling of the mantle beneath 693	

continental crust, leading to lower seismic velocity anomaly amplitudes in oceanic regions. For 694	

example, a subducted slab that may straddle oceanic and continental regions (such as the Tethyan 695	

slabs) may appear “faded” beneath the oceanic regions. Although S-wave models tend to have 696	

lower resolution, they offer more equal sampling of the mantle beneath oceans and continents 697	

(Grand, 2002). Due to the lack of permanent seismic stations in the oceans (except for some stations 698	

located on islands) and over Antarctica, the coverage and sampling for both P- and S-wave seismic 699	

tomography models is poorer for the southern hemisphere and all oceanic regions (Romanowicz, 700	

2008). As regional tomographic models can have edge artefacts (Foulger et al., 2013), and typically 701	

are not represented as seismic velocity anomalies with respect to the global mantle, we focus on 702	

using only global tomographic models in our comparisons. 703	

 704	

2.3 Coupled plate reconstructions and mantle convection numerical models 705	

 706	

To better understand the geodynamic implications of the plate reconstructions, and go beyond 707	

the assumption of constant and vertical slab sinking used in simple interpretations of mantle 708	

structure, we couple the plate kinematics to computations of mantle flow. We use the mantle 709	

convection modelling code CitcomS (Zhong et al., 2000) 710	

(https://geodynamics.org/cig/software/citcoms/), modified to progressively assimilate surface plate 711	

velocities, the thermal structure of the lithosphere and the shallow thermal structure of subducting 712	

slabs (Bower et al., 2015) from our plate motion model (Fig. 7a). The temperature and thickness of 713	

the lithosphere is derived using a half-space cooling model and the synthetic age of the ocean floor. 714	

Slabs are assimilated into the mantle to a depth of 350 km but convection is entirely dynamic away 715	

from slabs and below the lithosphere. We computed numerical models from 230 Ma to the present 716	
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to capture the post-Pangea mantle evolution, with global plate reconstructions of the pre-Late 717	

Jurassic described in Müller et al. (2016). However, we analyse the mantle evolution since the latest 718	

Jurassic (~160 Ma) for which time the plate reconstructions are regionally refined, and the mantle 719	

flow models have reached a dynamic equilibrium from the synthetic initial condition (Flament et 720	

al., 2014). Initially at 230 Ma, slabs are inserted down to 1400 km depth, with a 45º dip down to 721	

425 km and 90º below 425 km. In the initial conditions, slabs are twice as thick in the lower mantle 722	

than in the upper mantle to account for advective thickening observed in tests in which slabs are 723	

only initially inserted in the upper mantle. The initial condition includes a basal thermochemical 724	

layer 113 km thick just above the core–mantle boundary (CMB) that consists of material 3.6% 725	

denser than ambient mantle. This condition suppresses the formation of plumes, but does not 726	

impede the formation of large-scale mantle upwellings. The surface and CMB are isothermal at 727	

273 K and 3100 K, respectively (Fig. 7b). Subduction zones that appear (initiate) during the model 728	

run are progressively inserted as slabs in the uppermost mantle (Bower et al., 2015). The kinematic 729	

boundary conditions, generated in GPlates, and the thermal volume conditions for the lithosphere 730	

and shallow subduction, are assimilated in 1 Myr intervals, as described in Bower et al. (2015). The 731	

average model resolution, obtained with ~13 × 106 nodes and radial mesh refinement, is 732	

~50 × 50 × 15 km at the surface, ~28 × 28 × 27 km at the core–mantle boundary (CMB), and ~40 × 733	

40 × 100 km in the mid-mantle. 734	

 735	
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 736	

Fig. 7. a) Assimilation of plate velocities (arrows), subduction zones (yellow) and thermal 737	

lithospheric thickness based on the age of the seafloor from plate reconstructions in GPlates, with 738	

3D volume contours of dynamic cold slabs (blue) and hotter upwellings (red) predicted by the 739	

mantle convection code CitcomS (here using Case 5, see Section 2.3 and Table 5). Reconstructed 740	

present-day coastlines (black) are provided as a reference. Slab colouring is a function of depth 741	

from light blue (shallow mantle) to darker blue (deep mantle). Seafloor age-grid is applied globally, 742	

but is cut out in this schematic to highlight the internal mantle structure. b) Horizontally-averaged 743	

present-day mantle temperature, and c) present-day average viscosity in the five numerical cases 744	

(see Section 2.3, and Table 5).  745	

 746	

The vigour of mantle convection is defined by the Rayleigh number, Ra, where:  747	

𝑅𝑎 =
!!!!!!!"!!

!

!!!!
, 748	

in which α is the coefficient of thermal expansion, ρ the density, g the acceleration of gravity, ΔT 749	

the temperature difference between surface and CMB, hM the thickness of the mantle, κ the thermal 750	

diffusivity, and η the viscosity; the subscript “0” indicates reference values (see Table 4). The 751	

viscosity of the slabs and mantle are stress- and temperature-dependent, following  752	

𝜂 = 𝜂! 𝑟 exp 
𝐸!

𝑅(𝑇 + 𝑇!)
−

𝐸!

𝑅(𝑇! + 𝑇!)
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where η0(r) is a depth-dependent pre-factor defined with respect to the reference viscosity, η0, Eη is 753	

the dimensional activation energy (EUM in the upper mantle and ELM in the lower mantle), R is the 754	

universal gas constant, T is the temperature, Tη is a temperature offset, and Tb is the ambient mantle 755	

temperature outside the thermal lithosphere, slabs or the basal thermal boundary layer (see Table 4). 756	

Although the viscosity of the upper mantle can be estimated in studies of post-glacial rebound 757	

(Fjeldskaar et al., 2000; Gasperini and Sabadini, 1989; Lambeck et al., 1998), the viscosity of the 758	

lower mantle is less well constrained, which has resulted in a wide range of proposed viscosity 759	

profiles. Previous approaches have argued for a factor of 10 increase in viscosity between the upper 760	

and lower mantle (Paulson et al., 2007), while others have argued for a factor of 30 (Hager, 1984) 761	

or 100 (Forte and Mitrovica, 1996; Steinberger and Calderwood, 2006). We vary the viscosity 762	

profile (Fig. 7c, Table 5) with cases 1 to 4 based on the plate reconstructions from Zahirovic et al. 763	

(2014) and Gibbons et al. (2015), and a fifth case based on the refined plate reconstructions 764	

presented in this study. The viscosity of the lower mantle in each cases is either 100 times more 765	

viscous than the upper mantle, or increases gradually with depth from a factor of 10 at the base of 766	

the transition zone (660 km) to a maximum of 100 in the lowermost mantle (Steinberger and 767	

Calderwood, 2006). Cases 3, 4 and 5 also incorporate a low-viscosity asthenosphere, which has 768	

been suggested to be an important decoupling layer that enables the elevated velocities of typically 769	

oceanic plates (Becker, 2006; Debayle and Ricard, 2013). Since paleo-longitudes are less well 770	

constrained earlier than ~100 Ma, we incorporate the van der Meer et al. (2010) subduction 771	

reference frame and their time-dependent longitudinal shift into Case 3. By using a variety of radial 772	

viscosity profiles, different absolute reference frames, and plate reconstructions between the five 773	

cases, allows us to capture some of the uncertainties involved in our approach of modelling deep-774	

time plate reconstructions and mantle convection, and help test end-member plate reconstructions of 775	

the Tethyan region.   776	

 The time-dependent mantle structure is presented in 3D visualisations made with GPlates 777	

and as a series of vertical cross-sections that are reconstructed with the overriding plate to capture 778	



	 	 Page 42 of 129 

the evolution of subduction, plotted using Generic Mapping Tools (Wessel et al., 2013). The 779	

predicted present-day mantle structure is qualitatively compared to equivalent slices of P- and S-780	

wave seismic tomography models, where fast seismic velocity anomalies are compared to slab 781	

contours (10% colder than ambient mantle, representing temperatures colder than ~1270°C) from 782	

the mantle convection models.  783	

 784	

Table 4. Parameters common to all model cases. Subscript “0” denotes reference values. 785	

Parameter Symbol Value Units 

Rayleigh Number Ra 7.84 × 107  

Thermal expansion 

coefficient 

α0 3 × 10-5 K-1 

Density ρ0 4000 kg m-3 

Gravity acceleration g0 9.81 m s-2 

Temperature change ΔT 2825 K 

Temperature offset Tη 452 K 

Background mantle 

temperature 
Tb 1685 K 

Mantle thickness hM 2867 km 

Thermal diffusivity κ0 1 × 10-6 m2 s-1 

Reference viscosity η0 1 × 1021 Pa s 

Activation energy  

(upper mantle) 

EUM 100 kJ mol-1 

Activation energy 

(lower mantle) 

ELM 33 kJ mol-1 

Activation temperature Tη 452 K 

Universal gas constant R 8.31  J mol-1 K-1 
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Radius of the Earth R0 6371 km 

 786	

 Table 5. Model set-up for Case 1 – 5. Also refer to Fig. 7b-c.  787	

 Case 1 Case 2 Case 3 Case 4 Case 5 

Mesh nodes 129 × 129 × 12 (nodes on the surface) 

 × 65 (depth levels) 

Viscosity relative to 

Reference Viscosity 

(Lithosphere 0-160 

km depth, 

Asthenosphere 160-

310 km depth, Upper 

mantle 310-660 km 

depth, Lower Mantle 

> 660 km depth) 

1,0.1,1,100 1,1,1,100 1,0.1,1,10à100 

linear increase of viscosity from 10 to 100 with 

depth in the lower mantle to approximate the 

viscosity profile of  Steinberger and Calderwood 

(2006) 

Plate reconstructions 

for the eastern 

Tethys  

Zahirovic et al. (2014) Slab-calibrated 

longitudinal 

positions from 

Zahirovic et al. 

(2014) 

Zahirovic et al. 

(2014) 

 

This 

Study 

 788	

3 Regional tectonic evolution  789	

3.1 Late Jurassic plate boundary configuration and rifting mechanism along northern 790	

Gondwana 791	

 792	

The Late Jurassic is marked by a major rifting event along northern Gondwana (Pigram and 793	

Panggabean, 1984) (Figs. 4a and 8), which transferred a number of continental blocks (including 794	

East Java, West Sulawesi, Mangkalihat and east Borneo) northward towards Eurasia (Hall, 2012; 795	
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Zahirovic et al., 2014), with the only portions of the seafloor spreading system preserved in the 796	

Argo Abyssal Plain on the NW Australian shelf (Gibbons et al., 2013). Beyond the oldest preserved 797	

oceanic crust, the plate configuration can only be inferred from proxy indicators found on 798	

continents. One pertinent argument is that Audley-Charles (1988) and Audley-Charles et al. (1988) 799	

required a triple junction plate boundary configuration in the Late Jurassic and Early Cretaceous in 800	

the vicinity of the NW Australian shelf where northward slab pull from subduction along southern 801	

Eurasia was the driving mechanism for detaching the Neo-Tethyan ribbon terrane (also in Fig. 4a). 802	

This northward slab pull detached the continental fragments forming passive margins along the 803	

northern and southern boundaries of the ribbon terrane, the preferred scenario presented here. An 804	

alternative scenario has south-dipping subduction along northern Gondwana in the Late Jurassic, 805	

leading to the opening of the Neo-Tethys and transfer of continental fragments northward through 806	

slab rollback (Hall, 2012) (Fig. 4b). Both mechanisms are thought to be capable of detaching 807	

continental fragments (see Stampfli and Borel, 2002), but, the south-dipping subduction end-808	

member requires continuous arc volcanism, some of which ought to be preserved on the drifting 809	

ribbon terranes.  810	

 811	
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 812	

Fig. 8. Reconstruction of Neo-Tethyan ocean basin opening along northern Gondwana in the latest 813	

Jurassic. Both the Zahirovic et al. (2014) and Gibbons et al. (2015) models (top) invoke East Java 814	

and West Sulawesi rifting from New Guinea, as the simplest tectonic scenario to transfer the blocks 815	

northwards toward Southeast Asia, and a possible origin of the Sikuleh and Natal (Si-N) fragments 816	

from the Argo Abyssal Plain. Southwest Borneo (SWB), West Java (WJ), Sumatra (SU), West 817	

Burma (WB) and Lhasa (LH) form the active Eurasian continental margin. Seafloor spreading in 818	

the Neo-Tethys is driven by north-dipping subduction along southern Eurasia (EUR), consuming 819	
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the Meso-Tethyan (MT) oceanic crust and resulting in the incipient formation of the Kohistan-820	

Ladakh Arc (KLA). In the revised reconstructions, East Java and West Sulawesi (EJ-WS) are the 821	

‘Argoland’ continental fragment originating in the Argo Abyssal Plain on the NW Australian shelf. 822	

South-dipping subduction along New Guinea is modelled to detach the Sepik Terrane (SEP) from 823	

the New Guinea margin through slab rollback, generating the embryonic components of the 824	

Philippine Archipelago (PhA). The scale bars are relevant to all plate reconstruction figures. Grey 825	

regions represent the extent of continental crust, dark grey represents large igneous provinces and 826	

other plume products, and thin brown lines represent reconstructed fracture zones. ANT – 827	

Antarctica, AUS – Australia, IND – India, IZA – Izanagi Plate, PHX – Phoenix Plate. Orthographic 828	

reconstructions are centred on 115°E, 15°S. See Supplementary Animation 2, 3 and 4.  829	

 830	

The NW Australian shelf, the putative source of the Argoland ribbon terrane records some 831	

Late Jurassic and Early Cretaceous volcanic plateaus (e.g., Scott and Wombat plateaux, Joey Rise, 832	

etc. – see Fig. 1), rift-related volcanics and seaward dipping reflectors (Heine and Müller, 2005; 833	

Rohrman, 2015; von Rad et al., 1992). An earlier phase of rhyolitic volcanism between ~213 and 834	

190 Ma erupted on the Wombat Plateau (von Rad and Exon, 1983; von Rad et al., 1992), but cannot 835	

be temporally linked to the latest Jurassic (~155 Ma) rifting and seafloor spreading phase recorded 836	

on the NW Australian shelf. Although the latest Jurassic NW Australian margin was volcanic, little 837	

evidence exists that it was dominated by an Andean-style active margin (von Rad and Exon, 1983; 838	

von Rad et al., 1992). Although the seismic interpretations by Hopper et al. (1992) of the margin’s 839	

volcanic history do not indicate widespread plume activity, the recent work of Rohrman (2015) 840	

suggests a plume origin for the large volume of underplated material and widespread sills 841	

interpreted from seismic sections in the Exmouth Plateau region (Fig. 1). One critical aspect of the 842	

latest Jurassic event is that the onset of seafloor spreading is well-constrained by a 155 ± 3.4 Ma K-843	

Ar age of the oldest seafloor in the Argo Abyssal Plain (Gradstein and Ludden, 1992), consistent 844	

with rapid tectonic subsidence in the latest Jurassic on the NW Australian shelf (Heine and Müller, 845	
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2005; Rohrman, 2015; Tovaglieri and George, 2014), and the identification of M25A (Heine and 846	

Müller, 2005) or M26 (Gibbons et al., 2012) as the oldest magnetic anomalies (~153-155 Ma) in the 847	

seafloor spreading record.     848	

Due to the lack of latest Jurassic arc volcanics on the NW Australian Shelf, together with 849	

strong indicators of north-dipping subduction initiation along southern Eurasia (see following 850	

sections), we prefer northward slab pull as the driving mechanism for rifting and seafloor spreading 851	

to open the Neo-Tethys from ~155 Ma. Although more work is required to test whether a plume 852	

model can explain the volcanism on the NW Australian shelf in the latest Jurassic (Rohrman, 2015), 853	

such a scenario would be consistent with the triple junction scenario invoked for this region 854	

(Audley-Charles, 1988; Audley-Charles et al., 1988; Gibbons et al., 2015; Gibbons et al., 2012; 855	

Zahirovic et al., 2014), and the similarity to the East African rift-plume interaction (Burke and 856	

Dewey, 1973; Montelli et al., 2006; Yirgu et al., 2006). Since the Neo-Tethyan seafloor spreading 857	

history is incomplete, it remains difficult to ascertain which continental blocks rifted from the Argo 858	

segment of the Australian margin (Table 2). Rifting of East Java and West Sulawesi from New 859	

Guinea was invoked as a preferred scenario in our base models in the Late Jurassic (Gibbons et al., 860	

2015; Zahirovic et al., 2014), with the possibility that micro-continental fragments along Sumatra 861	

(such as the now-disputed Natal and Sikuleh fragments, Fig. 2) had an origin in the Argo Abyssal 862	

Plain, following Audley-Charles et al. (1988), Metcalfe (1994) and Heine and Müller (2005). 863	

However, recent zircon age spectra analyses from East Java suggesting strong affinities with the 864	

NW Australian Shelf (Sevastjanova et al., 2015; Smyth et al., 2007), led Hall (2012) to argue that 865	

East Java was the enigmatic “Argoland” fragment (Table 2). We present both a NW Australian 866	

shelf and a New Guinea origin for Argoland in our alternative plate reconstruction scenarios, and 867	

evaluate their plate kinematic and geodynamic consequences on the Neo-Tethyan tectonic 868	

evolution.  869	

 870	

Table 2. Previously-interpreted continental fragments originating from northern Gondwana in the eastern Tethys in the 871	

Late Jurassic.  872	
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Model All continental fragments originating from 

northern Gondwana in the Late Jurassic 

eastern Tethys 

Argoland fragment  

Audley-Charles et al. (1988) South Tibet (Lhasa), West Burma, Malaya, 

Sumatra, East and West Borneo fragments, 

West Sulawesi  

West Burma 

Metcalfe (1994) 

 

 

West Burma, Sikuleh, Natal, West Sulawesi, 

Mangkalihat, Banda Allochthons 

West Burma 

Heine and Müller (2005) West Burma  West Burma 

Hall (2012) Southwest Borneo core, East Java, West 

Sulawesi  

East Java and West Sulawesi  

Zahirovic et al. (2014) 

Gibbons et al. (2015) 

Sikuleh, Natal, East Java, Southeast Borneo, 

West Sulawesi  

Sikuleh, Natal and other possible 

fragments that may be in the Mawgyi 

Nappe along West Burma 

This Study East Java, Eastern Borneo, Mangkalihat, 

West Sulawesi and Sepik (New Guinea) 

East Java, Eastern Borneo, 

Mangkalihat and West Sulawesi 

 873	

The ~155 Ma onset of seafloor spreading in the Argo segment of the north Gondwana margin 874	

is consistent with Jurassic sedimentary rift-drift sequences (Pigram and Panggabean, 1984), and 875	

mafic rocks that are as old as 158 Ma on West Sulawesi (Polvé et al., 1997), likely representing the 876	

drift of the East Java and West Sulawesi continental fragments (Zahirovic et al., 2014). The early 877	

seafloor spreading history is preserved in the Argo Abyssal Plain, with the youngest marine 878	

magnetic anomaly of M10Ny (Gibbons et al., 2013) representing an age of 128.9 Ma, after which 879	

the seafloor spreading history is unconstrained. As discussed extensively in Zahirovic et al. (2014), 880	

and summarised below in Section 3.4, the East Java and West Sulawesi fragments may have 881	

collided with an intra-oceanic arc in the mid-Cretaceous (Wakita, 2000), and sutured to Sundaland 882	

by 80 Ma. However, the Neo-Tethyan full seafloor spreading velocity required by the ~115 Ma arc-883	

continent collision approaches ~25 cm/yr between ~128 and 115 Ma (see Supplementary Fig. 1), 884	
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which is likely to be an upper limit for plate velocities in the post-Pangea timeframe (Stampfli and 885	

Borel, 2002; Vérard et al., 2012; Zahirovic et al., 2015). An alternative explanation for the ~115 Ma 886	

peak in very high pressure (VHP) metamorphic rocks in the Luk Ulo-Meratus Suture Zone 887	

(Parkinson et al., 1998) (Fig. 2), includes the initiation of subduction of the Woyla/Barito back-arc 888	

basins, which reduces the synthetic seafloor spreading velocities to ~11 cm/yr (Figs. 10-11). We 889	

adopt the latter option that does not introduce a geodynamically implausible velocity spike in 890	

Tethyan plate velocities.  891	

 892	

 893	
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Fig. 9. Ongoing Meso-Tethyan subduction leads to the opening of the Kohistan-Ladakh (KLA) and 894	

Woyla (WO) back-arc basins, as well as the Neo-Tethys (NT) along northern Gondwana. The 895	

Philippine Archipelago (PhA) is detached from the Sepik Terrane (SEP) through a northward ridge 896	

jump and continued rollback of the Izanagi slab.  897	

 898	

 899	

Fig. 10. In the models of Zahirovic et al. (2014) and Gibbons et al. (2015) the Neo-Tethyan ridge 900	

system is abandoned by 120 Ma. In this study, seafloor spreading continues because of ongoing 901	

subduction of the Meso-Tethyan Plate. Although the oldest preserved seafloor spreading constraints 902	



	 	 Page 51 of 129 

for the Neo-Tethys are ~128 Ma in the Argo Abyssal Plain, we impose continued seafloor 903	

spreading in the Neo-Tethys that is driven by northward slab pull. HIK – Hikurangi Plate.  904	

 905	

 906	

3.2 Active margin evolution in the Lhasa segment 907	

 908	

The Late Jurassic is characterized by the asynchronous development of an active margin 909	

along southern Eurasia that was consuming the Meso-Tethyan ocean basin along a north-dipping 910	

subduction zone (Fig. 8). Along southern Lhasa, subduction-related calc-alkaline granites and 911	

granitoids ranging in age from ~170 to 137 Ma indicate the onset of north-dipping Meso-Tethyan 912	

Andean-style subduction (Zhang et al., 2012). The onset of subduction-related magmatism within 913	

the Kohistan Arc, which has no continental basement (Burg, 2011; Jagoutz and Schmidt, 2012), at 914	

~154 Ma in the form of the Matum Das tonalite (Schaltegger et al., 2003) suggests the rollback of a 915	

Meso-Tethyan slab (e.g., Petterson and Windley, 1985; Pudsey, 1986) and the possible origin of 916	

Kohistan and Ladakh as fore-arc oceanic crust, following the generic model of forearc formation 917	

proposed by Flower and Dilek (2003) and Stern et al. (2012). Further east along the present-day 918	

suture zone, the interpreted intra-oceanic Zedong Terrane records latest Jurassic ages of subduction-919	

related igneous suites including a dacite breccia dated as 161.0 ± 2.3 Ma, a number of samples with 920	

an age of ~156 Ma (andesite dyke, andesite breccia and quartz diorite), and an andesitic dyke with 921	

an age of 152.2 ± 3.3 Ma (McDermid et al., 2002). The Kohistan-Ladakh, Zedong and more-922	

broadly Neo-Tethyan intra-oceanic subduction zone likely became established through continued 923	

southward slab rollback between ~150 and 120 Ma, which is marked by a magmatic hiatus in the 924	

Gangdese Batholith on Lhasa until ~110 Ma (Ji et al., 2009; Wen et al., 2008b). However, while the 925	

magmatic evolution of the Kohistan-Ladakh intra-oceanic arc is well-studied, its paleo-latitudinal 926	

position remains controversial and poorly constrained. Burg (2011) and Gibbons et al. (2015) place 927	

Kohistan on the equator at ~100 Ma (Fig. 11) based on the magnetisation of mid-Late Cretaceous 928	
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red beds (Zaman and Torii, 1999), suggesting a maximum southward extent for the Neo-Tethyan 929	

intra-oceanic arc. In addition, although Kohistan and Ladakh form the only significant preserved 930	

remnants of the Early Cretaceous intra-oceanic arc within the Yarlung-Tsangpo Suture Zone, 931	

additional ophiolites with intra-oceanic affinity are embedded in the suture zone east of Kohistan 932	

and Ladakh (Aitchison et al., 2000; Hébert et al., 2012). 933	

 934	

Fig. 11. The change in the motion of India from largely counterclockwise in the Early Cretaceous to 935	

largely northward, is recorded in fracture zone bends in the Wharton Basin at ~105-100 Ma 936	

(Matthews et al., 2012). In this study, the Neo-Tethyan ridge is consumed at the Kohistan-Ladakh 937	
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(KLA) intra-oceanic subduction zone from ~105 Ma, leading to a greater northward slab pull acting 938	

on the Indian Plate (IND), which we interpret as causing the change in India Plate motion. The 939	

collision of the East Java-West Sulawesi continental fragments possibly impeded subduction at the 940	

Woyla Arc at ~105 Ma, and led to obduction of the Meratus ophiolite in the Cenomanian-Turonian 941	

(~100-93 Ma) (Pubellier et al., 2004; Yuwono et al., 1988). The Kohistan-Ladakh and Woyla arcs 942	

likely occupied near-equatorial latitudes by ~100 Ma, with both back-arc systems subducted 943	

northward from ~115 Ma in the Sunda segment and from ~110 Ma along Lhasa, resulting in two 944	

coeval north-dipping subduction zones in the Neo-Tethys (see Section 3.2).  945	

 946	

The Aptian to Albian (~126-100 Ma) Yasin Group sedimentary sequence on the Kohistan-947	

Ladakh Arc are intercalated with syn-tectonic arc volcanics, and subsequent intrusions of diorites 948	

and granodiorites (Pudsey et al., 1985; Rehman et al., 2011). A large portion of the magmatic 949	

products were emplaced during a key timeframe between ~110 and 90 Ma (Petterson and Windley, 950	

1985; Rehman et al., 2011; Schärer et al., 1984), with significant magmatic accretion forming the 951	

Sapat Complex on the Kohistan Arc between ~105 and 99 Ma (Bouilhol et al., 2011). This short-952	

lived “trenchward migration of the hot mantle source” (Bouilhol et al., 2011) may indicate the 953	

arrival of the Neo-Tethyan mid-oceanic ridge with slab window formation, consistent with the 954	

~95 Ma high-temperature granulite metamorphism in the Jijal Complex and the peak metamorphic 955	

event in the Kamila Amphibolite unit (Petterson, 2010). The demise of the Neo-Tethyan mid-956	

oceanic ridge between ~110 and 90 Ma along the Kohistan-Ladakh intra-oceanic arc (Fig. 11) likely 957	

had substantial geodynamic implications for the region at the time, resulting in stronger northward 958	

slab pull acting on the Indian Plate. Although the slab window likely temporarily impeded 959	

subduction, the progressively increasing northward slab pull from ~105 Ma likely resulted in a 960	

major change in the direction and speed of the Indian Plate, observable in the significant bends 961	

observed in the Wharton Basin fracture zones (e.g., Wallaby-Zenith Fracture Zone) at ~105-100 Ma 962	

that required a ~50° clockwise reorientation of the Indo-Australian spreading system (Matthews et 963	
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al., 2012), and possibly triggered a regional plate-reorganization event (Matthews et al., 2011). In 964	

addition, the onset of northward slab pull on the Indian Plate from ~100 Ma may explain the 965	

paleomagnetic observations of rifting within Greater India in the Late Cretaceous (van Hinsbergen 966	

et al., 2012).  967	

The intersection of the Neo-Tethyan ridge with the Kohistan-Ladakh intra-oceanic 968	

subduction zone, as modelled in this study, may have temporarily interrupted subduction due to the 969	

decrease of negatively buoyant oceanic lithosphere entering the trench, with convergence 970	

accommodated along the active continental Eurasian margin from ~110 Ma rather than along the 971	

intra-oceanic subduction zone. The Gangdese Batholith recorded a major pulse of granitic 972	

magmatism from ~109 to 80 Ma (Ji et al., 2009), indicating the resumption of Andean-style 973	

subduction along Lhasa that is contemporaneous with intra-oceanic subduction along Kohistan-974	

Ladakh, and hence signifies the onset of two simultaneous north-dipping subduction zones in the 975	

Neo-Tethys from ~110 Ma.  976	

The Late Cretaceous evolution of the Kohistan-Ladakh Arc has conflicting interpretations. 977	

Conventional models suggest a Late Cretaceous collision and suturing of Kohistan-Ladakh to 978	

Eurasia (Clift et al., 2002; Debon et al., 1987; Treloar et al., 1996), whereas more recent works, 979	

which have incorporated detailed geochronology and structural interpretations of Kohistan, have 980	

concluded that instead of suturing to Eurasia, the Late Cretaceous is punctuated by an arc rifting 981	

and splitting episode by ~85 Ma (Bouilhol et al., 2011; Burg, 2011; Burg et al., 2006), which 982	

suggests Neo-Tethyan slab rollback rather than collisional processes. The ~75-60 Ma magmatic gap 983	

in the Gangdese Batholith (Chung et al., 2005; Wen et al., 2008b) may imply that the majority of 984	

India-Eurasia convergence was accommodated by subduction along Kohistan-Ladakh rather than 985	

by subduction along Lhasa. A scenario that precludes Kohistan-Ladakh collision with Eurasia in the 986	

Late Cretaceous requires that an intra-oceanic arc first accreted onto Greater India (Chatterjee et al., 987	

2013). A similar model proposes that the Muslim Bagh Ophiolite represents the Kohistan-Ladakh 988	

forearc and was obducted onto the leading edge of Greater India at ~65 Ma in near-equatorial 989	
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latitudes, which resulted in the cessation of calc-alkaline magmatism on Kohistan-Ladakh during 990	

~65-61 Ma (Khan et al., 2009). This scenario requires the accompanying suturing between 991	

Kohistan-Ladakh and Greater India along the Indus Suture to occur earlier than the closure of 992	

Shyok Suture. Such a scenario is consistent with the plate reconstructions presented in this study, in 993	

which Greater India reaches equatorial latitudes at ~65 Ma. A recent stratigraphic analysis 994	

presented in Hu et al. (2015) suggests the India-Eurasia collision was underway by 59 ± 1 Ma, 995	

which we interpret as the initial arc-continent collision, consistent with the tectonic evolution of the 996	

Kohistan-Ladakh Arc. The major slowdown in spreading across the Central and Southeast Indian 997	

Ridges at ~52 Ma (Chron 23o, Cande et al., 2010) may indicate the complete abandonment of the 998	

intra-oceanic subduction zone, and the completion of the initial arc-continent collision between 999	

Greater India and the Neo-Tethyan intra-oceanic arc. Recent geochemical analyses of granitoids 1000	

from the Kohistan-Ladakh Arc indicate a major change in magma chemistry (Nd and Hf isotopes) 1001	

and the arrival of the Greater Indian continental margin into the subduction zone by 50.2 ± 1.5 Ma 1002	

(Bouilhol et al., 2013), which is consistent with the cessation of intra-oceanic subduction by this 1003	

time.  1004	

The continent-continent collision between Greater India and Eurasia likely occurred at 1005	

~47 Ma, recorded in the marked slowdown of seafloor spreading at Chron 21o along the Southeast 1006	

Indian Ridge (Cande and Patriat, 2015) and the contemporaneous formation of an Indian Ocean 1007	

microplate near the Ninetyeast Ridge (Matthews et al., 2016). Suturing along the Shyok Suture 1008	

Zone between the two continents was likely complete by 40.4 ± 1.3 Ma (Bouilhol et al., 2013), 1009	

which accounts for the ~60-40 Ma Andean-style emplacement of the Linzizong Volcanics in Lhasa 1010	

(Chung et al., 2005). The ~47-40 Ma continent-continent collision timing is consistent with an 1011	

additional slowdown and change in spreading direction along the Central and Southeast Indian 1012	

Ridges, the inception of a short-lived Indian Ocean microplate (Matthews et al., 2016), and the 1013	

abandonment of the Wharton Ridge sometime between ~43 and 36 Ma (see discussion in Gibbons 1014	

et al., 2015).  1015	
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 1016	

3.3 Convergence along the West Burma and Sumatra margin segment  1017	

	1018	

Eastern Sumatra, as part of the Sibumasu ribbon terrane, docked with the Eurasian margin 1019	

sometime in the Late Triassic to Early Jurassic (Metcalfe, 2011), and has since recorded Meso- and 1020	

Neo-Tethyan subduction and accretion histories. The Woyla Terrane, which accreted to Sumatra in 1021	

the Late Cretaceous (Morley, 2012a), plays a key role in elucidating the geodynamic setting of the 1022	

Sumatran active margin since the Late Jurassic. However, the nature of the Woyla Terrane crust and 1023	

the subduction polarity and history has given rise to a number of competing models for the tectonic 1024	

evolution of Sumatra. The Jurassic to Cretaceous Woyla Group of sedimentary and volcanic units 1025	

has previously been interpreted as an arc built on re-worked continental basement (Barber and 1026	

Crow, 2003; Cameron et al., 1980), largely due to the presence of a tin geochemical signature in the 1027	

Sikuleh granitoids (Fig. 2) that may have been interpreted as analogous to the Southeast Asian tin 1028	

belts that were built on continental crust (e.g., Bangka and Billiton Islands; Searle et al., 2012). 1029	

Parts of the Woyla basement near Sikuleh, Natal and Bengkulu are composed of quartzite and 1030	

phyllite (Acharyya, 1998), and overprinted by widespread granitoid intrusions largely Late 1031	

Cretaceous in age (Barber and Crow, 2003), leading some authors to interpret these micro-blocks as 1032	

Gondwana-derived continental fragments (Görür and Sengör, 1992; Haile, 1979; Metcalfe, 1994; 1033	

Metcalfe, 2002; Metcalfe and Irving, 1990). The paleomagnetic study of a Jurassic limestone 1034	

sample by Haile (1979) suggests that the crust in the vicinity of Sikuleh (Locality H in Haile, 1979) 1035	

was at 26°S in the Jurassic. This result was used by Metcalfe (1994) to suggest a Gondwana origin 1036	

for the proposed micro-continental fragment.  1037	

The continental nature of the Sikuleh part of the Woyla Terrane (Si, Fig. 2) is rejected by 1038	

Barber and Crow (2003), who instead propose an intra-oceanic arc origin. The Woyla Group 1039	

consists, at least in part, of accreted fragments that include seamounts, reef fragments, ophiolites 1040	

and associated ocean floor sedimentary sequences (Barber and Crow, 2003; Wajzer et al., 1991), 1041	
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but no clear continental basement can be identified, much like the Kohistan-Ladakh Arc in the 1042	

central Neo-Tethys. Paleontological constraints from a single foraminifera specimen within the 1043	

Batang Natal Megabreccia provide a Late Triassic age (Wajzer et al., 1991), and suggest that the 1044	

oceanic crust that was consumed in the Woyla intra-oceanic subduction system in the Cretaceous 1045	

was at least Late Triassic in age, consistent with the age of Meso-Tethyan oceanic crust subducted 1046	

along the Sumatra segment predicted by our reconstructions for the Cretaceous (Fig. 10). In 1047	

addition, the accretion of highly disrupted lenses of oceanic crust and sedimentary sequences onto 1048	

the Woyla Terrane is consistent with the observations of accreted oceanic plate stratigraphy further 1049	

east in the Luk Ulo-Meratus Suture Zone between East Java-West Sulawesi and the core of Borneo 1050	

(Wakita, 2000; Wakita and Metcalfe, 2005).  1051	

 1052	

3.3.1 Development of the Woyla intra-oceanic arc 1053	

 1054	

The Woyla Terrane, largely represented by the Woyla Group of sedimentary sequences and 1055	

intrusions, likely developed on an active intra-oceanic margin (with possible continental basement) 1056	

in the Early Cretaceous (Figs. 9-11), separated from mainland Sumatra by a marginal sea (Rock et 1057	

al., 1983; Wajzer et al., 1991). However, the origin of the Woyla Arc has recently been debated, 1058	

with a model proposing a Gondwana origin for both the Woyla and the Kohistan-Ladakh Arc (Hall, 1059	

2012) as the result of continued rollback of a south-dipping subduction zone (Fig. 4b-c). 1060	

Alternatively, the model of Zahirovic et al. (2014), and the one presented here, invoke a southern 1061	

Eurasia origin of the Kohistan-Ladakh and Woyla intra-oceanic island arcs. The scenario invoking 1062	

south-dipping subduction along northern Gondwana in the Late Jurassic could be corroborated by 1063	

the preservation of contemporaneous arc rocks on Greater India (Tethyan Himalayas) or the NW 1064	

Australian Shelf, which are not yet documented. The scenario invoking north-dipping Meso-1065	

Tethyan subduction to detach the Argoland continental fragments and open the Neo-Tethys in the 1066	

latest Jurassic can be corroborated by the subduction history along Lhasa, West Burma (Myanmar) 1067	
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and Sundaland. Subduction is suggested to have initiated along the West Burma block at ~163-1068	

152 Ma by jadeite geochronology (Shi et al., 2008; Shi et al., 2014). This age is similar to that of 1069	

the 154 Ma Matum Das tonalite within the Kohistan-Ladakh arc (Schaltegger et al., 2003) to the 1070	

west. The formation of the Naga Ophiolite during ~156-150 Ma, based on Kimmeridgian-lower 1071	

Tithonian cherts (Baxter et al., 2011), suggests a close temporal and geodynamic association 1072	

between the Kohistan-Ladakh (Lhasa segment), Mawgyi (West Burma segment) and Woyla 1073	

(Sumatra segment) intra-oceanic arcs along which Meso-Tethyan oceanic crust began subducting in 1074	

the latest Jurassic.   1075	

 1076	

3.3.2 Subduction of the Woyla back-arc basin 1077	

 1078	

 The resumption of Andean-style subduction in the central Neo-Tethys along Lhasa is well-1079	

constrained to ~109 Ma, based on the onset of subduction-related magmatism in the Gangdese 1080	

Batholith (Ji et al., 2009). However, the timings of subduction initiation along West Burma and 1081	

Sumatra are less well constrained. An Albian (~113-100 Ma) unconformity on West Burma 1082	

(Morley, 2012a) may indicate compression related to subduction initiation, which is 1083	

contemporaneous with observations in Lhasa, and the supra-subduction formation of the Andaman 1084	

Ophiolite at 95 ± 2 Ma (Pedersen et al., 2010) may suggest the onset of rollback and extension in 1085	

the overriding plate. Here we interpret the ~115 Ma peak in Ultra- and Very-High Pressure 1086	

metamorphics in the Luk-Ulo Suture Zone (Figs. 10-12) (Parkinson et al., 1998) as indicators of 1087	

subduction initiation of the Woyla back-arc basin to account for the Albian unconformity on West 1088	

Burma. The 105 to 90 Ma dioritic and granodioritic intrusions into the Wuntho-Popa Arc (Mitchell 1089	

et al., 2012), west of the Sagaing Fault, suggest continuity of the contemporaneous Lhasa 1090	

subduction zone into the West Burma segment of the margin. However, subduction to consume the 1091	

Woyla back-arc basin may (also) have been south-dipping as argued in Morley (2012a).  1092	
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 1093	

Fig. 12. Very High and Ultra High Pressure (VHP/UHP) metamorphic rocks in the Luk Ulo-1094	

Meratus suture on Java and Borneo (Fig. 2) record well-established subduction from at least 1095	

~140 Ma. A significant spike at ~115 Ma has been previously interpreted as a collision between 1096	

East Java-West Sulawesi and the Woyla intra-oceanic arc (Gibbons et al., 2015; Zahirovic et al., 1097	

2014). However, in the refined plate reconstructions presented herein, the origin of East Java from 1098	

the Argo Abyssal Plain would require excessive seafloor spreading rates, and instead we interpret 1099	

the peak in VHP/UHP metamorphism to represent the onset of Woyla back-arc subduction along 1100	

West Burma and Sundaland. Figure modified from Parkinson et al. (1998). 1101	

 1102	

Although the Kohistan-Ladakh Arc is loosely constrained to near-equatorial paleo-latitudes 1103	

during the mid-Cretaceous (Burg, 2011), no latitudinal constraints exist for the Woyla Arc. 1104	

However, some constraints are available for the closure of the Woyla back-arc basin, and the 1105	

collision of the intra-oceanic arc with Sumatra (Figs. 13-14). The Woyla Group is intruded by a 1106	

number of Late Cretaceous igneous bodies, including the 84.7 ± 3.6 Ma (K-Ar) Batu Madingding 1107	

diorite and the 78.4 ± 2.5 Ma (K-Ar) andesite in the southwest Batang Natal section (Wajzer et al., 1108	

1991), after which a significant magmatic gap is interpreted to represent collision of the Woyla 1109	

Terrane with Sumatra. Hall (2012) argued that no subduction occurred on the Woyla/Sumatra 1110	

segment of the Tethyan margin between 90 and 45 Ma (Fig. 4c), largely due to the presence of a 1111	
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regional unconformity that was interpreted to signify the absence of subduction-related dynamic 1112	

subsidence on the overriding plate (Clements et al., 2011). However, only a ~10-15 Myr magmatic 1113	

gap associated with a hiatus in subduction between ~75 and 62 Ma (Fig. 15) can be accounted for in 1114	

the volcanic record on Sumatra (McCourt et al., 1996; Zahirovic et al., 2014). However, some of 1115	

these (~10 Myr) magmatic gaps may be due to sampling issues, and future work may reveal more 1116	

continuous subduction histories. The choice to impose a ~45 Myr (Hall, 2012) rather than a ~10-1117	

15 Myr Zahirovic et al. (2014) subduction hiatus has significant geodynamic implications for the 1118	

region, where the continued northward motion of the Indian Plate needs to be accommodated by an 1119	

oceanic transform that cuts across older oceanic lithosphere and pre-existing structural fabric in the 1120	

reconstructions of Hall (2012) (Fig. 4c).  1121	

 1122	
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 1123	

Fig. 13. India’s northward motion accelerated from ~80 Ma. The subduction polarity likely 1124	

reversed along the Philippine Arc and suturing of the East Java and West Sulawesi continental 1125	

fragments to the Southwest Borneo Core was complete by this time. The Woyla Terrane was 1126	

approaching the Sumatran margin by this time. Additional polygons in the lower panels for 1127	

Australian-Antarctic and Lord Howe-Tasman Sea regions represent areas of deforming continental 1128	

crust.  1129	

 1130	
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 1131	

Fig. 14. The Woyla Arc collided with Sundaland (SU) by ~75 Ma, and impeded subduction in this 1132	

segment of the margin for ~10 Myr. The Meso-Tethyan Plate was still likely being subducted along 1133	

the Sunda Trench based on the refined plate reconstructions, with Wharton Ridge arrival near 1134	

eastern Sundaland between ~70 and 60 Ma in both reconstructions. In this study, we reconstruct the 1135	

subduction of the Sepik oceanic gateway from ~71 Ma based on the age of the Emo volcanics 1136	

(Worthing and Crawford, 1996). 1137	

 1138	
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 1139	

Fig. 15. A synthesis of arc volcanism on Sumatra, adapted from McCourt et al. (1996), highlights a 1140	

number of short-lived magmatic hiatuses likely related to back-arc basin rifting and/or collisional 1141	

processes that impeded subduction along the Sumatran continental margin.  1142	

 1143	

The post-Cretaceous history of the Sumatran margin is less controversial, with magmatism 1144	

related to the subduction of the Neo-Tethys and Indian oceans (McCourt et al., 1996), and 1145	

widespread basin rifting and flooding occurring since Paleocene times on Sundaland (Doust and 1146	

Sumner, 2007). One important geodynamic consideration for the Sumatra margin is the interaction 1147	

of the (extinct) Wharton Ridge with the Java-Sunda trench, with the model of Whittaker et al. 1148	

(2007) suggesting a long-lived slab window sweeping westward from eastern Sundaland (near Java) 1149	

from ~75 Ma to the present. Such a scenario implies a time-dependent along-trench thermal 1150	

anomaly affecting the Sundaland continent, and more importantly, the subduction of young oceanic 1151	

crust (and hence thinner oceanic lithosphere) has important implications on the long-wavelength 1152	

mantle-driven topography on the overriding plate (e.g., Flament et al., 2015, for Patagonian uplift 1153	

associated with the Chile Triple Junction; Guillaume et al., 2009). The combination of a subduction 1154	

hiatus in the Late Cretaceous, as well as the subduction of very young oceanic crust in the Eocene 1155	

along the Java-Sunda trench would likely result in widespread regional dynamic uplift that has been 1156	
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proposed by Clements et al. (2011) to account for a widespread Late Cretaceous to Paleocene 1157	

regional unconformity across Sundaland, as explored in Zahirovic et al. (In Review). 1158	

 1159	

3.4 Accretionary history of the Java and Borneo margin segment  1160	

 1161	

 A key region recording the evolution of Southeast Asia in the context of Eurasian, Tethyan 1162	

and (proto-) Pacific convergence is the Sundaland continental promontory. The core of Sundaland 1163	

is composed of north-eastern Sumatra, West Java and the Southwest Borneo block (Hall, 2012; 1164	

Metcalfe, 1988; Metcalfe, 2011; Zahirovic et al., 2014). The promontory is largely Phanerozoic 1165	

continental crust (Hall, 2011), with accreted intra-oceanic and allochthonous continental fragments 1166	

– some, like East Java, carrying Archean zircon signatures (Smyth et al., 2007). The continental 1167	

fragments making up Sundaland have largely Tethyan-Gondwanan affinities based on 1168	

paleontological, stratigraphic and paleo-magnetic constraints, as reviewed in Metcalfe (2006).  1169	

 1170	

3.4.1 Subduction and accretion history of southern Sundaland 1171	

 1172	

 The onset of Late Jurassic subduction in the eastern Tethys is best represented by the ~180-1173	

165 Ma schists found within the Meratus Complex on the eastern periphery of the Southwest 1174	

Borneo core, as well as the presence of Bajocian (~170 Ma) and younger radiolarians embedded in 1175	

the Meratus Suture Zone (Wakita et al., 1998). Zircons shed into the Ciemas and Bayah Formations 1176	

on West Java, have ages of 160 Ma and younger (Clements and Hall, 2007), and likely represent the 1177	

onset of subduction along this margin. The Late Jurassic-Early Cretaceous age of subduction onset 1178	

on this segment is consistent with the establishment of a major subduction system along southern 1179	

Eurasia, spanning at least from western Lhasa to the easternmost Tethyan margin on eastern 1180	

Sundaland (see previous sections for full chronology). A continuous record of very-high-pressure 1181	

(VHP) metamorphic rocks (Fig. 12), including greenschists, blueschists, granulites, eclogites and 1182	
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jadeite-bearing metamorphics from ~140 Ma in the Luk-Ulo and Meratus region of Sundaland 1183	

(Parkinson et al., 1998) suggests a well-established subduction zone in the Early Cretaceous. The 1184	

VHP metamorphism peak at ~115 Ma has previously been interpreted as an arc-continent collision 1185	

of Gondwana-derived continental fragments (including East Java, West Sulawesi, Mangkalihat, and 1186	

eastern Borneo) with the eastward continuation of the Woyla Arc (Zahirovic et al., 2014). However, 1187	

in this study we prefer an interpretation of Woyla back-arc basin subduction initiation at this time to 1188	

account for the UHP/VHP metamorphism, as discussed in earlier sections.  1189	

A significant spike in the zircon age spectra at ~100 Ma (Clements and Hall, 2007) may 1190	

indicate the arrival of the East Java-West Sulawesi in the vicinity of Sundaland. The obduction of 1191	

the Meratus Ophiolite in the Cenomanian/Turonian between ~100 and 93 Ma (Pubellier et al., 2004; 1192	

Yuwono et al., 1988) is consistent with the Cenomanian radiolarians found in the Meratus Complex 1193	

(Wakita et al., 1998). The final closure of the Barito Sea back-arc basin along southern Sundaland 1194	

occurred by ~80 Ma based on the lack of volcanic-derived zircons in fore-arc sandstones (Clements 1195	

and Hall, 2011; Wakita, 2000). A Late Cretaceous to Paleocene (~72 to 65 Ma) unconformity on 1196	

southwest Sulawesi (Milsom, 2000) may indicate collisional (uplift/denudation) processes, a 1197	

subduction hiatus, or a combination of both. A resumption of subduction likely occurred in the 1198	

Paleocene (Yuwono et al., 1988), with ~65-58 Ma (K-Ar) subduction related rocks (Guntoro, 1199	

1999), a 63 Ma tuff reported on South Sulawesi (van Leeuwen, 1981), and continuous calc-alkaline 1200	

and tholeiitic volcanism occurring between 51 and 17 Ma on the Western and northern arm of 1201	

Sulawesi (Elburg et al., 2003). Ongoing subduction and major deformation (Figs. 16-17), largely 1202	

due to the arrival of the Australian continental margin, namely the Sula Spur (Figs. 18-19), started 1203	

with the obduction of the East Sulawesi Ophiolite at ~20 Ma (Oligocene to Miocene) in a continent-1204	

continent collision setting (Bergman et al., 1996). The subsequent compressional deformation, and 1205	

widespread oroclinal bending of Sundaland are discussed at length in Hutchison (2010) and 1206	

Zahirovic et al. (2014), and are summarised in the following sections. 1207	
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 1208	

 1209	

Fig. 16. The 55 Ma reconstruction marks the initial stages of contact between Greater India and the 1210	

Kohistan-Ladakh Arc to close the Indus Suture Zone, leading to major changes in spreading rate 1211	

and direction on the India-Antarctica ridge system. The rollback of the Izanagi slab opens the Proto 1212	

South China Sea (PSCS) from ~60 Ma in a Tyrrhenian-style back-arc system. Subduction is 1213	

initiated at ~55 Ma along the Izu-Bonin-Marina Arc (IBM) to consume Pacific (PAC) oceanic crust. 1214	

IO – Indian Ocean, NPSP – North Philippine Sea Plate, SPSP – South Philippine Sea Plate, SEM – 1215	

Semitau Block.  1216	
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 1217	

 1218	

Fig. 17. Continent-continent collision between India and Eurasia likely initiated by ~47 Ma, leading 1219	

to final closure of the Yarlung-Tansgpo and Shyok suture zones (see Fig. 1). The rollback of the 1220	

Izanagi slab opens the Proto South China Sea and transfers the Semitau and Mindoro continental 1221	

fragments from the South China margin onto northern Borneo, leading to a mid Eocene collision. 1222	

The Sepik oceanic gateway is almost consumed along a north-dipping subduction zone, north of 1223	

which the Proto Molucca Plate (PMOL) is consumed contemporaneously along the Philippine Arc. 1224	

 1225	
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 1226	

Fig. 18. India’s continued, although slowed, northward advance results in the clockwise rotation 1227	

and lateral extrusion of Indochina (IC), leading to the first stages of oroclinal bending in western 1228	

Sundaland. The Sepik Terrane docks with the New Guinea margin, and the Sula Spur (SS) 1229	

continental promontory on the northern Australian margin approaches Sundaland. CP – Caroline 1230	

Plate, PSP – Philippine Sea Plate.  1231	

 1232	
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 1233	

Fig. 19. The extrusion of Indochina due to India’s northward motion, together with the collision 1234	

between Sula Spur and West Sulawesi results in the oroclinal bending of Sundaland, resulting in 1235	

major counterclockwise rotation of Borneo relative to Sumatra and the Malay Peninsula. South-1236	

dipping subduction initiates by ~20 Ma to account for the Maramuni Arc volcanics on New Guinea, 1237	

with coeval north-dipping subduction of the Proto Molucca Plate (PMOL) accommodating 1238	

southward motion of the Caroline Plate (CP) and the Halmahera Arc (HA).  1239	

 1240	

 1241	



	 	 Page 70 of 129 

3.4.2 Northern Sundaland collisions  1242	

 1243	

The geological record on the Sundaland continental promontory captures the geodynamic 1244	

interaction between the Tethyan and proto-Pacific oceanic domains, and holds clues as to how the 1245	

present-day complexity of plate boundaries developed. Most notably, an ongoing topic of interest 1246	

relates to how the east Asian margin transitioned from purely Andean-style subduction (Fig. 20) in 1247	

the Late Cretaceous (Shi and Li, 2012), to one that is presently dominated by a labyrinthine network 1248	

of intra-oceanic active margins connected by splayed transforms, ridge segments and diffuse plate 1249	

boundaries (Bird, 2003). Although much of the proto-Pacific plates have been recycled into the 1250	

mantle, the preserved flanks of the seafloor spreading history have been used to restore the lost 1251	

plates, assuming seafloor spreading symmetry (Seton et al., 2012). However, the location and 1252	

evolution of subduction zones is difficult to constrain, with the only clues coming from 1253	

paleomagnetic constraints, arc volcanics and present-day mantle structure (Hall and Spakman, 1254	

2002; Miller et al., 2006; Queano et al., 2007; Zhao et al., 2007).  1255	

Although a key component of the intra-oceanic system is the Philippine Sea Plate, which is 1256	

discussed in Section 3.5.1, the transition from Andean-style to intra-oceanic subduction north of 1257	

Sundaland is most likely controlled by back-arc basin opening processes in the Late Cretaceous 1258	

(Morley, 2012a). In the model proposed in Zahirovic et al. (2014), and adopted here, the 1259	

emplacement of the Fukien-Reinan massif (Fig. 20) from Andean-style subduction ceases in the 1260	

Late Cretaceous (Jahn et al., 1976), and was replaced with extension and back-arc basin opening 1261	

(Li, 2000) due to rollback of the Izanagi slab (Figs. 13-14, 16). Such a scenario is consistent with 1262	

the onset of Late Cretaceous tectonic subsidence in East Asian basins (Yang et al., 2004), as well as 1263	

the crustal and biogeographic affinity between continental fragments wedged in northern Borneo 1264	

and the Philippine Archipelago, namely the Semitau and Mindoro blocks, and their likely origin on 1265	

the South China continental margin (Fig. 20) in the Late Cretaceous (Zahirovic et al., 2014). The 1266	

rollback induced extension in the overriding plate (Schellart and Lister, 2005) likely progressed to 1267	
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back-arc basin opening, following the analogue of the Tyrrhenian back-arc system in the 1268	

Mediterranean that detached and carried continental blocks to eventually collide as allochthons with 1269	

a distant margin (Doglioni, 1991; Jolivet et al., 1999; Rehault et al., 1987). In the case of the Proto 1270	

South China Sea, the Semitau and Mindoro fragments were likely detached from the East Asian 1271	

margin by ~65 Ma, based on the onset of tectonic subsidence (Yang et al., 2004) and the ~59 Ma 1272	

emplacement of supra-subduction zone ophiolites on Mindoro (Yumul et al., 2009). The continued 1273	

rollback transferred Semitau and Mindoro southward, resulting in an Eocene collision with the 1274	

northern Borneo margin to produce the Sarawak Orogeny (Cullen, 2010; Fyhn et al., 2010; 1275	

Hutchison, 1996; Hutchison, 2004), after which southward subduction consumed the Proto South 1276	

China Sea to emplace widespread volcanism on northern Borneo (Soeria-Atmadja et al., 1999). 1277	

 1278	
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Fig. 20. Triassic and Jurassic fossil occurrences from the global Paleobiology Database (now 1279	

Fossilworks) from Semitau (northern Borneo), represented by coloured symbols. The same fossils 1280	

are also found elsewhere in Asia, with the strongest biogeographic affinity with mainland South 1281	

China. The curved Fukien-Reinan massif (green hatched region) represents the Cretaceous Andean-1282	

style east Asian margin, which was replaced with an intra-oceanic setting in the Late Cretaceous. 1283	

The curvature of the Andean-style magmatic arc also supports strong oroclinal bending of 1284	

Sundaland in post-Cretaceous times. Nat-An – Natuna–Anambas Arc, WB – West Burma, WS – 1285	

West Sulawesi. Figure adapted from Zahirovic et al. (2014). 1286	

 1287	

The slab pull from south-dipping Proto South China Sea subduction along northern Borneo, 1288	

along with the clockwise (CW) extrusion of Indochina resulting from the India-Eurasia collision 1289	

(Fuller et al., 1991; Tapponnier et al., 1982), may have led to significant adjustments in the plate 1290	

boundary forces acting on Sundaland. The ~32 Ma onset of seafloor spreading along the South 1291	

China margin (Fig. 18) detached the Dangerous Grounds-Reed Bank continental blocks to open the 1292	

South China Sea (Lee and Lawver, 1994; Lee and Lawver, 1995), with collision of the continental 1293	

fragments with northern Borneo and South Palawan at ~15 Ma resulting in ophiolite obduction and 1294	

the Sabah Orogeny (Hutchison, 2004; Hutchison et al., 2000), as well as choking the north Borneo 1295	

subduction system and shutting down seafloor spreading in the South China Sea (Briais et al., 1296	

1993). This southward collision was wedged between the India-Eurasia collision from ~47 Ma (see 1297	

Section 3.2) and the collision of the Australian northern margin with eastern Sundaland from ~25 1298	

Ma (Bergman et al., 1996; Hall, 2002). This arrangement of plate boundaries, and the driving 1299	

forces, presumably had significant consequences for the rotational history of Borneo and the 1300	

deformation of Sundaland.  1301	

 1302	

 1303	

 1304	
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3.4.3 Sundaland oroclinal bending 1305	

 1306	

The large counterclockwise (CCW) rotation of Borneo, relative to stable Sundaland, in the 1307	

Cenozoic has drawn a range of interpretations and led to a number of competing models (see 1308	

discussion in Zahirovic et al. (2014)). Each model of Borneo rotation has consequences for the 1309	

deformation history on Sundaland (in particular, the basins of the Sunda Shelf and Java Sea), as 1310	

well as understanding the mechanism that led to the 90° CCW rotation of Borneo relative to 1311	

Sundaland in the Mesozoic, including up to 50° CCW rotation since 25 Ma (Fuller et al., 1999). In 1312	

the absence of large transform faults, such as the Red River Fault bounding northern Indochina, 1313	

within the Java Sea or the Sunda Shelf, Hutchison (2010) proposed a model of oroclinal bending for 1314	

the rotation of Borneo as a mechanism to explain the deformation of the Sundaland continental 1315	

promontory.  1316	

Hutchison (2010) synthesised the paleomagnetic evidence, as well as observations of curved 1317	

lineaments observed in the gravity anomalies of Sundaland and the curvature of the Natuna and 1318	

Anambas Cretaceous paleo-arc (Fig. 20) to infer that wholesale bending of Sundaland 1319	

accommodated the CW rotation of Indochina and the CCW rotation of Borneo (Fuller et al., 1999; 1320	

Fuller et al., 1991). The curved lineaments  (Fig. 21) are most likely to be successive generations of 1321	

ancient volcanic arcs (Hutchison, 2010), with the most obvious example being the curved arc 1322	

belonging to the Middle to Late Triassic tin belt granites on Bangka and Billiton islands, as well as 1323	

the previously-mentioned Natuna-Anambas Cretaceous Arc. Zahirovic et al. (2014) expanded on 1324	

the work of Hutchison (2010) and used filtered Bouguer anomalies (Balmino et al., 2012) to extract 1325	

geometrical constraints on the oroclinal bending (Fig. 21), and constructed a kinematic oroclinal 1326	

bending model that accounts up to ~78° CCW rotation of Borneo since ~50 Ma.  1327	
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 1328	

Fig. 21. The band-pass-filtered (150 to 10 km) Bouguer gravity anomalies from the 1 min World 1329	

Gravity Map (Balmino et al., 2012) highlights the large-scale structures and the curved lineaments 1330	

on Sundaland, resulting from oroclinal bending as proposed by Hutchison (2010). Bangka Island – 1331	

purple, Belitung (Billiton) Island – pink.  1332	

 1333	

One important distinction between the oroclinal bending of Sundaland and classical models 1334	

of oroclinal bending largely relates to the tightness of the oroclinal folds and the deformation 1335	

experienced by the continental crust (Carey, 1955; Eldredge et al., 1985). In the case of Sundaland, 1336	

the hinge of the orocline is likely to be in the Sunda Shelf west of Borneo, with a wide region of 1337	

bending rather than tight oroclinal bends that are typically reported for Kazakhstan (Abrajevitch et 1338	

al., 2008) and the Mediterranean (Rosenbaum, 2014). Although the boundaries of the Sundaland 1339	

continental promontory experienced compression during oroclinal bending, the Java Sea and Sunda 1340	

Shelf were dominated by extension from Eocene times to the mid Miocene, after which a major 1341	
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phase of basin inversion dominated the tectonic regime of Sundaland to the present (Doust and 1342	

Sumner, 2007; Pubellier and Morley, 2014).  1343	

 1344	

3.5 New Guinea and the Philippines  1345	

 1346	

3.5.1 Origin and evolution of the Philippine Archipelago  1347	

 1348	

Tectonic reconstructions of the transfer of Gondwana-derived terranes following the 1349	

breakup of Pangea are limited by the lack of preserved seafloor, but are typically supplemented 1350	

with high-quality and well-constrained onshore geological data that helps reconstruct the synthetic 1351	

seafloor spreading histories. However, the region east of Sundaland, which includes the Philippines 1352	

and New Guinea are considerably more complicated, as they straddle the Tethyan and (proto-) 1353	

Pacific tectonic domains, resulting in a complex interaction dominated by back-arc basin formation 1354	

processes and multiple phases of collision, obduction and subduction that consumed them.  1355	

 One early synthesis of the tectonic evolution of the post-Eocene West Pacific was carried 1356	

out by Jolivet et al. (1989), who modelled the plate motions in six stages (56, 43, 32, 20, 12 and 1357	

3 Ma), and importantly, provided finite rotation poles that define their time-dependent plate circuit. 1358	

In the reconstructions of Jolivet et al. (1989), and subsequent models (Hall et al., 1995a; Lee and 1359	

Lawver, 1995; Pubellier et al., 2003; Queano et al., 2007; Zahirovic et al., 2014), the Philippine Sea 1360	

Plate develops in near-equatorial southern latitudes during the Eocene (Hall et al., 1995a; Hall et al., 1361	

1995b; Richter and Ali, 2015), and is isolated from the surrounding plate circuits by a network of 1362	

plate boundaries (including subduction zones and transforms) for much of the time. This tectonic 1363	

isolation, and lack of preserved seafloor spreading linking the Philippine Sea Plate directly to the 1364	

Pacific, Eurasian or Australian plates leads to difficulties in reconstructing the absolute and relative 1365	

plate motions of this region that links the Pacific with the Indian oceans. However, the seafloor 1366	

spreading history within the Philippine Sea Plate itself has been well-documented, including the 1367	
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opening of the West Philippine Basin between ~55 and 33 Ma (see Hilde and Chao-Shing (1984), 1368	

Deschamps and Lallemand (2002), and references therein) and the back-arc opening of the Shikoku 1369	

and Parece Vela back-arc basins between ~29 and 15 Ma from Philippine Sea Plate rotation 1370	

(Sdrolias et al., 2004) and Izu-Bonin-Mariana trench rollback (Kobayashi, 2004).  1371	

Although the seafloor spreading history of the Philippine Sea Plate is confined to post-1372	

Eocene times, the Philippine Arc has recorded a much longer history of subduction, with the earliest 1373	

supra-subduction zone (SSZ) rocks from the Late Jurassic. The SSZ ophiolites from the Philippine 1374	

Arc have ages of 156.3 ± 2.0 Ma and 150.9 ± 3.3 Ma (Lagonoy Ophiolite), and 142 ± 4 Ma  (Gag 1375	

Island, Halmahera) from the synthesis of Encarnación (2004). They are discussed at length in 1376	

Zahirovic et al. (2014). Recent work by Deng et al. (2015) reported mid-Cretaceous, 126 ±3 Ma and 1377	

119 ± 2 Ma (U-Pb), SSZ volcanics from Cebu Island. These ages are consistent with the minimum 1378	

99.9 ± 7.0 Ma (Ar-Ar) age of the Calaguas Ophiolite (Geary et al., 1988; Geary and Kay, 1989), 1379	

and the 100 ± 4 Ma arc rocks reported from Obi Island on Halmahera (Hall et al., 1995b), 1380	

suggesting continuous Early Cretaceous subduction along the Philippine Arc. To reconcile the 1381	

likely southern hemisphere origin of the Philippine Arc and the Late Jurassic-Early Cretaceous 1382	

temporal similarity with north Gondwana rifting events, Zahirovic et al. (2014) proposed a SSZ 1383	

origin in the vicinity of New Guinea, recently independently suggested by Deng et al. (2015). The 1384	

multiple generations of ophiolites may suggest a tectonic scenario similar to the current multi-1385	

generation opening of back-arcs along the Izu-Bonin-Mariana system, and may explain the origin of 1386	

the Daito and Oki-Daito ridges as paleo-arc features in the north West Philippine Basin.   1387	

 1388	

3.5.2 Nature of the New Guinea margin since the Late Jurassic   1389	

 1390	

To accommodate the northern Gondwana rifting episode in the Late Jurassic, Zahirovic et 1391	

al. (2014) placed the East Java-West Sulawesi continental fragments along New Guinea as the 1392	

simplest end-member of transferring blocks north towards Sundaland, but acknowledged that an 1393	
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Argo Abyssal Plain origin (NW Australian shelf) would also be possible due to the lack of 1394	

preserved seafloor spreading histories to constrain a pre-drift fit. In this study, we implement the 1395	

Argo origin end-member scenario, which is consistent with the zircon age spectra linking East Java 1396	

to the NW Australian shelf (Sevastjanova et al., 2015; Smyth et al., 2007). The 158-137 Ma ages of 1397	

mafic rocks, some of which are associated with pillow basalts, on West Sulawesi (Polvé et al., 1398	

1997) are consistent with the oldest oceanic crust (155 ± 3.4 Ma) in the Argo Abyssal Plain on the 1399	

NW Australian Shelf (Gradstein and Ludden, 1992). By shifting these continental fragments west 1400	

along northern Gondwana, the New Guinea margin can accommodate the source of the Philippine 1401	

Archipelago to have formed along its margin. The benefit of such a scenario is that it accounts for 1402	

the origin of (likely) Jurassic age SSZ ophiolites within the Central Ophiolite Belt in New Guinea 1403	

(Monnier et al., 2000). However, the Late Jurassic-Early Cretaceous (~157 ± 16 Ma) and Late 1404	

Cretaceous (66 ± 1.6 Ma) are unpublished ages from Permana (1998), reported in Pubellier et al. 1405	

(2003), and require further corroboration. What is known is that at least part of the New Guinea 1406	

margin was an active margin in Early Cretaceous times, as indicated by the Early Cretaceous 1407	

volcanism and the Kondaku Tuffs (Dow, 1977; Rickwood, 1954), and likely represents the 1408	

continuation of the long-lived east Gondwana active margin.  1409	

To what extent the Late Jurassic-Early Cretaceous active margin extended west into the 1410	

Indonesian portion of New Guinea remains poorly constrained. In the east, the protolith of the Bena 1411	

Bena metamorphics is partly Late Triassic (221 Ma) in age, and is intruded by Jurassic granite of 1412	

172 Ma in age (Davies, 2012). In the west, the Bird’s Head region experienced granitoid 1413	

emplacement in the Early Jurassic with one sample yielding an age of 197 ± 3 Ma (K-Ar) (Pieters et 1414	

al., 1983), 205 ± 5 Ma in the P’nyang-1 exploration well in western Papua New Guinea (Valenti, 1415	

1993), and the 210 ± 25 Ma Mangole Volcanics on Banggai-Sula (Charlton, 2001). These results 1416	

suggest that the trench along western New Guinea may have undergone rollback by the Late 1417	

Jurassic to explain Early Cretaceous volcanics confined only to eastern New Guinea. Such a 1418	

scenario is also consistent with the sedimentary history that records syn-rift sedimentation in the 1419	
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Early-Middle Jurassic, followed by a post-breakup unconformity and the formation of a 1420	

diachronous passive margin along much of New Guinea (Pigram and Panggabean, 1984), with the 1421	

exception of continued Early Cretaceous arc volcanism in the east.  1422	

Although the Early-Middle Jurassic rift-drift sequence is well preserved on New Guinea, 1423	

few constraints exist to identify which (if any) continental terranes rifted from this margin (Hill and 1424	

Hall, 2003; Pigram and Symonds, 1991). Apart from the East Java and West Sulawesi blocks 1425	

(Zahirovic et al., 2014), parts of the Sepik Terrane may represent a para-allochthon that detached 1426	

from the margin in the Jurassic, as invoked in this study, to open a somewhat-narrow oceanic basin 1427	

and form the Late Jurassic SSZ ophiolites (Permana, 1998; Pubellier et al., 2003) exposed along the 1428	

Central Ophiolite Belt in New Guinea (Fig. 3). Even though the Sepik Terrane is the largest 1429	

accreted block on the New Guinea margin, the composite nature of the Sepik crust – with both 1430	

continental and intra-oceanic arc fragments (Klootwijk et al., 2003) – leads to an enigmatic tectonic 1431	

evolution. The New Guinea margin experienced at least two collisional phases; one in the late 1432	

Eocene (Hall, 2002) to mid Oligocene (Crowhurst et al., 1996; Pigram and Symonds, 1991), and 1433	

another major collision responsible for compressional deformation in the Mobile Belt during the 1434	

late Miocene (Hall, 2002; Hill and Hall, 2003; Hill and Raza, 1999). However, the collisional 1435	

history of the Sepik Terrane remains controversial in terms of whether the terrane first collided with 1436	

one or more intra-oceanic arcs and subsequently welded to New Guinea, or whether the converse is 1437	

true.  1438	

Although the size of the oceanic basin that separated the Sepik Terrane from mainland New 1439	

Guinea remains uncertain, the longevity of the oceanic basin can be inferred from subduction-1440	

related metamorphics that are distributed along the Central (Irian) Ophiolite Belt (Fig. 3), and 1441	

eastward into the April Ultramafics and the Marum Ophiolite. The ~68 Ma high-temperature 1442	

metabasites and ~44 Ma blueschists in the West Papuan Ophiolite (Weyland Overthrust) indicate 1443	

that subduction of the Sepik oceanic basin was underway (Davies, 2012), which is consistent with 1444	

~45 to 40 Ma glaucophane (K-Ar) and 28 to 25 Ma (K-Ar) phengite ages (Baldwin et al., 2012) in 1445	
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the April Ultramafics. The Balantak Ophiolite on the East and Southeast Sulawesi Arm records ages 1446	

of ~96-32 Ma (Monnier et al., 1995), with a paleo-latitudinal constraint of 17 ± 4°S at 80 Ma 1447	

(Mubroto et al., 1994) suggesting that these ophiolites formed somewhere between Sundaland and 1448	

the New Guinea margin. Such a scenario is consistent with north-dipping subduction of the Sepik 1449	

oceanic basin, which may have generated supra-subduction zone ophiolites that were subsequently 1450	

obducted onto Sulawesi. The Maastrichtian (~71 to 66 Ma, stratigraphic correlation and dating 1451	

using foraminifera) Emo volcanics (Worthing and Crawford, 1996) were likely emplaced in a back-1452	

arc setting from north-dipping subduction along the Sepik Terrane, with final docking likely taking 1453	

place by ~30 Ma (Findlay, 2003; Zahirovic et al., 2014), based on the 35 to 31 Ma (Ar-Ar) 1454	

amphibolite age of the Emo metamorphics (Worthing and Crawford, 1996) and the cooling histories 1455	

of exhumed blocks (Crowhurst et al., 1996).  1456	

 Following the docking of the Sepik composite terrane, south-dipping subduction was likely 1457	

established (Figs. 19, 22) to account for the ~18 to 8 Ma Maramuni Arc volcanism (Hill and Hall, 1458	

2003; Page, 1976), followed by post-collisional volcanism to at least ~1 Ma (Holm et al., 2014; van 1459	

Dongen et al., 2010). The approaching Halmahera Arc, attached to the southern portion of the 1460	

Caroline Plate, likely collided with the northern New Guinea margin by ~14 Ma (Figs. 22-23), 1461	

leading to a major compressional phase in the Mobile Belt, that has been inferred from apatite 1462	

fission track geochronology (Hill and Raza, 1999; Kendrick, 2000). Although the New Guinea 1463	

margin is a key component of the Australian, Pacific and Eurasian convergence zone, more work is 1464	

required to resolve competing tectonic scenarios for this margin (van Ufford and Cloos, 2005). 1465	

However, additional insights can be made from interpretations of mantle structure from seismic 1466	

tomography, as well as testing end-member scenarios using coupled plate kinematic and numerical 1467	

mantle convection modelling of the New Guinea margin.  1468	
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 1469	

Fig. 22. The 15 Ma timestep records the transition to compressional tectonics on Sundaland and 1470	

New Guinea. The arrival of the Dangerous Grounds-Reed Bank continental fragment shuts down 1471	

Proto South China Sea subduction along Borneo, and results in ophiolite obduction in Palawan and 1472	

orogenesis on Borneo. In the refined reconstructions, the Halmahera Arc collides with New Guinea 1473	

at ~15 Ma to result in major compression in the New Guinea Mobile Belt. 1474	
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 1475	

Fig. 23. The present-day tectonic configuration of Southeast Asia is the result of long-lived Indo-1476	

Australian, Eurasian and Pacific convergence accommodated by the subduction of Tethyan ocean 1477	

basins and back-arcs. The northward motion of India is significantly slower than in the early 1478	

Eocene, with intra-plate diffuse deformation in the Capricorn (CAP) Plate since ~20 Ma. 1479	

4 Insights from age-coded slabs in seismic tomography   1480	

 1481	

In light of the complex tectonic evolution of Southeast Asia and the Tethyan-Pacific oceanic 1482	

linkages, we interpret high velocity seismic anomalies from the P-wave model of Li et al. (2008) to 1483	



	 	 Page 82 of 129 

obtain insights into the subduction history (Fig. 24). Although assuming constant and vertical slab 1484	

sinking is a simplification, it is arguably a reasonable assumption for the late Cenozoic where large 1485	

lateral slab advection would be limited, as indicated by previous estimates of less than ~1-2 cm/yr 1486	

of mid-mantle lateral flow in the Tethyan realm (Becker and Faccenna, 2011; Zahirovic et al., 1487	

2012). We compare the plate reconstructions with age-coded depth slices of high velocity seismic 1488	

anomalies, applying a sinking rate of 2 cm/yr in the lower mantle, and end-member estimates of 3 1489	

and 8 cm/yr in the upper mantle (see Methods). The proposed lower mantle slab sinking rates for 1490	

the Tethyan realm are larger (~2 cm/yr) than estimated global averages (1.2-1.3 cm/yr in 1491	

Butterworth et al., 2014; van der Meer et al., 2010), and may reflect the suction exerted by deep 1492	

slabs in this slab graveyard area (Conrad and Lithgow‐Bertelloni, 2004). 1493	

The plate reconstructions in our base model (Zahirovic et al., 2014) were calibrated for the 1494	

Philippine Sea Plate and Sundaland using a similar method (assuming sinking rates of 3 and 1495	

1.2 cm/yr in the upper and lower mantle, respectively). However, in the refined reconstructions, we 1496	

do not modify the Sundaland oroclinal bending model, but modify the position of the Philippine Sea 1497	

Plate since ~30 Ma to ensure collision of the Halmahera Arc with New Guinea at ~15 Ma, to 1498	

account for the onset of widespread compression in the New Guinea Mobile Belt (Hill and Hall, 1499	

2003). Consequently, the match between Sundaland subduction zones and age-coded slabs from 1500	

tomography is not surprising. Modifications to fit the Philippine Sea Plate to surface geology since 1501	

~30 Ma, rather than seismic tomography, presents a case study to test whether both geological and 1502	

seismic tomographic constraints can be accommodated simultaneously.  1503	

 1504	
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 1505	

Fig. 24. Fast seismic velocity anomalies from the Li et al. (2008) P-wave seismic tomography 1506	

model compared to our refined plate reconstructions. Ages are attributed to depths assuming that 1507	
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the average vertical sinking rate of slabs is ~2 cm/yr in the lower mantle, and 3 cm/yr (left) and 8 1508	

cm/yr (right) in the upper mantle. Additional polygons in Australian-Antarctic and Lord Howe-1509	

Tasman Sea regions represent areas of deforming continental crust. See Supplementary 1510	

Animations 5 and 6. 1511	
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 1512	
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Fig. 24. (continued)  1513	

 1514	

At ~60 Ma (Fig. 24), the scenario invoking a slower sinking rate in the upper mantle better 1515	

reproduces the Sunda slab, as well as the subduction of the Proto Molucca Plate (PMOL) beneath 1516	

the Philippine Arc and the rollback-induced opening of the Proto South China Sea. The match with 1517	

the Sunda and Philippine slabs is not surprising, as a slower sinking rate was also used to calibrate 1518	

the position of these blocks in our base plate motion model (Zahirovic et al., 2014). Both slab 1519	

sinking scenarios reproduce the Andean-style subduction along southern Eurasia consuming the 1520	

Kohistan-Ladakh and Woyla back-arc basins, as implemented in the reconstructions based on the 1521	

near-equatorial latitudes from paleomagnetic estimates. At ~50 Ma, the slower sinking rate matches 1522	

the oroclinal bending of Sundaland and subduction of the Proto South China Sea, which is again 1523	

expected due to calibration of the reconstructions with tomography. However, the match to 1524	

subduction of the Sepik oceanic basin north of New Guinea is not imposed, and suggests the large 1525	

E-W slab presently beneath Australia is likely sourced from this subduction system (Schellart and 1526	

Spakman, 2015). Interestingly, the gap in the Sunda slab along Sumatra in both sinking rate end-1527	

members, coinciding with the modelled location of the Wharton Ridge, supports the slab window 1528	

scenario proposed by Whittaker et al. (2007).  1529	

The 40 and 30 Ma timesteps in the age-coded seismic tomography depth slices support 1530	

ongoing subduction along northern Borneo (Fig. 24), and waning subduction in the India-Eurasia 1531	

segment of the active margin. The ~20 and 15 Ma reconstructions (Fig. 19 and 21) highlight the 1532	

requirement of south-dipping subduction along New Guinea to account for the Maramuni Volcanics 1533	

(Fig. 24), as well as contemporaneous north-dipping subduction along the Halmahera Arc, which is 1534	

terminated after ~15 Ma following the arc-continent collision on northern New Guinea. The 1535	

collision of Dangerous Grounds-Reed Bank with northern Borneo at ~15 Ma also choked the north 1536	

Borneo subduction zone, and likely resulted in Proto South China Sea slab breakoff. The ~15 Ma 1537	

reconstruction using the faster sinking rate, and corresponding to a 791 km depth slice, shows a 1538	
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discrete slab volume along northern Borneo that we interpret as the Proto South China Sea slab 1539	

(Fig. 24).  1540	

The seismic tomographic interpretation highlights that the refinement of the New Guinea 1541	

margin (namely the Maramuni subduction zone) and the adjustment to the Philippine Sea Plate 1542	

(namely the position of the Halmahera Arc) since ~30 Ma can accommodate both the geological 1543	

and the tomographic constraints. Neither sinking rate scenarios produce consistent matches 1544	

throughout the plate reconstruction timeframe, likely due to the complex time-varying slab sinking 1545	

rates and regional interactions of slabs in a spherical mantle shell. However, the assumption of 1546	

vertical sinking of slabs is likely to be an acceptable estimate of trench locations in the Cenozoic for 1547	

slabs that are still attached to the subducting plate, or slabs that have experienced little stagnation or 1548	

folding in the mantle transition zone. The numerical computations described in the following 1549	

section provide a more consistent approach to tracking slabs in the mantle resulting from the 1550	

complex subduction history in the Tethys, east and Southeast Asia, and New Guinea. 1551	

5 Numerical modelling results 1552	

 1553	

5.1 Large-scale post-Jurassic mantle evolution of the Tethyan tectonic domain  1554	

 1555	

We present the first synthesis of post-Jurassic Tethyan plate reconstructions and 1556	

geodynamics in a 4D (space and time) global context. We ran five cases of coupled plate kinematic 1557	

and geodynamic numerical experiments, mainly to test end-member plate reconstructions, and 1558	

present 3D snapshots of two experiments that compare the Zahirovic et al. (2014) model with 1559	

refinements for the Neo-Tethys, Philippine Sea Plate and New Guinea presented in this study (Fig. 1560	

25). Although the mantle convection models are initiated at 230 Ma during the time of Pangea 1561	

stability, we present only the post ~160 Ma timeframe applicable to the refined plate 1562	

reconstructions. At ~160 Ma, the dominant feature of the mantle is the circum-Pangea subduction 1563	
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girdle, as well as the southern Eurasian active margin consuming Meso-Tethyan oceanic lithosphere 1564	

(Fig. 25a). The tectonic scenario presented invokes the northward continuation of East Gondwana 1565	

subduction along New Guinea and connecting to the East Asian subduction of the Izanagi Plate. By 1566	

~140 Ma the rollback of the Lhasa trench opens the Kohistan-Ladakh back-arc basin, with a slower 1567	

opening and southward position of ~10°N in our base model by 100 Ma (Zahirovic et al., 2014), 1568	

compared with the equatorial position implemented in this study following Burg (2011) and 1569	

Gibbons et al. (2015). 1570	

 1571	

Fig. 25a. Snapshots of mantle structure including sinking slab volumes (blue) and thermochemical 1572	

upwellings (red) from the core-mantle boundary are visualised in GPlates using the mantle 1573	

temperature predictions from the CitcomS numerical experiments of mantle flow depicting Case 4 1574	
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(left) and 5 (right). The snapshots compare the large-scale mantle evolution in the latest Jurassic 1575	

and Early Cretaceous from Tethyan subduction along Lhasa and the Kohistan-Ladakh Arc (KLA), 1576	

as well as recycling of proto-Pacific lithosphere along the East Asian, East Gondwana and 1577	

Philippine Arc subduction zones. Plate boundaries (white), velocities (coloured arrows) and 1578	

reconstructed present-day coastlines (translucent white) are plotted. Subduction zones are yellow 1579	

regions, and slab colouring is a function of depth from light blue (shallow slabs) to darker blue 1580	

(deep slabs). These snapshots highlight the global nature of our numerical experiments, with 1581	

complex interactions of slabs as they sink in the mantle shell. The experiments allow us to track the 1582	

sinking trajectory (vertical and lateral) of the slabs to identify their source from the present-day 1583	

mantle prediction, which are compared to the mantle structure imaged using P- and S-wave seismic 1584	

tomographic techniques. Central co-ordinate is 10°S, 115°E. 1585	

 1586	

As our modelling domain is spherical, and because the flow is constrained to follow surface 1587	

velocities that include net rotation of the lithosphere, lateral mantle flow may influence the 1588	

trajectory of sinking slabs. As subducting slabs sink in the mantle, the core-mantle boundary 1589	

becomes draped with older slabs that sweep the hotter material into the large-scale Pacific and 1590	

African upwellings (Bower et al., 2013; McNamara and Zhong, 2005) (Fig. 25). In addition, mantle 1591	

flow advects slabs laterally, with notable southward (and somewhat westward) translation of the 1592	

Paleo-Tethyan slabs, and eastward advection of the east Asian slabs (Fig. 25). India’s collision with 1593	

the Kohistan-Ladakh Arc ceases intra-oceanic subduction by ~50 Ma in our model, resulting in the 1594	

Andean-style subduction of the Kohistan-Ladakh back-arc basin along southern Lhasa (Fig. 25b). 1595	

The ~47 Ma continent-continent collision temporarily shuts down subduction, causing a slab break-1596	

off event, followed by ongoing subduction of the Greater Indian mantle lithosphere (Capitanio et 1597	

al., 2010). Australia’s northward motion results in the northern margin, including New Guinea, 1598	

overriding the Southeast Asian slab graveyard from ~30 Ma following the docking of Sepik, and 1599	

the initiation of south-dipping Maramuni subduction from ~20 Ma.  1600	
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 1601	

Fig. 25b. Coupled plate reconstructions and mantle flow models in the Eocene and present-day, 1602	

highlighting the draping of subducted slabs along the core-mantle boundary and the self-1603	

organisation of the African and Pacific large-scale upwellings as a result of post-Pangea subduction. 1604	

These models are interrogated regionally using vertical profiles in Figs. 26-29. Centre co-ordinate is 1605	

10°S, 115°E. See Supplementary Animation 7 consistent with right panels.  1606	

 1607	

 The large-scale evolution of slab sinking and lateral advection, as well as the evolution of 1608	

the large-scale upwellings, can be depicted in 3D hemispherical views of the mantle, while regional 1609	

cross-sections of the numerical experiments provide a more detailed approach to interrogating the 1610	
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spatio-temporal geodynamic evolution of key subduction zones from post-Jurassic plate 1611	

reconstructions.  1612	

 1613	

5.2 Regional interpretations of mantle evolution 1614	

 1615	

To capture the detailed evolution of subduction, vertical cross-sections of the mantle are 1616	

presented in a plate frame of reference (i.e., fixed to the overriding plate, Figs. 26-29). Such time-1617	

dependent sections help understand the sinking trajectory of subducted slabs, as well as interpreting 1618	

sinking rates and lateral mantle flow resulting from the post-Jurassic plate reconstructions. For the 1619	

geological reasoning underpinning the reconstructions, please refer to Section 3 and Table 3. 1620	

5.2.1 India-Eurasia convergence 1621	

 1622	

The India-Eurasia segment is best represented by a largely north-south profile at present-day 1623	

that is reconstructed with Lhasa (Fig. 26). At ~160 Ma, the Paleo-Tethyan slab has detached and is 1624	

sinking through mid-mantle depths at ~1.5 cm/yr (Fig. 26a,h), while the Meso-Tethys is being 1625	

actively consumed northward beneath Lhasa in both plate reconstruction scenarios. Both tectonic 1626	

scenarios include southward slab rollback and the establishment of a Kohistan-Ladakh (Tethyan) 1627	

back-arc basin, reaching to ~10°N in the base model (Zahirovic et al., 2014) and the equator at 1628	

~100 Ma in this study (Fig. 26c,j). Using the base reconstructions, the Meso-Tethyan slab only 1629	

penetrates the mantle transition zone at ~100 Ma and begins sinking into the lower mantle by 1630	

~90 Ma (Fig. 26, Supplementary Animation 7). In the refined reconstructions the slab enters the 1631	

mantle transition zone by ~120 Ma, and enters the lower mantle by ~110 Ma. This reflects greater 1632	

convergence rates due to the combined effect of greater slab rollback in the refined reconstructions, 1633	

as well as continued seafloor spreading north of India during this timeframe. In the base 1634	

reconstructions, the seafloor spreading north of India is abandoned by ~120 Ma, leading to lower 1635	

convergence rates across the Kohistan-Ladakh Tethyan trench (Fig. 10). This results in the 1636	



	 	 Page 92 of 129 

subduction of larger volumes of older, and therefore thicker, oceanic lithosphere, while in the 1637	

refined reconstructions subducted volumes along the Kohistan-Ladakh Arc system in the Early to 1638	

mid-Cretaceous are smaller because the oceanic lithosphere associated with the Neo-Tethyan 1639	

seafloor spreading north of India by ~100 Ma is younger and thinner (Fig. 26j). Once the Tethyan 1640	

slab has entered the lower mantle, the sinking rate in the refined reconstruction is only ~1.4 cm/yr 1641	

(between 100 and 89 Ma), while it is ~2.5 cm/yr in the base reconstructions (between 89 and 79 1642	

Ma) likely due to the larger subducted volumes.  1643	

The intersection of the Neo-Tethyan mid-oceanic ridge with the Kohistan-Ladakh 1644	

subduction zone in the mid-Cretaceous would likely lead to slab breakoff and the formation of a 1645	

slab window. However, our model does not capture the complexity of a subduction hiatus that 1646	

would be associated with a slab window along Kohistan-Ladakh in the mid-Cretaceous. Perhaps 1647	

due to the arrival of buoyant oceanic crust at the intra-oceanic subduction system, north-dipping 1648	

subduction becomes established along Lhasa and begins to consume the Kohistan-Ladakh back-arc 1649	

basin, eventually resulting in two Late Cretaceous north-dipping subduction zones in the Neo-1650	

Tethys (see Section 3.2). The mid-ocean ridge from the Kohistan-Ladakh back-arc is subducted in 1651	

the Late Cretaceous in both reconstruction scenarios, with no interruption in subduction assumed in 1652	

the base reconstructions. In the alternative reconstructions we impose a subduction hiatus along 1653	

Lhasa from 80 to 65 Ma, which leads to slab breakoff. This slab window may be linked to adakitic 1654	

volcanism at ~80 Ma (Wen et al., 2008a), followed by a ~75-60 Ma magmatic gap, in the Gangdese 1655	

Batholith (Chung et al., 2005; Ji et al., 2009; Wen et al., 2008b).  1656	

In both reconstruction scenarios, Greater India collides with Kohistan-Ladakh by ~50 Ma, 1657	

inducing Neo-Tethyan slab break-off at ~5-10°N. Since the Kohistan-Ladakh Arc is at equatorial 1658	

latitudes in the refined reconstructions in the mid-Cretaceous, one may expect the collision with 1659	

India to occur by ~60 Ma. As the magmatic chemistry change is much later, at 52 Ma (Bouilhol et 1660	

al., 2013), the model includes some advance of the intra-oceanic subduction system between ~60 1661	

and 52 Ma. In the base reconstructions, the Kohistan-Ladakh Arc is closer to Eurasia at pre-1662	
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collision times, meaning that relatively little trench advance is required. However, in both instances, 1663	

the Tethyan slab is anchored in the lower mantle, leading to India overriding the sinking slabs. 1664	

Andean-style subduction of the Kohistan-Ladakh back-arc along southern Lhasa is temporarily shut 1665	

off by the ~47-40 Ma continent-continent collision, after which subduction of Greater India 1666	

(continental) mantle lithosphere continues to present-day in the refined reconstructions. The Meso- 1667	

and Neo-Tethyan slabs are predicted at present to be approximately at mid-mantle depths (~1000 to 1668	

2000 km), with a latitudinal range of ~0 to 35°N, using the base model plate reconstructions (Fig. 1669	

30, IND-EUR). More generally, the base plate reconstruction in modelled Case 4 reproduces a 1670	

number of discrete slabs at mid-mantle depths, with a large latitudinal range, which is consistent 1671	

with the interpretations of the mantle structure by van der Voo et al. (1999b) (Fig. 5).  1672	

Although the numerical model that uses the refined reconstructions presented in this study 1673	

has the same radial viscosity profile, the Meso- and Neo-Tethyan slabs are predicted to be 1674	

shallower at ~800 to 1500 km depths, as opposed to ~1000 to 2000 km depths predicted using the 1675	

base reconstructions (Fig. 26g,n). This is likely due to the subduction of smaller volumes of 1676	

younger Tethyan oceanic lithosphere north of India in the Cretaceous, resulting in less negative 1677	

buoyancy. In addition, the required trench advance also results in folding of the Tethyan slab at the 1678	

mantle transition zone, leading to generally shallower penetration into the lower mantle. In the post-1679	

collision timeframe, the Tethyan slab sinks at a rate of ~0.65 cm/yr (from 38 to 0 Ma) using the 1680	

base reconstructions, and ~0.25 cm/yr (from 39 to 0 Ma) using the refined reconstructions where 1681	

the slab is almost stagnant at ~1000 km depth (Supplementary Animation 7). The time-varying 1682	

sinking rates in the lower mantle highlight the role active subduction has in adding negatively 1683	

buoyant slab volumes into the mantle, and the role of thermal diffusion of slabs in reducing 1684	

negative buoyancy of subducted lithosphere. A slightly deeper depth range (~1000 to 2000 km) 1685	

provides a better match to the equivalent P- and S-wave tomography slice (Fig. 30, IND-EUR), as is 1686	

obtained with the base plate reconstructions (Gibbons et al., 2015; Zahirovic et al., 2014), with the 1687	

potential that slabs may extend further south of the equator based on the S-wave model.  1688	
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 1689	

Fig. 26. Time-dependent evolution of the India-Eurasia convergence zone, with a representative 1690	

vertical slice reconstructed with Lhasa to capture the evolution of the Kohistan-Ladakh (KL) and 1691	
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Tethyan (T-BA) intra-oceanic subduction zones modelled in Zahirovic et al. (2014) and Gibbons et 1692	

al. (2015) (left), and compared to the subduction histories implied in the revised plate 1693	

reconstructions presented in this study (right). The cross-sections depict the temperature field from 1694	

the numerical mantle flow models, and the globes show the position of the vertical slices through 1695	

time, the plate reconstruction and the predicted mantle temperature field at ~400 km depth. The 1696	

background mantle temperature is ~1413°C, and the small tick marks on the temperature scale 1697	

represent temperature intervals of 250°C. Great circle angular distance along the vertical profile is 1698	

shown on the x-axis. The left y-axis represents depth in kilometres, and on the right represents non-1699	

dimensional Earth radius. The plate reconstructions are plotted in an Orthographic projection with 1700	

centre co-ordinate of 15°S, 115°E. GI – Greater India (continental) mantle lithosphere, MT – Meso-1701	

Tethys slab, NT – Neo-Tethys slab, PT – Paleo-Tethys slab. See Supplementary Animation 8. 1702	

 1703	

5.2.2 Woyla and Sumatra active margin evolution 1704	

 1705	

The Sumatra segment of the Sunda margin accommodates northward subduction of the 1706	

Meso-Tethys in the Late Jurassic, with rollback of the slab opening the Woyla back-arc to near-1707	

equatorial latitudes (Fig. 27), similar to the development of the Kohistan-Ladakh Arc further to the 1708	

west. In the base reconstructions, the rollback imposed is faster and the maximum southward extent 1709	

of subduction is ~0-10°S (Fig. 11). This leads to a smaller volume of subducted slabs folded in the 1710	

mantle transition zone. Although the base reconstruction maintains convergence across the Woyla 1711	

subduction zone, there is significant trench advance between ~100 and 75 Ma, leading to a similar 1712	

smearing effect of slabs in the transition zone. Although trench advance occurs at present-day along 1713	

the Izu-Bonin-Mariana Trench (Becker et al., 2015; Carlson and Mortera-Gutiérrez, 1990; 1714	

Mathews, 2014), the modelled values in our base reconstructions are likely excessive, with a more 1715	

geodynamically reasonable evolution of trench migration in the refined reconstructions.  1716	

 1717	
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Subduction continues along Sumatra to consume the Woyla back-arc basin, and is 1718	

interrupted for ~10 Myr between accretion of the Woyla Arc onto the Sumatran margin between 1719	

~75 and 65 Ma in the base reconstructions. Due to the convergence required between the Tethyan-1720	

Indian Ocean and Eurasia, we impose a shorter ~5 Myr hiatus in subduction between 75 and 70 Ma 1721	

to induce slab breakoff that may have occurred due to Woyla Terrane accretion. Our assumption of 1722	

slab breakoff is simplistic and based on the magmatic gap, and more realistic slab breakoff timings 1723	

of 5-10 Myr after collision (Li et al., 2013; van Hunen and Allen, 2011) will need to be considered 1724	

in future refinements of the model in this region.  1725	

In both tectonic reconstructions, subduction at the Sunda Trench is initiated at ~70-65 Ma, 1726	

and persists to present-day. The slab is predicted to have penetrated the lower mantle by ~50 Ma, 1727	

after which the collision of India with Eurasia, and subsequent rotation of Indochina and much of 1728	

Sundaland from ~30 Ma leads to a kink in the slab in the mantle transition zone (410 to 660 km, 1729	

Fig. 27g,n). Although the kink results from the constant slab dip imposed in the slab assimilation, 1730	

this slab kink is imaged by the P- and S-wave seismic tomography analysed here, and also recently 1731	

discussed in Hall and Spakman (2015). The numerical experiments of mantle flow also reproduce 1732	

the latitudinal range of the subducted slab (Fig. 30, SUM), as well as a gap in the slab at depths 1733	

greater than ~1500 km, consistent with earlier interpretations of the Sunda slab (Widiyantoro and 1734	

van der Hilst, 1996). The mantle convection models predict the Woyla/Meso-Tethys slab at ~1500 1735	

to 2000 km depths at ~10°S along the Sumatran vertical slice (Fig. 30, SUM), and ~20°S along the 1736	

Java-Borneo Sundaland slice (Fig. 30, SUN), which is likely to be equivalent to fast seismic 1737	

velocities in P- and S-wave tomography at ~1500-2000 and ~1200-1600 km depth along the 1738	

Sumatran and Java-Borneo vertical slices, respectively.  1739	
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 1740	

Fig. 27. Reconstructed vertical profiles across northwest Sumatra highlighting the evolution of the 1741	

Woyla intra-oceanic and Sunda subduction zones through time, with both numerical experiments 1742	
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predicting a significant kink in the Sumatran portion of the Sunda slab (SUM) when the slab dip is 1743	

held constant during the clockwise rotation and extrusion of Indochina. MT – Meso-Tethys slab, 1744	

NT – Neo-Tethys slab, PT – Paleo-Tethys slab, W – Woyla slab. See Supplementary Animation 9. 1745	

 1746	

5.2.3 Java and Borneo subduction history 1747	

 1748	

Similar to the Sumatra margin, the Java segment of the Sunda Trench accommodates 1749	

subduction of the Meso-Tethys and the Woyla back-arc basin during the Cretaceous (Fig. 28). 1750	

However, as this segment represents the Sundaland continental promontory, south-dipping 1751	

subduction of the Izanagi Plate is contemporaneous to the Tethyan subduction history. As a result, 1752	

the mid- and lower mantle slabs are likely to be a mixture of Pacific- and Tethyan-derived slabs. 1753	

The accretion of the Woyla Arc temporarily shuts off subduction in this segment in the Late 1754	

Cretaceous at ~70 Ma in the base reconstructions (Fig. 28b,h), followed by the accretion of the 1755	

Semitau continental fragment and Proto South China Sea Arc onto northern Borneo at ~45 Ma in 1756	

both reconstruction scenarios (Fig. 28c,i). The late Eocene is dominated by renewed north-dipping 1757	

Sunda subduction and south-dipping subduction of the Proto South China Sea. Although the Sunda 1758	

subduction continues to the present-day, the Proto South China Sea subduction is interrupted at 1759	

~15 Ma with the docking of the Dangerous Grounds-Reed Bank continental fragment along 1760	

northern Borneo, which leads to the abandonment of the South China Sea seafloor spreading. The 1761	

refined reconstructions imply a longer-lived Meso-Tethyan Plate that is completely consumed by 1762	

~45 Ma, leading to much younger oceanic crust and thinner oceanic lithosphere subducted at the 1763	

Sunda Trench than in the base reconstructions. This leads to the subduction of smaller slab volumes 1764	

between ~60 and 30 Ma for the refined reconstructions that predict a smaller and shallower slab that 1765	

penetrates to ~1200 km depth at present. In contrast, the base reconstructions lead to a larger Sunda 1766	

slab at depths of ~1500 km (Fig. 30, SUN), which is consistent with the interpretations of P- and S-1767	

wave seismic tomography. The kink in the slab observed in the Sumatra segment (Fig. 30, SUM) is 1768	
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much less pronounced in the Java region (Fig. 30, SUN), especially when compared to the results 1769	

using our base plate reconstruction. A gap in the slab is also reproduced for depths greater than 1770	

~1500 km, with older Tethyan and Izanagi slab fragments reproduced near the core-mantle 1771	

boundary when comparing to the S-wave seismic tomography (Fig. 30, SUN). The Proto South 1772	

China Sea slab is predicted at ~600-1000 km depths, while P- and S-wave tomographic images 1773	

indicate a slab stagnating at the base of the 410-660 km mantle transition zone.  1774	

 1775	
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 1776	

Fig. 28. Reconstructed vertical slice through eastern Sundaland, capturing the subduction of the 1777	

Meso- and Neo-Tethyan, as well Indian Ocean, basins. The Sunda slab is predicted to reach a 1778	
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maximum depth of ~1500 km along southern Sundaland in the base reconstructions, and ~1200 km 1779	

in the refined reconstructions, while a small Proto South China Sea slab is predicted just beneath the 1780	

660 km upper-lower mantle transition. See Supplementary Animation 10. 1781	

 1782	

5.2.4 New Guinea margin evolution  1783	

	1784	

Further east along the New Guinea Tethyan segment, the Early Cretaceous Sepik oceanic 1785	

basin is consumed at a north-dipping subduction zone from ~40 Ma (Fig. 29b) in the base model 1786	

reconstructions, while in our refined model subduction starts earlier at ~71 Ma (Fig. 29g) to account 1787	

for the ~71 to 66 Ma Emo volcanics (Worthing and Crawford, 1996) that likely formed in the back-1788	

arc of this subduction system. North-dipping subduction along the Sepik Terrane is interrupted at 1789	

~30 Ma in both plate reconstruction scenarios, based on the timing of docking of the composite 1790	

terrane at the New Guinea margin. We impose slab breakoff during the collision, leading to a slab 1791	

that is entrained in the upper part of the lower mantle (660-1000 km depths) for both reconstruction 1792	

scenarios. In the base model, north-dipping subduction is then accommodated along the Halmahera 1793	

Arc, which forms the southern boundary of the Caroline Plate, and is accreted to the New Guinea 1794	

margin diachronously from west to east by ~5 Ma. In the refined reconstructions, a south-dipping 1795	

subduction zone is implemented (Fig. 29j) to account for the ~18 to 8 Ma Maramuni Arc volcanics 1796	

(Hill and Hall, 2003; Page, 1976), as well as simultaneous north-dipping subduction along the 1797	

Halmahera Arc. Both subduction zones are abandoned progressively from ~15 Ma, resulting from 1798	

the collision of the Halmahera Arc with the New Guinea margin. 1799	

The numerical experiments of mantle flow assimilating the base plate motion model predict 1800	

two slabs at depths between ~500 and 1000 km (Fig. 30, PNG), with the southernmost slab at 1801	

~20°S belonging to the Sepik oceanic basin, and the northern slab at 0 to 5°S resulting from the 1802	

subduction of the Solomon Sea along the Halmahera Arc. With the addition of the Maramuni 1803	

subduction zone in the refined plate reconstructions (~20 to 10 Ma, Fig. 29), an additional slab is 1804	
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predicted at slightly deeper depths of ~900 to 1500 km at ~15°S. The Sepik oceanic basin slab is 1805	

predicted to be further south in the refined plate reconstruction scenario, at depths of ~700 to 1806	

1000 km and latitude of ~30°S (Fig. 30, PNG). This difference in latitude is largely due to the 1807	

earlier onset of Sepik oceanic gateway subduction at ~71 Ma in the refined reconstructions, leading 1808	

to the slab entering the lower mantle at more southerly latitudes, as opposed to the younger age of 1809	

~40 Ma subduction onset using the base reconstructions (Fig. 29b). The refined plate 1810	

reconstructions result in a much better fit with the mantle structure than the base model, with the 1811	

~30°S position of the Sepik oceanic gateway slab corresponding to the fast seismic anomaly 1812	

interpreted beneath Lake Eyre in eastern Australia, recently interpreted in Schellart and Spakman 1813	

(2015). However, a slab at ~1300 to 1800 km depths at present-day (PNG, Fig. 30), and latitudes 1814	

between ~10°S and the equator, is not accounted for in either model of mantle flow – suggesting the 1815	

Cretaceous plate reconstruction needs additional refinement.  1816	
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 1817	

Fig. 29. Reconstructed representative profile through Australia and New Guinea, highlighting that 1818	

the revised plate reconstructions account for additional slab volumes above mid-mantle depths. The 1819	

southernmost slab is related to the subduction of the Sepik oceanic gateway (SEP) between ~71 and 1820	
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30 Ma, while Maramuni subduction (MS) has taken place since ~20 Ma, coeval with north-dipping 1821	

subduction along the Halmahera Arc to produce the Caroline/Proto Molucca slab (CS). See 1822	

Supplementary Animation 11. 1823	

 1824	

 1825	



	 	 Page 105 of 129 

 1826	
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Fig. 30. Present-day mantle structure along vertical slices through India (IND-EUR), northwest 1827	

Sumatra (SUM), eastern Sundaland (SUN) and Australia-New Guinea (PNG) using P- and S-wave 1828	

seismic tomography models, superimposed with the predicted slabs (coloured lines) from five 1829	

computations of mantle flow. Case 1 to 4 uses the Zahirovic et al. (2014) plate reconstruction, but 1830	

varies the radial viscosity profile of the mantle. Case 5 uses the plate reconstruction presented in 1831	

this study, and the preferred viscosity structure used in Case 4. Slabs from the numerical models are 1832	

defined as regions 10% colder than the background mantle temperature. The P-wave seismic 1833	

tomographic models used are the MIT-P (Li et al., 2008), GAP_P4 (Obayashi et al., 2013) and 1834	

LLNL-G3Dv3 (Simmons et al., 2015). Both P- and S-wave models from Simmons et al. (2010) are 1835	

used, as well as the S-wave model from Grand (2002). The x-axis of the vertical section represents 1836	

latitude. Table 4 lists the differences between Cases 1 to 5. The start and end coordinates for each 1837	

profile are included on each cross-section, and plotted geographically in Figs. 26-29 and 1838	

Supplementary Fig. 2.  1839	

6 Discussion 1840	

 1841	

We have demonstrated the strength of using coupled plate tectonic reconstructions and 1842	

numerical models of mantle flow to test competing kinematic scenarios in the absence of preserved 1843	

seafloor spreading histories. In addition, the global nature of the models removes the edge effects 1844	

associated with Cartesian box models of mantle convection, and allows us to track the origin and 1845	

trajectory of sinking slabs, and therefore their sinking rates, which can then be compared to the 1846	

mantle structure interpreted from P- and S-wave seismic tomography (Fig. 30).  1847	

 1848	

6.1 Intra-oceanic subduction in the Meso- and Neo-Tethys 1849	

 1850	
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 In the India-Eurasia segment of the Tethyan margin, a number of important geodynamic 1851	

implications arise from the Neo-Tethyan seafloor spreading history and the evolution of intra-1852	

oceanic subduction zones along southern Eurasia. Although early plate reconstructions of the 1853	

Tethys incorporated intra-oceanic subduction and an initial collision between Greater India and the 1854	

Kohistan-Ladakh Arc at or before ~53 Ma (Patriat and Achache, 1984), this two-stage India-Eurasia 1855	

collision scenario was abandoned based on subsequent work that argued that Kohistan and Ladakh 1856	

first collided with Eurasia in the Late Cretaceous along the Shyok Suture Zone (Clift et al., 2002; 1857	

Debon et al., 1987; Treloar et al., 1996). However, recent work requires near-equatorial position of 1858	

the Kohistan-Ladakh Arc in the Late Cretaceous (Burg, 2011; Chatterjee et al., 2013; Zaman et al., 1859	

2013; Zaman and Torii, 1999), and an initial arc-continent collision between Greater India and the 1860	

Neo-Tethyan intra-oceanic arc sometime between ~60 and 50 Ma (Aitchison et al., 2007; Bouilhol 1861	

et al., 2013; Khan et al., 2009). Our results favour a ~60 Ma arc-continent collision if the near-1862	

equatorial paleo-latitudes of Kohistan-Ladakh are robust, as a younger collision requires more 1863	

significant advance of the Kohistan-Ladakh intra-oceanic trench before Greater India enters the 1864	

subduction zone, terminating the subduction of oceanic lithosphere. The Kohistan-Ladakh back-arc 1865	

basin was then subducted along southern Lhasa at an Andean-style margin, with final Shyok 1866	

suturing occurring by 40 Ma (Bouilhol et al., 2013; Gibbons et al., 2015; Zahirovic et al., 2014). 1867	

 The geodynamic implications of a well-established intra-oceanic system in the Neo-Tethys, 1868	

suggest a scenario that is much like the present-day Izu-Bonin-Mariana Arc in the west Pacific. The 1869	

paleo-latitudinal position of the intra-oceanic arc largely determines the timing of Neo-Tethyan 1870	

ridge subduction, as well as the plate driving forces acting on the Indian Plate. In our 1871	

reconstruction, the Neo-Tethyan mid-oceanic ridge is consumed at the Kohistan-Ladakh subduction 1872	

zone from ~105 Ma (Figs. 11 and 26c,j). Subduction of the southern Neo-Tethyan flank of the 1873	

spreading system from ~100 Ma would have been associated with progressively strengthening 1874	

northward slab pull, to which we attribute the change towards largely northward convergence with 1875	
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Eurasia that is best represented by the ~110-90 Ma fracture zone bends in the Wharton Basin 1876	

(Gibbons et al., 2015; Matthews et al., 2011; Matthews et al., 2012).  1877	

 The role of two coeval north-dipping subduction zones in the Neo-Tethys (Fig. 26) were 1878	

suggested to have contributed to the ~80 Ma acceleration of India in Gibbons et al. (2015), which 1879	

has recently been proposed as a mechanism for India’s rapid northward advance using numerical 1880	

techniques quantifying plate driving forces in Jagoutz et al. (2015). Although the arrival of the 1881	

Reunion Plume head south of India at ~65 Ma possibly played a role in India’s acceleration (Cande 1882	

and Stegman, 2011; van Hinsbergen et al., 2011), the effects were likely short-lived (~5-10 Myr), 1883	

and post-date by 15 Myr the initial acceleration of India from ~80 Ma. India’s northward 1884	

acceleration resulting from greater slab pull (and slab suction) may have induced stronger large-1885	

scale mantle return flow, possibly triggering the ascent of the Reunion Plume from the margin of 1886	

the lower mantle African super-swell (Fig. 25). The recent data compilations of the surface geology, 1887	

as well as new plate reconstructions and numerical approaches, suggest that a two-stage collision 1888	

between India and Eurasia is more likely than a single continent-continent collision, and that the 1889	

Tethyan tectonic evolution was punctuated by generations of back-arc basins and intra-oceanic 1890	

subduction systems more similar to the present-day West Pacific, than a simpler long-lived Andean-1891	

style margin.  1892	

 1893	

6.2 Southeast Asia and New Guinea  1894	

 1895	

Southeast Asia, and in particular Sundaland and New Guinea, played an important role in the 1896	

convergence history of Australia, Eurasia and the Pacific. In this study we have shown that our 1897	

plate reconstructions are compatible, at least to the first-order, with fast seismic anomalies imaged 1898	

by seismic tomography. In particular, the numerical methods suggest that the extrusion and 1899	

clockwise rotation of Indochina from ~30 Ma is likely responsible for the Sunda slab kink beneath 1900	

west Sumatra. The models reproduce the depth of the Sunda slab beneath Sumatra and Borneo, 1901	
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which supports subduction initiation from ~65 Ma, rather than from ~45 Ma (Hall, 2012). If the 1902	

1600 km deep Sunda slab represents subduction since 45 Ma (Hall and Spakman, 2015), then an 1903	

average whole-mantle sinking rate of 3.5 cm/yr is required, while our post-65 Ma subduction 1904	

history would require average sinking rates of 2.5 cm/yr, which is more consistent with previous 1905	

studies of sinking rates in numerical models (Butterworth et al., 2014; Steinberger et al., 2012). The 1906	

constraints from the subduction-related volcanic history of Sumatra (McCourt et al., 1996) result in 1907	

a predicted slab that is consistent with P- and S-wave tomography. This highlights that 1908	

segmentation of the Neo-Tethyan and Indian Ocean plates across pre-existing structural fabric 1909	

(Hall, 2012) is not required to account for the subduction history recorded on the Sumatra-Java 1910	

Sundaland margin. Although Hall and Spakman (2015) invoke a leaky transform in the Neo-Tethys 1911	

at ~90°E (Fig. 4c) to explain a possible ~90-45 Ma subduction hiatus, the mantle discontinuity 1912	

linked to this interpretation is much further east at 110°E. There is a clearer discontinuity in slab 1913	

structure east of ~120°E (Fig. 24), which represents the complex subduction history of New Guinea 1914	

that is possibly linked to the evolution of the Philippine Sea Plate and the Pacific, rather than 1915	

Sundaland.  1916	

 The relatively small slabs predicted at ~600 to 1000 km depth beneath northern Borneo in 1917	

our models roughly correspond to the interpreted Proto South China Sea slab (Zahirovic et al., 1918	

2014) imaged in seismic tomography at shallower depths in the mantle transition zone (~410 to 1919	

660 km). This suggests that Proto South China Sea subduction along northern Borneo may have 1920	

started later than 45 Ma, which would be consistent with a shallower slab, and perhaps linked to a 1921	

~32 Ma onset in seafloor spreading of the South China Sea (Briais et al., 1993). However, a major 1922	

phase of volcanism along northern Borneo from ~50 Ma (Soeria-Atmadja et al., 1999) might 1923	

instead indicate earlier subduction initiation. In this case, stagnation of the Proto South China Sea 1924	

slab in the mantle transition zone could play an important role in the depth mismatch between our 1925	

numerical experiments and the seismic tomographic constraints. Recent backward-advection 1926	

modelling by Yang et al. (2016) suggests that the large volume of subducted slab beneath 1927	
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Sundaland stagnated in the mantle transition zone before ~30 Ma, and entered the lower mantle as a 1928	

slab avalanche in the Miocene from ~20 Ma. This work highlights the time-varying slab sinking 1929	

rates in the region, but more importantly, demonstrates that a slab avalanche resulted in dynamic 1930	

subsidence of Sundaland and flooding (Yang et al., 2016) that was asynchronous with global 1931	

eustasy (Haq et al., 1987). In addition, the slab avalanche was likely responsible for Miocene basin 1932	

inversions (Doust and Sumner, 2007) by propagating stresses acting on the lithosphere. Since Proto 1933	

South China Sea subduction ceased at ~15 Ma, recorded by cessation of seafloor spreading in the 1934	

South China Sea (Briais et al., 1993), it is therefore likely that the Proto South China Sea slab is in 1935	

the upper mantle or transition zone when considering the role of slab stagnation in this region. This 1936	

interpretation is in contrast with that of Hall and Spakman (2015) who argued for a lower mantle 1937	

(~1200 km deep) position of the Proto South China Sea slab.  1938	

 Further east on New Guinea, the complexity of the surface geology has led to competing 1939	

plate tectonic reconstruction scenarios (van Ufford and Cloos, 2005), some of which are discussed 1940	

in this study. Our plate reconstructions and numerical experiments of mantle flow require Sepik 1941	

oceanic gateway subduction in the Late Cretaceous, likely from ~70 Ma, which accounts for the 1942	

present-day slab at mid-mantle depths at ~30°S beneath Lake Eyre in northern South Australia, 1943	

consistent with recent interpretations (Schellart and Spakman, 2015). However, the slab our mantle 1944	

flow model predicts is smaller, which raises the possibility that the Sepik oceanic basin was larger 1945	

than modelled in our plate reconstructions. The refinement to the plate reconstructions and 1946	

inclusion of south-dipping Maramuni Arc subduction along New Guinea from ~20 to 6 Ma, with 1947	

coeval north-dipping subduction along the Halmahera Arc, improves the fit between predicted slab 1948	

distributions and the mantle structure inferred from seismic tomography. We interpret the presently-1949	

inactive Trobriand Trough as the Maramuni Arc subduction zone (active ~18 to 8 Ma). The 1950	

Maramuni subduction may have caused the dynamic subsidence and progressive flooding inferred 1951	

for the northern Australian shelf since the Oligocene (DiCaprio et al., 2009; DiCaprio et al., 2011; 1952	

Sandiford, 2007; Spasojevic and Gurnis, 2012). Although our results reproduce the Sepik and 1953	
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Maramuni slabs, more work is required to account for a consistently-imaged near-equatorial slab at 1954	

~1500 km depths that is not reproduced by either of the plate reconstruction scenarios presented in 1955	

this study. Further work using numerical techniques is required to improve the understanding of the 1956	

complex tectonic linkage between Southeast Asia and the Pacific through New Guinea. 1957	

 1958	

6.3 Relevance to global plate reconstructions and geodynamics  1959	

 1960	

Our coupled plate kinematic and numerical geodynamic approach has wider implications for 1961	

understanding the long-term evolution of the plate-mantle system. One important outcome is that 1962	

numerical models testing alternative plate reconstruction scenarios that are compared to mantle 1963	

structure from seismic tomography should consider the regional and global plate tectonic evolution. 1964	

The evolution of Neo-Tethyan intra-oceanic subduction along the Kohistan-Ladakh and Woyla arc 1965	

systems also has wider geodynamic implications. Although we implemented subduction initiation at 1966	

the passive margin of the back-arc systems, a more complicated geodynamic mechanism may be 1967	

required, such as the inversion of a mid-oceanic ridge to become a subduction zone in order to 1968	

accommodate convergence and explain ophiolite obduction (Hébert et al., 2012; Shemenda, 1993). 1969	

Due to the paucity of data constraining the nature and location of subduction initiation of the Woyla 1970	

back-arc basin, a south-dipping subduction zone as proposed by Morley (2012a) will also require 1971	

testing in future work. However, India’s Late Cretaceous northward acceleration from two coeval 1972	

and coupled north-dipping subduction zones (Jagoutz et al., 2015) may also require two north-1973	

dipping subduction zones in the Woyla segment of the Neo-Tethyan active margin, which 1974	

highlights the prevalence of intra-oceanic subduction in the Neo-Tethys.  1975	

7 Conclusions  1976	

 1977	
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This study shows the power of considering the coupled plate-mantle system to study the 1978	

geodynamics of the Tethyan tectonic domain that is dominated by long-term Eurasian, Indo-1979	

Australian and Pacific convergence following Pangea breakup. The reconstructions, used as 1980	

boundary conditions in mantle flow simulations, consider intra-oceanic subduction along the entire 1981	

south Eurasian active margin from ~160 Ma in the Neo-Tethys. We suggest that the Neo-Tethyan 1982	

ridge was likely consumed along the Kohistan-Ladakh intra-oceanic arc from ~105 Ma, followed 1983	

by northward subduction of the Indian Plate that significantly modified India’s plate motion 1984	

direction. For Sundaland, a tectonic scenario with Woyla Arc accretion at ~75-70 Ma, followed by 1985	

a ~10 Myr subduction hiatus, and renewed subduction along the south Sundaland margin by 1986	

~60 Ma places the Sunda slab at the same depth as in P- and S-wave seismic tomography. In 1987	

addition, our results suggest that a slab beneath northern Borneo, which is likely stagnant in the 1988	

mantle transition zone, could be a remnant of the Proto South China Sea. Further east along New 1989	

Guinea, the plate reconstructions coupled to geodynamic experiments are consistent with north-1990	

dipping subduction along the Halmahera Arc coeval with the ~20 Ma onset of south-dipping 1991	

Maramuni subduction along New Guinea. The Late Cretaceous (~71 Ma) onset of Sepik oceanic 1992	

basin subduction, followed by the docking of the Sepik composite terrane to southern New Guinea 1993	

by ~30 Ma, produces a mid-mantle slab imaged in tomography beneath Lake Eyre in Australia, as 1994	

discussed in Schellart and Spakman (2015), due to the combination of southward mantle flow and 1995	

Australia’s northward advance towards the Southeast Asian slab burial grounds. 1996	

We present testable and reproducible plate reconstructions with regional refinements and 1997	

improvements to the understanding of post-Jurassic eastern Tethyan geodynamics. The 1998	

reconstructions may form the basis of future work to better understand the tectonics of the Tethyan 1999	

domain, and could also be used to study oceanic circulation, long-term climate change and 2000	

biogeographic dispersal pathways. In addition, our work highlights the need for testing competing 2001	

plate reconstruction scenarios using numerical modelling approaches in a global and geodynamic 2002	

framework.  2003	
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