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Abstract

An integrated interpretation of the late Paleozoic structural and geochronological record
of the Iberian Massif is presented and discussed under the perspective of a Gondwana-
Laurussia collision giving way to the Variscan orogen. Compressional and extensional
structures developed during the building of the Variscan orogenic crust of Iberia are
linked together into major tectonic events operating at lithosphere scale. A review of the
tectonometamorphic and magmatic evolution of the Iberian Massif reveals backs and
forths in the overall convergence between Gondwana and Laurussia during the
amalgamation of Pangea in late Paleozoic times. Stages dominated by lithosphere
compression are characterized by subduction, both oceanic and continental,
development of magmatic arcs, (over- and under-) thrusting of continental lithosphere,
and folding. Variscan convergence resulted in the eventual transference of a large
allochthonous set of peri-Gondwanan terranes, the Iberian Allochthon, onto the
Gondwana mainland. The Iberian Allochthon bears the imprint of previous interaction
between Gondwana and Laurussia, including their juxtaposition after the closure of the
Rheic Ocean in Lower Devonian times. Stages governed by lithosphere extension are
featured by the opening of two short-lived oceanic basins that dissected previous
Variscan orogenic crust, first in the Lower-Middle Devonian, following the closure of
the Rheic Ocean, and then in the early Carboniferous, following the emplacement of the
peri-Gondwanan allochthon. An additional, major intra-orogenic extensional event in
the early-middle Carboniferous dismembered the Iberian Allochthon into individual
thrust stacks separated by extensional faults and domes. Lateral tectonics played an
important role through the Variscan orogenesis, especially during the creation of new
tectonic blocks separated by intracontinental strike-slip shear zones in the late stages of

continental convergence.
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1. Introduction

The Variscan orogen and its continuation into the Appalachian—Alleghanian
orogen have been the object of continuous rethinking and redefinition during the last
decades (Burg and Matte, 1978; Hatcher, 1978, 2002; Matte, 1986; Castro, 1987a;
Martinez Catalan et al., 1997; Franke, 2000; Ribeiro et al., 2007; Faure et al., 2008;
Ballevre et al., 2009; Simancas et al., 2009; Kroner and Romer, 2013). These orogens
resulted from the late Paleozoic collision of Gondwana and Laurussia, and thus

represent a broad, axial suture zone right in the heart of Pangea (Bambach et al., 1980).

The Iberian Massif contains one of the most complete sections across the
Variscan orogen (Fig. 1), including several high-pressure metamorphic belts (Gil
Ibarguchi and Ortega Gironés, 1985; Mata and Munha, 1986; Abalos et al., 1991b; De
Jong et al., 1991; Fonseca et al., 1993; Martinez Cataldn et al., 1996; Rubio Pascual et
al., 2013b) and tectonic units with ophiolitic assemblages that separate tectonic slices of
continental crust (Arenas et al., 1986, 2007b; Crespo-Blanc and Orozco, 1988; Fonseca
and Ribeiro, 1993; Diaz Garcia et al., 1999; Pedro et al., 2005; Pin et al., 2006; Sanchez
Martinez et al., 2009, 2012; Merinero et al., 2013, 2014). In the crystalline basement of
central and southern Europe, such combination has been classically considered as
indicative of multiple oceanic suture zones of Variscan age (Franke, 2000, 2006, 2014;
Tait et al., 2000; Matte, 2001; Von Raumer et al., 2003; Martinez Catalan et al., 2007,

Simancas et al., 2009).

Until recent times, cross-sections made to characterize the structure of the whole

orogen were strongly influenced by the recognition of strike-slip systems separating
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tectonostratigraphic domains with opposite structural vergence (Burg et al., 1981;
Matte, 1986, 2001; Simancas et al., 2013). Taking that, together with the varied
geographic location of ophiolitic units, geodynamic models have put forward the
hypothesis of a collage of individualized continental micro-terranes variably dispersed
between Gondwana and Laurussia prior to the collision of the two latter (e.g.,
Winchester et al., 2002). However, new geochronological data show that the ophiolitic
ensembles consist of different age rocks which in some cases indicate opening of
ephemeral oceanic basins as Variscan orogenic crust was built (Azor et al., 2008;
Arenas et al., 2014b), thus casting doubt on the multi-terrane picture as a general pre-
orogenic feature. To this figure, most of the strike-slip shear zones that have been
interpreted as separating supposedly different terranes rather correspond to late
structures in the evolution of the Variscan orogen (Martinez Catalan, 2011; Gutiérrez-
Alonso et al., 2015). The main strike-slip systems postdate a well-established phase
dominated by tangential tectonics that includes development of continental subduction
systems, obduction of suture zones, and emplacement of large thrust nappes (Iglesias
Ponce de Leon and Choukroune, 1980; Gates et al., 1986; Martinez Catalan, 1990;

Hatcher, 2002).

In the Iberian Massif, the most influential strike-slip system in defining the
structure of the Variscan orogen has been the Coimbra-Cérdoba shear zone (Fig. 1)
(Burg et al., 1981; Ribeiro et al., 2007). The stretching lineation associated with this
sinistral shear zone is subhorizontal (Pereira et al., 2008a, 2010a, 2010b), so movements
along this structure cannot explain alone the juxtaposition of eclogites, high-P
granulites, and blueschists to low-grade and low-pressure rocks unless tangential

tectonics or vertical extrusion existed prior to or alternating with lateral movements.
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Yet, the vergence of major orogenic structures seems to change at both sides of the
Coimbra-Cordoba shear zone, being to the E and NE in the block located north (Pérez-
Estaun et al., 1991; Azor et al.,, 1994a) and to the SW in the block located south
(Simancas et al., 2001). However, a careful revision of the whole tectonic evolution of
each block prevents us from accepting such consensual assumption. For instance, top-
to-the-E and -NE kinematics associated with tangential deformation has been also
described in major structures of the block located south of the Coimbra-Cérdoba shear
zone (Aragjo et al., 2005; Pereira et al., 2007; Rosas et al., 2008; Borrego, 2009;
Ribeiro et al., 2010; Ponce et al., 2012), plus the age of structures showing opposite
vergence across the Iberian Massif is different in most of the cases (see following

sections).

For many years the tectonic evolution of the Iberian Massif has been presented
and evaluated in a similar way to a double-blind procedure. Advances coming from its
northwestern section were little considered in its southwestern part and the other way
around. In the meantime, the amount of structural and geochronological data in both
regions have increased noticeably, to a point that a structural correlation between these
two sections of the Variscan orogen would allow a more precise integration of

geological processes previously described elsewhere in the Iberian Massif.

Here we follow on to the discovery that the Iberian Massif contains
allochthonous and autochthonous tectonic units that share fundamental features of their
tectonostratigraphy and can be structurally correlated across the two blocks separated by
the Coimbra-Coérdoba shear zone, i.e. the pile of allochthonous units recognized in NW

Iberia can be correlated with that of SW Iberia (Fig. 2; Diez Fernandez and Arenas,
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2015). Within this framework, this article presents an integrated model showing the
Variscan evolution of the Iberian Massif by piecing together the structural history and
chronology of major individual events registered across different sections of its

orogenic crust.

2. Synthetic cross-section and tectonostratigraphy of the Iberian Massif

The Iberian Massif combines folds and thrust faults formed during Variscan
compression with open structural domes and basins, granitization and normal faults that
are a product of subsequent gravitational collapse and intra-orogenic extension
(Simancas et al., 2001; Martinez Cataldn et al., 2007; Pereira et al., 2009). Figure 3
shows a simplified, composite cross-section of the Iberian Massif highlighting eight
major tectonostratigraphic elements of the Variscan orogen (Diez Fernandez and
Arenas, 2015), namely: (1) Cantabrian Zone foreland, (2) Iberian Autochthon, (3)
Iberian Parautochthon, (4) Basal Allochthonous Units, (5) Allochthonous Ophiolitic
Units, (6) Upper Allochthonous Units, (7) Beja-Acebuches Ophiolite, and (8) South
Portuguese Zone. Gathering of 4, 5, and 6 will be also referred to as Iberian Allochthon

(or simply Allochthon).

A simple restoration of the cross-section shown in Figure 3 (Fig. 4a) reveals two
major suture zones featured with ophiolitic units with different protolith ages. The
NNE-dipping suture represented by the Beja-Acebuches Ophiolite (Bard and Moine,
1979; Munha et al., 1986; Quesada et al., 1994) cuts the suture marked by the
Allochthonous Ophiolitic Units (Arenas et al., 1986) and divides the Iberian Massif in
two major blocks. The northern block comprises the Cantabrian Zone, and the Iberian

Autochthon, Parautochthon and Allochthon, all of which have Gondwanan affinity
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(Fernandez-Suarez et al., 2003; Robardet, 2003; Martinez Catalan et al., 2004; Diez
Fernandez et al., 2010, 2012b; Pastor-Galan et al., 2013; Albert et al., 2015a; Pereira,
2015). In the southern block, the South Portuguese Zone is considered a composite
terrane located along the southern flank of Laurussia (Avalonia-Meguma) by the Middle
Devonian (Lefort et al., 1988; Matte, 1991; Quesada et al., 1994; Simancas et al., 2005;
Braid et al., 2011), but close to or juxtaposed with Gondwana since (at least) the Upper

Devonian (Pereira et al., 2006b).

The Iberian Massif consists of sedimentary, plutonic and metamorphic rocks
whose grade ranges from very low to catazonal. The Gondwanan series consist of
Precambrian and Paleozoic marine sequences alternating with volcanic and plutonic
rocks of variable age and abundance. These series are deformed into a thin-skinned fold
and thrust belt with easterly propagation in the Cantabrian Zone (Pérez-Estatn et al.,
1988), and into a crystalline thrust sheet characterized by large recumbent folds (e.g.,
Mondofiedo Nappe). This tectonic stacking was followed by the development of
extensional faults and doming (Lugo dome) in the more external zones of the
Gondwanan Variscan hinterland (West Asturian-Leonese Zone; Martinez Catalan et al.,
2003). Towards more internal zones of the Variscan orogen, deformation affecting the
Iberian Autochthon produces upright, overturned, and recumbent folds (Diez Balda,
1986; Macaya et al., 1991; Diaz Azpiroz et al., 2003; Dias et al., 2010; Diez Fernandez
et al., 2013b), which are underlain by a complex system of granite- and migmatite-cored
dome structures (Escuder Viruete et al., 1994; Diez Balda et al., 1995; Gonzalez del
Tanago, 1995; Pereira et al., 2009; Diaz-Alvarado et al., 2012; Diez Fernandez et al.,

2012c; Arango et al., 2013; Rubio Pascual et al., 2013a).
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A significant part of the Iberian Autochthon occurs under a huge thrust stack
(Ribeiro et al., 1964; Ries and Shackleton, 1971). The lowermost set of thrust nappes is
the Iberian Parautochthon (Farias et al., 1987; Ribeiro et al., 1990), which is restricted
to the sections of the Variscan orogen that were closer to the Gondwana mainland and
contains alternating volcanic and sedimentary rocks with remarkable lateral variability
at regional scale (Dias da Silva et al., 2014). The lower contact of the overlying Basal
Allochthonous Units traces the base of a large allochthonous ensemble, the Iberian
Allochthon, transported onto the Iberian Autochthon and Parautochthon. Remnants of
the Iberian Allochthon are found as klippen in the complexes of Cabo Ortegal, Ordenes,
Malpica-Tui, Braganca and Morais in NW Iberia (Martinez Catalan et al., 2007),
whereas in the Ossa-Morena Complex of SW Iberia, the base of the allochthonous
ensemble is defined by high-P metamorphic “belts” (with equivalent protolith and
metamorphic ages and lithological composition) that crop out at similar structural
position across the Iberian Variscides (Diez Ferndndez and Arenas, 2015, 2016). The
Basal and Upper Allochthonous Units are separated by a set of dismembered

Allochthonous Ophiolitic Units.

The Basal and Upper Allochthonous Units comprise arc-related Precambrian and
Cambrian sedimentary rock sequences intruded by or alternating with arc-related and
later alkaline to peralkaline Cambrian and Ordovician igneous rocks. Most of their
series, therefore, bear the imprint of Ediacaran and Early Paleozoic subduction and
subsequent Cambro-Ordovician rifting (Arenas et al., 1986, 2009; Ribeiro and Floor,
1987, Linan and Quesada, 1990; Quesada, 1990; Sanchez-Garcia et al., 2003; Pereira et
al., 2006a; Diez Ferndndez et al., 2010, 2015; Andonaegui et al., 2012). These

sequences are succeeded by passive margin strata that covers up to the lowermost
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Devonian in the Upper Allochthonous Units of the Ossa-Morena Complex (Robardet

and Gutiérrez Marco, 2004), but it is lacking in the rest of the allochthonous complexes.

The Allochthonous Ophiolitic Units are made of mafic and ultramafic rocks and
scarce metasedimentary rocks (see compilation by Arenas and Sanchez Martinez, 2015).
These units can be divided in two groups according to protolith ages and chemical
signature (Arenas et al., 2007a; Sdnchez Martinez et al., 2009): a Cambrian-Ordovician
group related to the closure of the lapetus/Tornquist Ocean (Bazar ophiolite; Sanchez
Martinez et al., 2012) and opening of the Rheic Ocean s.l. (Vila de Cruces, Izeda-
Remondes, and Internal Ossa-Morena Zone ophiolites; Pin et al., 2006; Arenas et al.,
2007b; Pedro et al., 2010), and an Lower-Middle Devonian group (Care6n, Purrido,
Moeche, and Morais-Talhinhas ophiolites; Diaz Garcia et al., 1999; Pin et al., 2006;
Sanchez Martinez et al., 2011) representing an ephemeral oceanic basin formed in early
stages of the Variscan orogenesis (Arenas et al., 2014b). When these two groups contact

with each other the Devonian counterparts occur on top.

The Beja-Acebuches Ophiolite is a rather continuous band of amphibolites,
minor ultramafic rocks, mylonitic gabbros and a sheeted dike complex (Bard, 1977,
Bard and Moine, 1979; Fonseca and Ribeiro, 1993; Quesada et al., 1994) that have been
interpreted as a relict oceanic crust formed in a rifting context s.l. (Dupuy et al., 1979),
either in a back-arc or intra-arc setting (Quesada et al., 1994), or in a mid-ocean ridge
(Castro et al., 1996). Protoliths of this oceanic crust have been dated at Viséan, so it

formed long after the onset of Variscan deformation (Azor et al., 2008).
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The northern domains of the South Portuguese Zone contain an ensemble of
metasedimentary rocks and lenses of metabasites (Pulo do Lobo Unit; Carvalho et al.,
1976; Oliveira, 1990; Fonseca, 2005). The Pulo do Lobo Unit has been considered as an
accretionary prism related to a north-dipping subduction zone (Eden and Andrews,
1990; Silva et al., 1990; Braid et al., 2010) or as a dismembered ophiolitic ensemble s.1.
(Fonseca and Ribeiro, 1993) connected to the closure of the Beja-Acebuches oceanic
basin (Quesada et al., 1994). Alternatively, other authors suggest it may represent an
accretionary prism over a south-dipping subduction zone developed prior to the opening
of the Beja-Acebuches oceanic basin (Azor et al., 2008). The general structure of this
domain is an upright antiform (Silva et al., 1990; Martinez Poza et al., 2012; Pérez-
Céceres et al., 2015) and the age of its series could be as old as Silurian in the lower part
of the stratigraphy (Braid et al., 2011), and have been dated at Middle-Upper Devonian
in the intermediate part (Pereira et al., 2008b), and early Carboniferous in the overlying,
discordant series (Santa Iria basin, Pereira et al., 2008b; Braid et al., 2011). The Iberian
Pyrite Belt is located to the south of the Pulo do Lobo Unit and contains Upper
Devonian sedimentary rocks and Upper Devonian to early Carboniferous volcanic strata
covered by younger Carboniferous turbiditic series (Oliveira, 1990; Leistel et al., 1997,
Pereira et al., 2012a). Its regional structure is defined by a southerly propagation of a

fold and thrust belt (Silva et al., 1990).

3. Record of Variscan events

Table 1 is a synopsis that presents a summary of the main tectonic events that
characterize the principal geotectonic zones of the Iberian Massif. It offers a general
view of the time-based correlation of contrasted geological processes presented in this

work (descriptions and citations in the text below). For comparison with isotopic ages,
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ages obtained from fossil record have been converted into absolute ages following the

IUGS International Chronostratigraphic Chart 2013 (Cohen et al., 2013).

3.1. Lower Devonian (Lochkovian-Emsian)

3.1.1. Upper Allochthonous Units of NW Iberia

The first phase of Variscan deformation in NW Iberia corresponds to a high-
P/high-T tectonometamorphic event that is traceable across the lowermost structural
levels of the Upper Allochthonous Units of Cabo Ortegal (Vogel, 1967; Gil Ibarguchi et
al., 1990; Puelles et al., 2005; Albert et al., 2012), Ordenes (Arenas and Martinez
Catalan, 2002; Gémez Barreiro, 2007), Braganga and Morais complexes (Marques et
al., 1996). Altogether these structural levels define a high-P/high-T metamorphic belt
characterized by variably-retrogressed eclogitic foliation formed in the course of
dextral, west-directed continental subduction (Martinez Catalan et al., 1997; Abalos et
al., 2003). The high-P rocks occur below a thick series of siliciclastic rocks affected by
Variscan intermediate-P metamorphism (Castifieiras, 2005). Yet, the uppermost
structural levels of this series still preserve the imprint of a previous Cambrian
deformation (Diaz Garcia et al., 2010). The high-P/high-T metamorphism has been
dated at ca. 410-390 Ma (Santos Zalduegui et al., 1996; Ordénez Casado et al., 2001;
Ferndndez-Suarez et al., 2002, 2007). According to provenance analysis of their
sedimentary sequences, both the upper and lower plate to this continental subduction
zone represents a piece of Gondwanan continental crust located in the periphery of the
West African Craton (Fernandez-Suarez et al., 2003; Albert et al., 2015a, 2015b). This
metamorphic belt occurs together with a set of ultramafic rocks considered as one of the
world-class examples of heterogeneous upper mantle (Girardeau et al., 1989; Girardeau

and Ibarguchi, 1991).
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3.1.2. Upper Allochthonous Units of SW Iberia

The Precambrian to Lower Devonian series of the Upper Allochthonous Units of
the Ossa-Morena Complex are deformed into a SW-verging train of recumbent folds
(e.g., Monesterio Anticline) with associated axial planar foliation developed under
Barrovian, low-T conditions (Vauchez, 1974, 1976; Chacon, 1979; Chacén et al., 1983;
Apalategui et al., 1990; Quesada, 1990; Exposito Ramos, 2005). These folds are cut by
south-directed thrusts (e.g., Monesterio Thrust; Eguiluz, 1987) and are covered by a
syn-orogenic basin (Terena flysch), whose base rests discordant over the folds
(Exposito et al., 2002). Some authors consider this flysch yet coeval with the SW-

verging folds (Rocha et al., 2009; Aragjo et al., 2013).

The base of the Terena flysch has been dated at Lower Devonian (Lochkovian;
Picarra, 1997; Pereira et al., 1998, 1999; Pigarra et al., 1998; Robardet and Gutiérrez
Marco, 2004; Rocha et al., 2010). The youngest series that is bent into the recumbent
folds contains intraformational conglomerates indicating basin instability and syn-
orogenic deformation (Giese et al., 1994). Limestones in that series have been dated
with fossils at Lochkovian-Emsian (Perdigdo et al., 1982; Oliveira et al., 1991, 1992;
Robardet et al., 1998), so the age of the SW-verging folds can be further constrained
between ca. 419 Ma and ca. 393 Ma, and deformation preceding or coeval with fold
nucleation probably started in the Lochkovian. Other age constrains exist for fold
formation, such as K/Ar ages obtained from biotite associated with the axial planar
foliation (385+11 Ma; Galindo et al., 1986, 1987) and the rejuvenation of Precambrian
(protolith?) ages in amphibolites and metasedimentary rocks at ca. 400-390 Ma

(Dallmeyer and Quesada, 1992). The later thrusts are covered by lowermost



297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

Carboniferous sedimentary rocks, so these south-directed faults have been considered
part of a continuous deformational process following fold amplification (Exposito et al.,

2002).

3.2. Lower-Middle Devonian (Emsian-Eifelian-Givetian)

3.2.1. Upper Allochthonous Units of SW Iberia

Located to the north and near the Pulo do Lobo Unit, there are few outcrops of
Emsian-Eifelian reef limestones with interbedded mafic calc-alkaline volcanic rocks
that may represent a magmatic arc associated with the closure of the Rheic Ocean (Silva
et al., 2011). Middle Devonian sedimentary rocks are very scarce or absent in the
southern part of the Upper Allochthonous Units of SW Iberia, i.e. exposures south of

the Coimbra-Cérdoba Shear Zone (Robardet and Gutiérrez Marco, 2004).

Conversely, Givetian sedimentary rocks might exist in the block located north of
the Coimbra-Cordoba shear zone, in the so-called Obejo-Valsequillo Domain (Sanchez
Cela and Gabaldon, 1977a; Pérez Lorente, 1979; Rodriguez and Soto, 1979; Pardo and
Garcia Alcalde, 1996; Garcia-Lopez et al., 1999). A recent revision of the stratigraphy
of the Obejo-Valsequillo Domain has not confirmed the occurrence of Middle Devonian
sedimentary rocks (Matas et al., 2015a). Therefore, either the absence or scarcity of
sediments of that age seems a common feature among the Upper Allochthonous Units
of SW Iberia. The widespread Middle Devonian sedimentary gap has been explained by

significant crustal uplift during Devonian tectonic activity (Giese et al., 1994).

3.2.2. Allochthonous Ophiolitic Units of NW Iberia
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The protoliths of the Devonian Allochthonous Ophiolitic Units account for a
short period of lithosphere extension and ocean-floor generation (Diaz Garcia et al.,
1999). Preliminary geochemical data led to place such extension in an intra-oceanic
subduction setting (Sanchez Martinez et al., 2007), or as connected to incipient
collisional processes (Pin et al., 2002). The isotopic signature of zircon in these
ophiolites favors a setting that involves continental crust in their formation (Sanchez
Martinez et al., 2011). A revision of all the geochemical, isotopic, and regional data
available for these ophiolites in Iberia, considered a short-lived oceanic basin opened
within a continental realm at ca. 400-395 Ma as their most likely setting (Arenas et al.,
2014b). In any case, lithosphere extension occurred in a domain located between the
paleogeographic realms of the Upper and Basal Allochthonous Units, both of which

represent sections of Gondwana.

3.2.3. Iberian Autochthon and Cantabrian Zone

A series of Lower-Middle Devonian events distributed across the Iberian Massif
have been integrated into an extensional setting affecting a large tract of the Gondwana
margin at ca. 395 Ma (Gutiérrez-Alonso et al., 2008). These include alkaline volcanism
in the Iberian Autochthon (Gutiérrez-Alonso et al., 2008) and Cantabrian Zone
(Loeschke, 1983), increased subsidence in the Cantabrian Zone (Veselovski, 2004), and

a sedimentary gap in the Iberian Autochthon (Puschmann, 1967).

3.3. Upper Devonian (Frasnian-Fammenian)

3.3.1. Upper Allochthonous Units of NW Iberia
The high-P/high-T record of the Upper Allochthonous Units is variably

retrogressed as a consequence of a multi-stage Upper Devonian exhumation process
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(Goémez Barreiro et al., 2007). Post-eclogitic contractional shearing was developed
under amphibolite facies conditions and produced a widespread mylonitic foliation
(Castifieiras, 2005; Gémez Barreiro, 2007). The high-P/high-T units are separated from
overlying intermediate-P units by a set of extensional detachments (Martinez Catalan et
al., 2002; Castineiras, 2005), dated at ca. 375-371 Ma (Dallmeyer et al., 1997; Gémez
Barreiro et al., 2006). Both, the regional mylonitic foliation and the extensional
detachments, are affected by east-verging recumbent folds at a regional scale, both in
the Ordenes Complex (Martinez Catalan et al., 2002; Gémez Barreiro, 2007; Gonzalez
Cuadra, 2007) and in the Cabo Ortegal Complex (Marcos et al., 1984; Abalos et al.,
2003; Albert et al., 2012). Therefore the nucleation of these recumbent folds occurred
later than ca. 371 Ma. Besides the age of intervening extensional structures, the
exhumation of the high-P and high-T units to amphibolite facies conditions has been
estimated at ca. 380 Ma (Van Calsteren et al., 1979; Peucat et al., 1990; Dallmeyer et
al., 1991; Santos Zalduegui et al., 1996; Valverde Vaquero and Fernandez, 1996;
Goémez Barreiro et al., 2006), whereas subsequent retrogression to greenschist facies

conditions is dated at ca. 360-350 Ma (Peucat et al., 1990; Dallmeyer et al., 1997).

3.3.2. Upper Allochthonous Units of SW Iberia

The southern part of the metasedimentary series exposed in the Obejo-
Valsequillo Domain are located in the hanging wall of a NE-directed thrust (Espiel
thrust) and are deformed into a NE-verging train of recumbent folds (Martinez Poyatos
et al., 2001; Martinez Poyatos, 2002). The youngest rocks affected by these folds are
Devonian. Some authors propose the existence of Middle Devonian series (Givetian;
Sanchez Cela and Gabaldon, 1977a; Pérez Lorente, 1979; Rodriguez and Soto, 1979;

Pardo and Garcia Alcalde, 1996), whereas other authors have also found Upper
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Devonian strata (Frasnian-Famennian; Febrel and Saenz de Santa Maria, 1964; Herranz,
1985; Racheboeuf et al., 1986). On the contrary, Matas et al. (2015a) restrict the Upper
Devonian series to the footwall of the Espiel thrust, and identify a stratigraphic hiatus
spanning from the Middle to the Upper Devonian in the series affected by the NE-
verging folds. These folds are covered by a discordant Carboniferous succession (Culm
facies), whose base is dated at Tournaisian (ca. 359-347 Ma; Sanchez Cela and
Gabaldon, 1977b; Garrote and Broutin, 1979; Garcia Alcalde et al., 1984; Rodriguez et
al., 1990). Amphibolites occurring in the Precambrian series and affected by these folds
show rejuvenation of a Precambrian metamorphic imprint mainly during the Upper
Devonian (Dallmeyer and Quesada, 1992). Consequently, the age of recumbent folding

is mostly Upper Devonian-early Carboniferous (ca. 383-347 Ma).

3.3.3. Allochthonous Ophiolitic Units

The age of imbrication of the Cambrian-Ordovician and Devonian ophiolitic
ensemble exposed in NW Iberia has been constrained, by means of “°’Ar/*’Ar dating of
their low- to medium-T metamorphic fabrics (greenschist and amphibolite facies), to a
range that extends from ca. 391 Ma to ca. 364 Ma (Peucat et al., 1990; Dallmeyer et al.,
1997). The metamorphic grade decreases progressively down structure, as the ages of
metamorphism become younger (Arenas et al., 2007a). Kinematic indicators for
accretion consistently indicate top-to-the-Cantabrian foreland, i.e. subduction under the

Upper Allochthonous Units (Arenas et al., 2007b; Gémez Barreiro et al., 2010b).

3.3.4. Basal Allochthonous Units of NW Iberia
The first deformation event recorded in the Basal Allochthonous Units relates to

continental subduction (Gil Ibarguchi and Ortega Gironés, 1985; Martinez Catalan et
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al., 1996). This tectonic event developed a penetrative fabric whose remnants occur in
weakly or non-retrogressed lenses of high-P/low-intermediate-T rocks and as mineral
trails within porphyroblasts grown during decompression (Diez Fernandez and Martinez
Catalan, 2012). Kinematic criteria associated with fabrics developed under high-P/low-
intermediate-T metamorphic conditions show a consistent top-to-the-northeast shear-
sense, which indicates dextral oblique subduction to the west in present-day coordinates
(Diez Fernandez et al., 2012a). Deformation took place under metamorphic conditions
ranging from blueschist to eclogite facies (Munha et al., 1984; Arenas et al., 1995,
1997; Gil Ibarguchi, 1995; Rubio Pascual et al., 2002; Rodriguez et al., 2003; Lopez-
Carmona et al., 2010, 2014), and has been consistently dated at ca. 380-370 Ma (Van
Calsteren et al., 1979; Santos Zalduegui et al., 1995; Rodriguez et al., 2003; Abati et al.,

2010).

Subsequent exhumation of these units was controlled by crustal-scale ductile
thrusting (Fervenza thrust), which was accompanied by recumbent folding and
attenuation of overlying lithosphere (tectonic and erosional). Early exhumation
produced a mylonitic foliation throughout the high-P metamorphic belt. The kinematics
of this event is consistent with east-directed tectonic transport (Diez Fernandez et al.,
2011). Deformation took place under high-P conditions, although in a clear
decompressive path (Rodriguez et al., 2003; Diez Fernandez et al., 2011). Dating of
tectonic fabrics and partial melting formed in the course of subsequent exhumation
under lower pressure conditions (amphibolite/greenschist facies) has yielded ages in the
range ca. 360-346 Ma (Abati and Dunning, 2002; Rodriguez et al., 2003; Lopez-
Carmona et al., 2014). Therefore, the initial exhumation from peak-pressure conditions

up to the lower crust occurred in the Famennian (ca. 370-360 Ma).
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3.3.5. Basal Allochthonous Units of SW Iberia

In SW Iberia, the Basal Allochthonous Units crop out in two domains (Fig. 2). A
northern domain made of continental crust, referred to as the Central Unit (Azor et al.,
1994b), experienced high-P/low-to high-T metamorphism (Mata and Munha, 1986;
Eguiluz et al., 1990; Abalos et al., 1991b; Pereira and Apraiz, 2006; Pereira et al.,
2010a). Most of this record is strongly retrogressed into amphibolite/greenschist facies
rocks, within which only small retrogressed high-P granulite and eclogite pods and
mineral relicts testifies for their subduction-related history. As a consequence, no
kinematic criteria have been provided so far for the development of the high-P fabrics.
This way, the current NE-dipping character of the post-eclogitic foliation has been taken

as the sole criteria for a NE subduction polarity (Azor et al., 1994b).

The individual ages obtained for the high-P metamorphism in the Central Unit
show some variation but complementary results. First attempts to date this deformation
yielded very imprecise Silurian-Devonian ages that called for a Variscan event (427+45
Ma; Schifer et al., 1991). Subsequent surveys performed in eclogite boudins provided a
minimum age of ca. 370-360 Ma for the high-P metamorphism in the Central Unit
(Quesada and Dallmeyer, 1994). Finally, a more specific, yet imprecise age of ca. 380-
350 Ma was obtained for this metamorphic event by means of U-Pb zircon dating
(Ordofiez Casado, 1998). On the other hand, dating of mylonites formed during post-
peak-P metamorphism yielded ages of ca. 355 Ma (Garcia Casquero et al., 1988). If we
consider all these data, the timing of continental subduction experienced by these rocks

should be restricted to the Upper Devonian, probably ranging between ca. 380-360 Ma.
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The Basal Allochthonous Units that are located in the southernmost domain of
the Ossa-Morena Complex were recently referred to as Cubito-Moura Unit, which,
similarly to the rest of Basal Allochthonous Units, consists of two juxtaposed sequences
(Diez Fernandez and Arenas, 2015). The upper sequence of this unit is known under the
name of Cubito-Moura Schists (Fonseca et al., 1999). The lower sequence includes a
series of metasedimentary rocks and orthogneisses referred to as Fuenteheridos group
(Rubio Pascual et al., 2013b), or as the Serie Negra succession and Igneous-felsic
dominated-sedimentary complex (only sections affected by high-P metamorphism;
Chichorro, 2006; Chichorro et al., 2008; Rosas et al., 2008). Altogether these sequences
represent a piece of continental crust subjected to high-P/low-intermediate-T
metamorphism, as typified by evidence (blueschist and eclogite boudins and weakly-
retrogressed mineral assemblages) of a first tectonic event (De Jong et al., 1991;
Fonseca et al., 1993, 1999, 2004; Pedro, 1996; Leal et al., 1997; Moita, 1997; Booth-

Rea et al., 2006; Ponce et al., 2012; Rubio Pascual et al., 2013D).

Strong retrogression affected the high-P rocks of the Cubito-Moura Unit during
exhumation and no kinematic criteria extracted from direct observation of high-P
fabrics have been reported so far for the subduction process. Yet, both NE and SW
subduction polarities have been proposed (Fonseca et al., 1999; Diaz Azpiroz et al.,
2004; Ribeiro et al., 2007; Rosas et al., 2008; Pin et al., 2008; Simancas et al., 2009;
Rubio Pascual et al., 2013b). The age of high-P metamorphism obtained for the lower
sequence of this unit is ca. 371 Ma (Moita et al., 2005), which is in agreement with an

age of ca. 358 Ma obtained for post-peak-P metamorphism (Rosas et al., 2008).
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Preservation of the structural record associated with the initial stages of
exhumation is very rare in the Cubito-Moura Unit. One example corresponds to the
development of boudinaged-folds affecting marbles and amphibolites (Rosas et al.,
2002) under a top-to-the-SSW shear sense regime (Rosas et al., 2008). This particular
shearing has been inferred older than a cooling age of ca. 358 Ma (Rosas et al., 2008),
and consequently it should have been developed during the Famennian (ca. 371-358

Ma).

3.4. Early Carboniferous (Tournaisian-Viséan)

3.4.1. Upper Allochthonous and Ophiolitic Units of NW Iberia

A set of out-of-sequence-thrusts carried the Upper Allochthonous and Ophiolitic
Units of NW Iberia approximately to their current position in the thrust pile (see
extended description in Martinez Catalan et al., 2002). Out-of-sequence thrusting
proceeded under low-T conditions (greenschist facies) and generated mylonites and
ultramylonites with an associated top-to-the-southeast sense of motion. This thrust
system moved the Upper Allochthonous Units over the Ophiolitic Allochthonous Units
and affected thrust sheets of the previously (under)stacked ophiolites (Diaz Garcia et al.,
1999; Arenas et al., 2007b). The emplacement of the Upper Allochthonous Units
generated duplexes with both hinterland-dipping and foreland-dipping horses, duplexes
of antiformal stack type, as well as isolated horses made of both the Upper Allochthon

and Opbhiolitic Allochthonous Units.

The out-of-sequence thrusts cut and partially rework extensional shear zones
dated at ca. 375-371 Ma. They also cut the regional fabrics of the Upper Allochthonous

Units associated with their retrogression to greenschist facies conditions dated at ca.
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360-350 Ma. They might also affect some of the uppermost Basal Allochthonous Units,
such as the Agualada Unit. The age of post-peak-P partial melting in that unit is ca. 346
Ma (Abati and Dunning, 2002), so the out-of-sequence thrusting is likely younger. This
thrust system also cuts the Lalin-Forcarei Thrust (age estimated at ca. 340 Ma;
Dallmeyer et al., 1997), which is structurally below and overprinted by an event of
amphibolite facies metamorphism that is absent in the out-of-sequence thrusts. The out-
of-sequence thrusts must be older than the extensional detachments of Pico Sacro and
Bembibre-Cean (Diez Fernandez et al., 2012c¢), which cut all previous thrust faults and
are bracketed between ca. 323-314 Ma (Martinez Catalan et al., 2002) and dated at ca.
337 Ma (Lopez-Carmona et al., 2014), respectively. Fine-grained white micas extracted
from a greenschist facies ultramylonitic gneiss located in an out-of-sequence thrust
contact gave an **Ar/*’Ar cooling age of ca. 325 Ma. Considering all the previous data
the most probable age for the major event of out-of-sequence thrusting is Viséan (ca.
346-337 Ma). However, a thrust-related phyllonite located at the base of the Cabo
Ortegal Complex yielded an age of ca. 316 Ma (Dallmeyer et al., 1997), what certainly
opens the possibility of later episodes of out-of-sequence thrusting in NW Iberia

(Martinez Catalan et al., 2002).

3.4.2. Upper Allochthonous Units of SW Iberia

One of the most salient structures affecting the Iberian Allochthon exposed in
the Obejo-Valsequillo Domain is a thrust fault that transports to the NE a NE-verging
train of recumbent folds of Upper Devonian age (see section 3.3.2) onto Culm facies
sedimentary rocks, the Espiel Thrust (Figs. 2 and 3; Martinez Poyatos et al., 2001;
Martinez Poyatos, 2002). Some of the youngest series of its footwall may be upper

Viséan or even early Serpukhovian (~340-330 Ma; Ortufio, 1971; Sanchez Cela and
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Gabaldon, 1977b; Garrote and Broutin, 1979; Matas et al., 2015a), what places a
reference age for the onset of thrusting. On the other hand, a regional analysis carried
out in the syn-orogenic series, that occur both in the hanging wall and footwall of this
fault, revealed that thrusting may have been active from the Viséan up to the upper

Bashkirian (~340-315 Ma; Martinez Poyatos et al., 1998; Matas et al., 2014).

In the first description of the Espiel Thrust, Apalategui and Pérez-Lorente (1983)
documented the existence of peridotites, amphibolites, mylonitic gneisses and
phyllonites in close relation to some sections of its fault zone. These authors also
suggested a correlation between those gneisses and the lithological ensemble that today
constitutes the Basal Allochthonous Units bounding the Obejo-Valsequillo Domain to
the south (the so-called Central Unit). The presence of peridotites (even if scarce)
together with gneisses that have been considered as markers of a suture zone elsewhere,
represent a singularity within the Upper Allochthonous Units of SW Iberia. Such
singularity can be solved by considering the Espiel Thrust as a series of out-of-sequence
structures that cut, bounded and transported upwards an underlying and previously
structured suture zone consisting of high-P gneisses and ophiolitic rocks (peridotites and

amphibolites).

NE of the Espiel Thrust, a group of reverse faults with top-to-the-east tectonic
transport makes a tectonic imbricate and duplexes of continental crust within the Upper
Allochthonous Units (Zalamea de la Serena imbricates; Castro, 1987b). Due to their
similar geometry and kinematics, these faults have been considered as genetically
related to the main thrust system that transported the NE-verging recumbent folds

(Martinez Poyatos et al., 2001).
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3.4.3. Basal Allochthonous Units of NW Iberia

The mylonitic shear zones developed during the Famennian (Fervenza Thrust;
see section 3.3.4), together with the rest of the lithostratigraphy of the Basal
Allochthonous Units, are affected by a regional-scale train of recumbent folds (Diez
Fernandez et al., 2011). The regional foliation in the Basal Allochthonous Units is axial
planar to these folds (Diez Fernandez, 2011) and developed under greenschist to
amphibolite facies conditions (Rodriguez et al., 2003). The asymmetry depicted by this
train and kinematic criteria observed in the axial planar foliation indicates top-to-the-
Cantabrian Zone sense of shear (Diez Fernandez and Martinez Catalan, 2012), which is
in agreement with quartz crystal preferred orientation fabrics (Llana-Funez, 2002;
Gomez Barreiro et al., 2010a; Fernandez et al., 2011). Dating of this regional foliation

has yielded Tournaisian ages in the range ca. 360-350 Ma (Rodriguez et al., 2003).

To the external parts of the hinterland, the regional foliation of the Basal
Allochthonous Units is bent into a large recumbent anticline and minor associated folds
(Carrio Anticline). The Lalin-Forcarei Thrust runs along the reverse limb of that major
anticline, and produced ductile mylonitic deformation throughout the base of the Iberian
Allochthon. Kinematic criteria show an eastward movement for this thrust, which
accounts for the emplacement of the Iberian Allochthon onto the Iberian Parautochthon
(Martinez Catalan et al., 1996). Isotopic ages for this nappe-fold structure are lacking,
although fold nucleation must be younger than ca. 360-350 Ma (age of the folded
foliation at a regional scale). A reference age for the Lalin-Forcarei Thrust is ca. 340

Ma, which is the timing of pervasive ductile deformation recorded by the Iberian
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Parautochthon in response to the overriding of the Iberian Allochthon s.I. (Dallmeyer et

al., 1997).

The uppermost part of the Basal Allochthonous Units of NW Iberia experienced
high-T conditions and partial melting during post-eclogitic decompression (Arenas et
al., 1997). Post-peak-P partial melting has been dated at ca. 346-341 Ma (Abati and

Dunning, 2002).

3.4.4. Basal Allochthonous Units of SW Iberia

Ductile shearing associated with the exhumation of the Basal Allochthonous
Units exposed in the Central Unit generated a penetrative foliation under amphibolite to
greenschist facies conditions (Abalos et al., 1991a, 1991b), reaching the granulite facies
in some sections (Pereira et al., 2010a). Although no major structures have been
recognized so far within this unit, recumbent folding has been considered as a process
related to the formation of the regional planar fabric (Azor, 1994). The kinematics
shown by this fabric is top-to-the-NW, an orogen-parallel trend that may indicate a
strong lateral shear component during and/or after exhumation (Azor et al., 1994b;

Pereira et al., 2008a, 2010a).

The timing of exhumation show some variation in the Central Unit, but a
Tournaisian-Viséan age can be taken as the most likely, if the whole set of
geochronological data available is taken in consideration. Dating of biotite in gneisses
yielded ages of ca. 335-330 Ma (Blatrix and Burg, 1981; Pereira et al., 2012b), in
agreement with subsequent results obtained in muscovite (ca. 340-333 Ma; Dallmeyer

and Quesada, 1992; Pereira et al., 2012b). The maximum age for the early (and warmer)
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stages of exhumation can be vaguely constrained by the oldest ages obtained from
amphibole in mafic rocks (ca. 370 Ma; Dallmeyer and Quesada, 1992), although dating
of the regional fabric by Rb-Sr in mica provided an age of ca. 355 Ma (Garcia Casquero
et al., 1988). Additionally, some sections of the Central Unit experienced high-T
conditions and eventual partial melting in the course of their exhumation to the mid-
lower crust, a process that has been dated at ca. 340 Ma (Ordéiiez Casado, 1998; Pereira

etal., 2010a).

The Basal Allochthonous Units that occur to the south of the Ossa-Morena
Complex (Cubito-Moura Unit) exhibit a widespread foliation developed under
amphibolite to greenschist facies conditions (Pedro, 1996; Moita, 1997; Fonseca et al.,
1999; Booth-Rea et al., 2006). No major structures associated with this fabric have been
identified so far within this unit, although the generation of large recumbent folds has
been tentatively proposed (Aratjo and Ribeiro, 1995). In those sections where this
foliation is best preserved, the analysis of kinematic criteria has provided a consistent
top-to-the-northeast tectonic transport (Araugjo et al., 2005; Rosas et al., 2008), whereas
a top-to-the-east sense of shear has been deduced for those domains affected by
subsequent tangential deformation (kinematics inferred after unfolding tectonic fabrics;
Ponce et al., 2012). In both cases the tectonic transport includes a significant component
directed to the foreland located in the Cantabrian Zone. The maximum age of this fabric
is ca. 358 Ma (Rosas et al., 2008), whereas the intrusion of Variscan magmas in the
region at ca. 350-340 Ma (Azor et al., 2008; Pin et al., 2008) could be taken as a reliable

minimum age for this deformation.

3.4.5. Iberian Parautochthon and Autochthon of NW and Central Iberia
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The onset of Variscan deformation in the Iberian Parautochthon is characterized
by overturned to recumbent folds with axial planar foliation. These folds are overprinted
by a pervasive flat-lying foliation. These two initial deformation events developed
under prograde intermediate-P, Barrovian-type metamorphism and have been related to
the juxtaposition of the Iberian Allochthon over the Iberian Parautochthon and then onto
the Iberian Autochthon (Marquinez Garcia, 1984; Farias et al., 1987; Ribeiro et al.,
1990; Dias da Silva, 2014). Some sections of the Parautochthon were buried following a
pressure gradient higher than classical Barrovian (Rubio Pascual et al., 2015). There are
not isotopic age constrains for the earlier folds but the subsequent subhorizontal

shearing has been dated at ca. 340 Ma (Dallmeyer et al., 1997).

The initial Variscan record of the Iberian Autochthon is rather similar. The first
deformation produced a series of overturned to recumbent folds (Diez Balda, 1986;
Macaya et al., 1991; Diez Ferndndez et al., 2013b), the vergence of which shows a
radial pattern in relation to later oroclinal bends such as the Central Iberian arc (tectonic
transport towards the Cantabrian Zone; Martinez Cataldn et al., 2014). Early folding
was accompanied by the development of a penetrative foliation under relatively low-
grade metamorphic conditions. Subsequent subhorizontal shearing generated penetrative
cleavages and phyllonites close to thrust faults. The basal contact of the Iberian
Parautochthon has been interpreted as the most important of these thrusts (Ribeiro et al.,
1990), and cuts previous folds (e.g., Marcos and Farias, 1999; Diez Montes, 2007).
Similar thrusts exist within the Iberian Autochthon, but they seem to merge into a sole
fault connected with the basal thrust of the Iberian Parautochthon (Gonzélez Clavijo and
Martinez Catalan, 2002; Dias da Silva, 2014). Dating of the axial planar foliation of the

first folds yielded an age of ca. 354-347 Ma (Rubio Pascual et al., 2013a), which is in
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agreement with the broad age range previously obtained for the onset of Variscan
deformation in this domain (ca. 370-342 Ma; Bea et al., 2009). Subsequent thrusting is
responsible for the establishment of Viséan syn-orogenic basins at the advancing front
of the Iberian Allochthon (Martinez Catalan et al., 2016), and considered coeval with
subhorizontal ductile shearing in the Iberian Parautochthon, dated at ca. 340 Ma

(Dallmeyer et al., 1997).

The juxtaposition of the Iberian Allochthon and Parautochthon over the
Autochthon produced minimum pressures of up to ~0.9 GPa in several domains of the
latter (Escuder Viruete et al., 2000; Rubio Pascual et al., 2013a), reaching up to ~1.1-1.4
GPa in some cases (Barbero and Villaseca, 2000; Rubio Pascual et al., 2015). Crustal
thickening in other parts seems much less pronounced (typically in the chlorite-biotite

zone), thus suggesting an inhomogeneous thrust stack.

3.4.6. South Iberian Autochthon

The Iberian Autochthon of SW Iberia occurs in two domains (Fig. 2). Both, the
northeastern and southwestern occurrences, experienced Barrovian-type metamorphism
during the first phases of Variscan deformation, with peak-pressures of about 0.6-0.7
GPa (Gonzélez del Tanago and Arenas, 1991; Diaz Azpiroz et al., 2006). Although the
type and geometry of coeval structures is not well-established for the northeastern
domain, large-scale recumbent folding has been proposed for the early stages of tectonic
evolution in the southwestern domain (Diaz Azpiroz et al., 2003). As to the timing of
deformation, geochronological data suggest a rejuvenation of Neoproterozoic ages that
might have started at ca. 390 Ma in the northeastern domain, with a remarkable

maximum at ca. 360-351 Ma (Dallmeyer and Quesada, 1992). The age range of ca. 341-
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337 Ma obtained for tectonic fabrics from the southwestern domain of the Iberian
Autochthon (Dallmeyer et al., 1993) provides additional support for a Tournaisian-

Viséan age as the onset of main Variscan deformation in the Autochthon.

3.5. Early-late Carboniferous transition (Viséan-Bashkirian)

3.5.1. NW and Central Iberian Allochthon, Parautochthon, and Autochthon

The record of early Barrovian-type metamorphism in the Autochthon and
Parautochthon of NW and Central Iberia is overprinted by a flat-flying foliation that
mantles and dominates the internal structure of granite- and migmatite-cored domes
(Martinez Catalan et al., 2014). Usually bounded by extensional detachments, these
domes alternate with large, open upright synforms and structural basins that have
preserved the allochthonous complexes at their cores (Fig. 3). This extensional
overprinting did not affect the Iberian Allochthon homogeneously. The upper structural
levels, occupied by the Upper and Ophiolitic Allochthonous Units, escaped widespread
ductile deformation and were only involved into discrete detachment faults cutting
across previous tectonic boundaries (Martinez Catalan et al., 2002). Near the domes,
some sections of the Basal Allochthonous Units were strongly affected by extensional
deformation, including pervasive ductile shearing, faulting, and heat transfer from
underlying granitic massifs (Goémez Barreiro et al., 2010a; Diez Fernandez et al.,

2012¢).

Deformation took place under mid- to low-P conditions, and produced a low-
grade crenulation cleavage in the lower parts of the suprastructure that turns quickly
into a schistosity and a high-grade gneissic and migmatitic banding in the infrastructure.

The extensional detachments separating these two structural levels of the crust are
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characterized by low-grade phyllonites and mylonites (Escuder Viruete et al., 1994,
1998; Diez Balda et al., 1995). Extensional ductile flow gave way to shearing and
stretching of syn-kinematic granitoids (Diaz-Alvarado et al., 2012) as well as a
profound distortion of previous structures via flattening (Diez Fernandez et al., 2013b),
sometimes resulting in large-scale isoclinal folding (Arango et al.,, 2013). Crustal
attenuation varies depending on previous thickness, reaching decompression of the
infrastructure up to the andalusite stability field in many cases. The kinematics of
extensional flow reveals the non-coaxial character of deformation, which stretched the
previous orogenic crust following divergent vectors, usually normal to those that
governed previous crustal thickening in the hinterland (Diez Fernandez et al., 2012c).
Dating of migmatization and colder ductile deformation in different domes yields a
Viséan-Bashkirian age of ca. 350-317 Ma (Escuder Viruete et al., 1998; Montero et al.,
2004; Bea et al., 2006; Castineiras et al., 2008; Valle Aguado et al., 2008; Rubio
Pascual et al., 2013a; Lopez-Carmona et al., 2014), a range that confers a long-lasting
nature to this lithosphere extension event. Despite that broad range, most of the domes
seem to have experienced maximum thermal activity at ca. 340-320 Ma, whereas
granite production abounds later (around 315-305 Ma; Valle-Aguado et al., 2005;

Gutiérrez-Alonso et al., 2011; Martinez Catalan et al., 2014).

3.5.2. SW Iberian Allochthon and Autochthon

Southern Iberia is the site of Variscan metaluminous, alkaline to calc-alkaline
magmatism, which is represented by gabbro-granodiorite suites including granites,
granodiorites, diorites, tonalites, gabbros, gabbros with gabbroic and noritic cumulates,
and mantle-derived ores (Capdevila et al., 1973; Aparicio et al., 1977). Some of the

intrusives occurring just north of the Beja-Acebuches Ophiolite are characterized by a
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boninitic signature (Castro et al., 1996), an imprint that may be related to subduction,
similarly to what is proposed for the calc-alkaline volcanism occurring near that region
(Toca da Moura-Cabrela basin, Santos et al., 1990; Oliveira et al., 1991; Quesada et al.,
1994; Onézime et al., 2003). The geochemical and isotopic characteristics of some
mafic to intermediate (calc-alkaline) intrusives located farther north have been
explained as a combination of high heat flow and contamination by pelitic crustal
material of a mafic magma chamber formed in the mid-crust (Casquet et al., 2001;
Salman, 2002; Tornos et al., 2005), or as the variable combination of mantle-derived
and crustal-derived magmas (Romeo et al., 2006; Moita et al., 2009; Pereira et al.,
2015). The age of all this earlier magmatic event spans a range between ca. 350-335 Ma
(Dallmeyer et al., 1993, 1995; Casquet et al., 2001; Romeo et al., 2006; Jesus et al.,
2007; Pin et al., 2008; Pereira et al., 2009, 2015; Cambeses et al., 2015) and is coeval
with volcanism, contributing to Viséan syn-orogenic sedimentary basins (Armendariz et

al., 2008; Pereira et al., 2012b; Oliveira et al., 2013).

The middle and lower structural levels of the tectonic pile in SW Iberia
(Autochthon and Basal Allochthonous Units) were overprinted by high-T/low-P
metamorphism and pervasive ductile deformation (Gonzéalez del Téanago, 1995; Diaz
Azpiroz et al., 2002; Pereira et al., 2007). Peak metamorphic conditions reached the
granulite facies along the southern border of the Iberian Autochthon, which constitutes a
salient thermal anomaly in this region (Diaz Azpiroz et al., 2004). The general structure
of these high-grade domains corresponds to granite- and migmatite-cored domes
flanked by low-angle normal faults (Gonzalez del Tanago, 1995; Pereira et al., 2009),

where the Iberian Allochthon is mostly restricted to their hanging wall. Ductile
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deformation is widespread in the infrastructure, and was responsible for the generation

of crenulation cleavages and mylonitic foliation.

The high-T/low-P deformation affected syn-orogenic granitoids (peraluminous
granodiorite-granite suite) and previous folds, and was parted into subhorizontal and
strike-slip shear zones parallel or subparallel to the structural trend of the orogen (Diaz
Azpiroz et al., 2004; Pereira et al., 2009, 2012b, 2013). On the other hand, the Iberian
Allochthon displays a number of low-angle normal faults that cut previous faults and
folds (Azor et al., 1994b; Expésito et al., 2002). The age of these low-angle faults can
be constrained to a range of ~345-315 Ma, as they are closely related to syn-orogenic
deposits of uppermost Tournaisian to Viséan age but are affected by later upright folds
during the Moscovian (Gabaldon and Quesada, 1986; Giese et al., 1994; Martinez
Poyatos, 2002; Expdsito Ramos, 2005). Dating of later syn-orogenic granitoids and
migmatization in the lower structural levels of the Autochthon provides a similar time
interval for the high-T event, which appears to show maximum thermal activity at ca.
335-325 Ma (Castro et al., 1999; Diaz Azpiroz et al., 2002; Pereira et al., 2009; Lima et
al.,, 2011, 2013; Moita et al., 2015), somewhat younger than the earlier Variscan

magmatism.

A special case is made for the Puente Génave-Castelo de Vide Detachment (see
detailed description by Martin Parra et al., 2006), a low-angle normal fault that defines
the northern contact of the Iberian Allochthon in SW Iberia (Diez Fernandez and
Arenas, 2015). Its fault line extends for a minimum of 400 km, whereas the fault zone is
up to 150 m thick, dips to the SSW (30° mean dip), shows consistent top-to-the-SSW

kinematics, and is made of graphite-bearing schist to the east. The movement of this
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fault should be later than the thrust tectonics that emplaced the Iberian Allochthon in the
first place, estimated at ca. 340 Ma (see sections 3.4.2 and 3.4.4). A maximum age for
the Puente Génave-Castelo de Vide Detachment is provided by Variscan granitoids and
related rocks deformed into its fault zone (ca. 331 Ma; Larrea et al., 1999), while its
minimum age is given by Moscovian granites cutting across the fault zone and dated at

ca. 314 Ma and ca. 307 Ma (Carracedo et al., 2009; Sola et al., 2009).

Seismic and magnetotelluric data obtained in SW Iberia reveal the existence of a
~140 km long reflective and low-resistivity body located at the mid-crust, the Iberian
Reflective Body (IRB; Simancas et al., 2003; Muiioz et al., 2008). IRB shows variable
thickness (up to 5 km), making its shape wavy in some places. This body displays its
maximum thickness to the SSW, wedges to the NNE, and dips about 5° to the SSW.
Current ideas on the origin of IRB defend a hybrid (tectonic-magmatic) model, i.e. a
layered, mantle-derived mafic intrusion in a detachment level (Simancas et al., 2003;
Carbonell et al., 2004). This hypothesis may explain the Variscan alkaline, calc-
alkaline, and metaluminous magmatism of the region (Carbonell et al., 2004; Cambeses

et al., 2015), but no surface expression of the detachment level has been proposed.

The prolongation of the Puente Génave-Castelo de Vide Detachment to the
south, following the seismic markers of the region (Simancas et al., 2003; Martinez
Poyatos et al., 2012), reaches the northern edge of IRB (Fig. 3), which would account
for the geophysical expression of this huge extensional shear zone, or at least that of a
layered magmatic body shaped into the shear planes of that shear zone, either after or
during intrusion. This correlation suggests that the extensional shear zone associated

with the detachment widens with depth, conferring a listric geometry to the detachment,
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and reinforcing the influence of this fault on the current (down thrown) position of the
Iberian Allochthon in SW Iberia (Diez Fernandez and Arenas, 2015). Moreover, the
prolongation of this fault further to the south, using as a guide the seismic markers
(Simancas et al., 2003), unveils a potential structural correlation with the mid-crustal
root of the basal decollement from which the south-directed thrusts of the South
Portuguese Zone foreland may have derived. The age of these thrusts is uppermost
Viséan to Moscovian (~330-307 Ma; Silva et al., 1990), a time interval that matches the

chronology of the Puente Génave-Castelo de Vide Detachment (~330-314 Ma).

3.5.3. Beja-Acebuches Ophiolite and related rocks

There is a negligible age difference between the mafic protoliths of the Beja-
Acebuches Ophiolite (ca. 340-332 Ma; Azor et al., 2008) and the subsequent ductile
shearing that affected this ensemble at ca. 342-328 Ma (Dallmeyer et al., 1993; Castro
et al., 1999). This ophiolitic unit is strongly overprinted by left-lateral, top-to-the-SW
ductile shearing (South Iberian shear zone; Crespo-Blanc and Orozco, 1988, 1991)
developed under low-P and mid- to low-T metamorphic conditions (Bard and Moine,
1979; Castro et al., 1996), although some of its sections seem to preserve early top-to-
the-north shearing formed under a higher metamorphic grade (Fonseca and Ribeiro,

1993).

The regional fabrics developed throughout the Basal Allochthonous Units
located just north of the Beja-Acebuches Ophiolite (age estimated at ca. 358-350 Ma,
see section 3.4.4) and the high-grade rocks of the South Iberian Autochthon are affected
by south- and southwest-verging folds and thrusts, which show a left-lateral component

comparable to the structure of the Beja-Acebuches Ophiolite (Diaz Azpiroz et al., 2003;
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Aratjo et al., 2005; Borrego et al., 2005; Ponce et al., 2012). Folding was developed
under greenschist facies conditions and produced additional flat-lying crenulation

cleavages in the region.

3.6. Late Carboniferous (Bashkirian-Gzhelian)

3.6.1. Oroclines of the Iberian Massif

Some Variscan and pre-Variscan linear features that mark the structural trend of
the Iberian Massif are curved into the shape of a plate-scale vertical fold to define a
couple of oroclinal bends, namely the Ibero-Armorican arc and the Central Iberian arc
(Fig. 1; Martinez Catalan, 2011). These arcs are delineated by some tectonostratigraphic
domains of the Iberian Massif, by the first Variscan folds of the Iberian Autochthon, by
low- and high-amplitude magnetic anomalies sourced from an unexposed crystalline
basement (Aerden, 2004; Martinez Catalan, 2012), and by paleocurrents in Ordovician
strata (Shaw et al., 2012). The structural grain and terranes of the Iberian Allochthon do
not display such curved patterns for the case of the Central Iberian arc, either in NW or
SW Iberia. However, the Iberian Allochthon occupies the core of the Central Iberian arc
in the NW and flanks that orocline to the SW (Fig. 1). The southern boundary of this arc
runs along the Puente Génave-Castelo de Vide Detachment, which appears to cut it at a

high angle.

The nucleation of the Central Iberian arc is considered to have occurred later
than ca. 335 Ma (age of the youngest folds affected by the arc), whereas its closure
occurred at ca. 315-305 Ma (Martinez Catalan, 2011, 2012; Martinez Catalan et al.,
2014). The age of the Puente Génave-Castelo de Vide Detachment allows further

constrains on the age of this orocline, most of the vertical folding related to which
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should be older than the detachment (ca. 330-314 Ma). The Ibero-Armorican arc is
slightly younger (Martinez Catalan, 2011), its age being constrained by means of

paleomagnetic data at ca. 304-295 Ma (Weil et al., 2010).

3.6.2. Strike-slip shear zones of the Iberian Massif

Except for the Ibero-Armorican arc, all the previous Variscan record is variably
affected by a series of intracontinental, strike-slip shear zones and related structures
(Martinez Catalan, 2011). NW, Central, and SW Iberia exhibit a combination of dextral
and sinistral shear zones (Fig. 2). Yet, left-lateral movements dominate in SW Iberia
(Burg et al., 1981; Crespo-Blanc and Orozco, 1988; Pereira and Silva, 2001; Pérez-
Céceres et al., 2015a), while the major strike-slip systems in NW and Central Iberia are
dextral in most of the cases (Iglesias Ponce de Leon and Choukroune, 1980; Ribeiro et

al., 1980).

The strike-slip systems include zones with variable intensity of shearing.
Various types of subvertical mylonites, and pervasive ductile deformation in their cores,
give way to more spaced subvertical crenulation cleavages, overprinting the previous
record at both sides of the shear zones. At a larger scale, the lateral displacements of
these strike-slip systems deflect previous geological features such as contacts or tectonic
fabrics, whereas the subhorizontal shortening experienced by the two blocks of the
shear zone is accommodated by upright regional folds, most of which amplifies former
extensional domes and structural basins. This is the case of the Iberian Allochthon,
which is located in the core of open structural basins and it is surrounded by migmatized

basement cropping out in structural domes (e.g., Padron dome; Diez Fernandez et al.,
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2012c). During the later stages of transcurrent shearing, many of the strike-slip systems

evolved to subvertical faults with lateral and dip-slip motion.

The strike-slip shear zones show different relationships with the development of
the Central Iberian arc. However, the trace of the upright folds associated with strike-
slip deformation shows high correlation with the axial trace of this orocline, suggesting
that eventual tightening of this vertical fold was accomplished by shortening related to
strike-slip shearing (Martinez Cataldn, 2011). Although not all the shear zones are
coeval sensu stricto, their age and that of related folding as a whole is very consistent
throughout the Iberian Massif, and ranges between ca. 315-305 Ma (Capdevila and
Vialette, 1970; Martinez Poyatos et al., 1998; Rodriguez et al., 2003; Valle Aguado et

al., 2005; Gutiérrez-Alonso et al., 2015).

3.7. South Portuguese Zone

The early Variscan deformation that is observed in the South Portuguese Zone is
found in its northern section (Pulo do Lobo Unit). It consists of south verging folds
developed under low-grade metamorphic conditions (Silva et al., 1990; Martinez Poza
et al., 2012). Such folding affected both Silurian-Devonian and Frasnian series (Pereira
et al., 2008b; Braid et al., 2011). Previous age estimations considered this deformation

as Upper Devonian (Giese et al., 1999).

A subsequent phase of deformation in this region produced north- to south-
southwest-verging folds and involved younger sedimentary series deposited
(discordantly) on top of the previous folds (Silva et al., 1990, 2013; Fonseca, 2005;

Martinez Poza et al., 2012). This younger series includes strata with ages ranging from
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upper Famennian, Tournaisian, and up to Viséan, as evidenced by fossil (Pereira et al.,
2008b; Matas et al., 2015b) and detrital zircon data (youngest age population at ca. 347
Ma; Braid et al., 2011). Thus, the age of the first folds in the Pulo do Lobo Unit can be

better constrained between ca. 380-359 Ma.

The South Portuguese Zone was affected by extension and related bimodal
magmatism during the Tournaisian (~356-346 Ma; Barrie et al., 2002; Dunning et al.,
2002; Rosa et al., 2008; Valenzuela et al., 2011). Later deformation progressed in a
thin-skinned fashion up to the Moscovian and propagated from the Beja-Acebuches
Ophiolite to the south via thrusts and related folds (~330-305 Ma; Silva et al., 1990,
2013). According to geochronological data of lithologies affected and non-affected by
this later phase of deformation, south-directed thrusting must have been older in the
northern part of the South Portuguese Zone (Pulo do Lobo Unit), where its age is
estimated at ca. 345-335 Ma (Gladney et al., 2014). These thrusts represent a major
tectonic inversion in the region and cut across the north- to south-southwest-verging
folds of the Pulo do Lobo Unit (Martinez Poza et al., 2012). If so, the age of the latter

folds should be Viséan (~347-335 Ma).

Some sections of the pre-Upper Devonian series of the South Portuguese Zone
experienced Variscan high-P and low-intermediate-T metamorphism (Rubio Pascual et
al., 2013b). These series are affected by the first phase of deformation recognized in this
zone (ca. 380-365 Ma) and its Carboniferous cover does not show such
tectonometanorphic imprint. Therefore, the high-P metamorphism must be either coeval

or previous to the early south-directed folding (Lower to Middle Devonian?).
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4. Tectonic evolution of Variscan Iberia: model and discussion

Lateral tectonics played a role on Variscan deformation affecting the Iberian
Massif, impossible to quantify in full, but qualifiable. Many of the major shear zones
that occur in SW Iberia (either flat-lying or subvertical) include a left-lateral
component. Consequently, the position of SW Iberia -or that of the several blocks
associated with strike-slip structures- relative to Central and NW Iberia before
orogenesis should be located more to the northwest in present-day coordinates, i.e. west
of the NW Iberian section s.l. (either southwest, purely west, or northwest). Such
general assumption has been made to construct the composite section shown in Figure
3, and is strongly supported by semi-quantitative estimations on the left-lateral
displacement accumulated in SW Iberia through the Variscan orogenesis (e.g., Burg et
al., 1981; Pereira et al., 1998; Pérez-Caceres et al., 2015b). Despite such restoration
along-strike may result imprecise (e.g., lateral intracontinental displacements
accumulated in some particular faults might have exceeded several hundreds of
kilometers), the impact on the qualitative reconstruction of Variscan tangential tectonics
is probably minor, as suggested by the synchrony of tectonic events across the Iberian

Massif (see below).

Figure 4a shows a simplified restoration of Variscan thrusts and strike-slip shear
zones and provides a general picture of the pre-collisional paleogeography across the
margin of Gondwana. This reconstruction acknowledges the following ideas on the
Variscan and pre-Variscan evolution of the Iberian Massif: (i) the recognition of the
Iberian Allochthon across the Coimbra-Cérdoba shear zone (Diez Fernandez and

Arenas, 2015); (ii) the Upper Allochthonous Units represent a section of the margin of
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Gondwana that was rifted from its mainland during the Cambrian-Ordovician (Gomez
Barreiro et al., 2007), but remained attached or geographically close to it (at least) up to
the Lower Devonian (Robardet, 2003; Lopez-Guijarro et al.,, 2008; Arenas et al.,
2014b); (iii) the Cambrian-Ordovician rifting shaped the margin of Gondwana into a
series of continental microblocks connected by stretched lithosphere (Diez Fernandez et
al., 2015); (iv) the onset of Variscan deformation is Lower Devonian (ca. 410-395 Ma);
(v) the suture zone represented by the Allochthonous Ophiolitic Units accounts for the
closure of an ephemeral oceanic basin opened after the onset of Variscan deformation
(i.e. a second-order suture zone; Arenas et al., 2014a); and (vi) the Beja-Acebuches
Ophiolite is the suture of a transient oceanic basin that separated most of the Iberian
Gondwana from Laurussia during the early Carboniferous (Azor et al., 2008). Finally,
the initial Variscan evolution of the South Portuguese Zone may not be directly related
to that of the rest of the Iberian Massif, i.e. this section of putative Laurussia did not
face the sections of Gondwana preserved in Iberia until Upper Devonian-Carboniferous
times (Braid et al., 2011). The evolution of pre-Upper Devonian sequences of the South
Portuguese Zone might be associated with NeoAcadian events recorded in Meguma
(Van Staal et al., 2009). The palynological assemblages (Pereira et al., 2006b) and
detrital zircon populations (Pereira et al., 2012a) found in syn-orogenic deposits at both
sides of the Beja-Acebuches Ophiolite indicate that the Iberian Allochthon and its
relative autochthon were close to the South Portuguese Zone during the Upper
Devonian and early Carboniferous, so large distances along-strike (if any) are not
expected between these two domains after closure of major oceanic basins by the Lower

Devonian, such as the Rheic Ocean.
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The data compilation presented in section 3 shows the synchronous character of
compressional and extensional deformation events across the Iberian Massif during the
Variscan orogenesis (see also Table 1). Although timing, geometry, and tectonic
polarity coincides in many cases after unfolding the late oroclinal bends, the following
evolutionary model is also aimed to integrate both similar and contrasted structural and
metamorphic record by using age reference lines. In order to keep our model as realistic
as possible, sketches presented in Figures 4 and 5 show the geometry and location of
actual structures of the Iberian Massif, a reference of which has been given in section 3.
The series of sketches culminates with Figure 3, which represents a synthetic cross-
section of the Iberian Massif today and therefore a good approximation to the eventual

structure after Variscan deformation.

4.1. Initiation of Variscan Orogeny (Fig. 4b)

The onset of the Variscan orogeny took place in the Lower Devonian and
produced a fragmentary record across the Iberian Massif. The first phases of
deformation related to the interaction of Laurussia and Gondwana can be observed in
the Upper Allochthonous Units of NW and SW Iberia, although the structures and

associated metamorphism are strikingly different depending on the region.

A stratigraphic gap and basin instability are the first hints on deformational
processes heralding the Variscan orogenesis in Iberia (ca. 420-410 Ma). These can be
tracked in the Upper Allochthon of SW Iberia, and are followed by the formation of a
SW-verging train of recumbent folds and thrusts in a sinistral transpressional regime
(Expdsito et al., 2002). This major crustal thickening event took place in the outermost

section of the margin of Gondwana during the Pragian-Emsian (ca. 410-395 Ma),
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following early events of syn-orogenic deposition associated with basement denudation
in Lochkovian times. Top-to-the-SW kinematics (in present-day coordinates) of Lower
Devonian structures implies underthrusting to the NE, i.e. subduction of Laurussia
under Gondwana, where a magmatic arc developed in Emsian-Eifelian times (Silva et
al., 2011). Shortening of the upper plate would be favored by the migration of the
subduction hinge toward the upper plate (Doglioni et al., 2007), thus allowing the
development of a shallower downgoing slab, as expected for upper plates of continental

origin (Lallemand et al., 2005).

In Lower Devonian, a neck of stretched peri-Gondwanan lithosphere located
inboard failed mechanically under the compressive regime derived from the interaction
between Laurussia and Gondwana, thus creating an intra-Gondwana subduction zone
for accommodating superimposed shortening throughout the continental margin. Intra-
plate subduction was probably favored by a backstop effect exerted by thick (SW-
verging folds) and more buoyant Variscan lithosphere located toward the Gondwana-
Laurussia suture zone (Rheic suture). Lower Devonian continental subduction was
oblique (dextral; Abalos et al., 2003) and progressed up to high-P conditions under

outboard sections of Gondwana (Albert et al., 2015b).

Some sections of the Upper Iberian Allochthon, such as the Obejo-Valsequillo
Domain, seem to have escaped from penetrative Lower Devonian deformation. This is
in agreement with its intermediate position across the Upper Allochthon inferred from
restoration of Variscan thrusts (Fig. 4a), and confers a remarkable microplate-like entity
to the whole Upper Iberian Allochthon during this stage. The apparent lack of

widespread shortening affecting the upper plate of this subduction zone (uppermost



1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

allochthonous units) suggest that the subduction hinge remained relatively stationary, as
expected for the onset of subduction zones (Doglioni et al., 2007). In this regard,
sinistral lateral components acting over the external parts of the Upper Allochthon
(sinistral transpression during SW-vergent folding), combined with coeval dextral
movements affecting its inboard sections (oblique continental subduction), depict an
overall setting of northwards escape tectonics for the case of the Upper Allochthon

“microplate”.

4.2. Opening of a Devonian intra-Gondwana basin (Fig. 4c)

The geochemical signature of the Lower-Middle Devonian rocks of the
Ophiolitic Allochthonous Units indicate that there were physical conditions for the
opening of a marine basin following Late Devonian continental subduction (Arenas et
al., 2014a). This interpretation ties into the coeval extensional record of the Iberian
Autochthon (alkaline magmatism and basin subsidence; Gutiérrez-Alonso et al., 2008).
Simple orthogonal restoration of the allochthonous pile reveals the location of the
spreading center of this basin between the Upper Allochthonous Units and the pair
constituted by the Cambrian Allochthonous Ophiolites and the Basal Allochthonous
Units. According to the stratigraphic record, neither sediments were laid down at that
time in the continental margins of that basin, nor do thick sedimentary series exist
within the Lower-Middle Devonian ophiolites. Whether or not the lack of Middle
Devonian sedimentary and volcanic rocks in the continental counterparts of the Iberian
Allochthon is associated with deformation and denudation (emerged areas?), the
absence of such stratigraphic record in all this domain may indicates a broad thermal

uplift in relation to ridge inception.
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The Lower Devonian high-P metamorphic belt that is preserved in the
lowermost structural position of the Upper Allochthonous Units of NW Iberia was
developed at ca. 410-390 Ma. This is virtually the same age (somewhat older) as that of
the mafic protoliths of the Lower-Middle Devonian Allochthonous Ophiolitic Units (ca.
400-395 Ma), which are tectonically juxtaposed right underneath that high-P
metamorphic belt. Exhumation of high- to ultra-high-P metamorphic rocks today is
observed in regions subjected to high-rates of lithosphere extension and coeval ocean
basin formation, such as the Woodlark rift (Davies and Warren, 1988; Wallace et al.,
2004). Previously deep-seated high-P metamorphic rocks in these cases can reach lower
crustal levels, and then the upper crust, in less than 3 and 5 Ma, respectively (Gordon et
al., 2012). On the grounds of modern analogues, we propose that initial exhumation of
the Lower Devonian high-P metamorphic rocks was strongly controlled (probably
fuelled) by the opening of the intra-Gondwana oceanic basin shortly after their burial.
Extension of the upper plate, triggered by a subduction hinge migrating away from the
upper plate (Doglioni et al., 2007), could have facilitated both a fast exhumation and the
opening of a basin, which could have then evolved as one of pull-apart type under

dominant transcurrent movements (Arenas et al., 2014a).

4.3. Closure of the intra-Gondwana Devonian basin (Fig. 4d)

In Upper Devonian times, renewed convergence between Gondwana and
Laurussia led to the closure of Middle Devonian oceanic domains. The tectonic polarity
for this event was ruled again by thicker Variscan crust located outboard mainland
Gondwana, i.e. subduction to the W and SW in present-day coordinates. Understacking
of young (Devonian) oceanic crust under the Upper Allochthonous Units was followed

by accretion of older (Cambrian-Ordovician) tracts of transitional crust (Arenas et al.,
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2007a), and then by subduction of continental crust at ca. 380-370 Ma (Basal
Allochthonous Units; Martinez Catalan et al., 1996). Regarding the latter process,
insertion of more buoyant lithosphere under the (previous) Lower Devonian high-P
metamorphic belt caused further exhumation of the bottom members of the Upper
Allochthonous Units via tectonic denudation, which coupled to east-verging folding in
response to simple shearing at the base of the upper plate (Gémez Barreiro et al., 2007).
These processes continued the initial decompression experienced by the Lower

Devonian high-P metamorphic rocks under the Lower-Middle Devonian rifting setting.

The Upper Devonian continental (intra-Gondwana) subduction system was
formed with an angle of inclination between 15° and 30° (Alcock et al., 2005) and
absorbed ongoing dextral convergence (Diez Fernandez et al., 2012a). Initial
exhumation within this system (Basal Allochthonous Units) was driven by crustal-scale
ductile thrusting directed to the Gondwana mainland at ca. 370-360 Ma (e.g., Fervenza
Thrust). Tangential deformation at this stage was concentrated on the upper part of the
subducted plate, and it was likely coeval with further sinking of continental lithosphere.
Ductile thrusting was assisted by erosion in the upper plate and it also forced the
generation of a master, and/or a series of normal faults on top of the overthrusting high-
P nappes (Diez Fernandez et al., 2011). In this regard, top-to-Laurussia shear sense
components of Famennian age affecting the Basal Allochthonous Units (e.g., older than
ca. 358 Ma; Rosas et al., 2008) may account for normal, flat-lying shearing at the onset
of decompression in response to upthrusting and extrusion of deep-seated continental

nappes.

4.4. Development of the Iberian Allochthon (Figs. 5a and 5b)
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Continental convergence remained during the latest Devonian and early
Carboniferous (ca. 360-350 Ma) and was absorbed by W to SW (present-day
coordinates) underthrusting of Gondwanan crust. Superimposed shortening probably
created new contractional shear zones below the Upper Devonian subduction-
exhumation channel. The onset of deformation in the Parautochthon and Autochthon of
NW Iberia represents the transition from a purely continental subduction setting
(recorded in the Basal Allochthonous Units) to a continent-continent collisional

scenario.

At this stage, the progressive diminishing of initial high-P gradients down
structure through the Variscan nappes favors a model of underthrusting of progressively
thicker continental lithosphere. Protracted accretion of more buoyant continental crust
to the base of the Upper Devonian subduction-exhumation system led to its progressive
rotation about an horizontal axis and, consequently, to its deactivation. The early
response to that exhumation process was the nucleation and propagation to the
Gondwanan foreland of a train of recumbent folds within the high-P metamorphic belt
and in its relative autochthon (Iberian Parautochthon and Autochthon). Convergence at
this stage was also accompanied by dextral lateral movements, as indicated by tectonic
fabrics associated with fold development in NW Iberia (Diez Fernandez and Martinez
Catalan, 2012) and probably the top-to-the-NW kinematics (Azor et al., 1994b) that
dominated the exhumation process in the currently NE-dipping (originally SW-dipping)

Central Unit.

Continuous constriction of the mantle wedge over the former subduction channel

produced an eventual mechanical coupling between the Basal Allochthonous Units and
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the rest of the Iberian Allochthon, which, from this point on, would absorb general shear
deformation associated with ongoing underthrusting more efficiently (ca. 350-340 Ma).
In the Upper Allochthonous Units, the existence of a train of recumbent folds with
comparable age, trend and vergence than those observed in the Basal Allochthonous
Units supports this idea. Fold propagation across the Upper Allochthonous Units
progressed toward Laurussia, reaching the lower parts of the Obejo-Valsequillo Domain
shortly afterwards. However, some of those folds in the Upper Allochthonous Units
were probably nucleated during the Upper Devonian, prior to the aforementioned
mechanical coupling. This may be the case of the recumbent folds affecting the Lower
Devonian high-P metamorphic belt exposed in NW Iberia, for which subsequent general
shear after coupling would have produced additional amplification of their initial
(overturned?) recumbent geometry. All these processes attest for an orogenic shortening
that is propagating more pervasively into the lower plate, but that was already affecting
the upper plate since the onset of continental subduction. This transition is observed in
advanced stages of continental collision following a stage more dominated by

subduction (Doglioni et al., 2006, 2007).

Large-scale ductile thrusts, such as the Lalin-Forcarei Thrust and the basal thrust
of the Iberian Parautochthon, represent advanced stages of the accretion of mainland
Gondwana under the Iberian Allochthon and Parautochthon, respectively (ca. 340 Ma).
These structures moved the Iberian Allochthon onto inner domains of Gondwana in the
first place (Martinez Catalan et al., 1996), and are responsible for the juxtaposition of
the Iberian Parautochthon onto the Iberian Autochthon (Ribeiro et al., 1990). The
prolongation of these broad ductile shear zones toward Laurussia is possible through the

(top-to-the-Cantabrian Zone) strongly sheared sequences and tectonic fabrics that
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dominate the internal structure of the Basal Allochthonous Units of Iberia. The general
mylonitic character of these fabrics accounts for pervasive ductile deformation along the
lower structural levels of the Iberian Allochthon. A progressive ductile drag and
stretching of the Basal Allochthonous Units during underthrusting would have
conferred its apparent far-traveled nature to the Iberian Allochthon. During this process,
the Allochthonous Ophiolites may have acquired some of its tectonically dismembered
appearance. Such a broad ductile drag explains the great lateral continuity of the Upper
Devonian high-P metamorphic belt across the Iberian Massif (Diez Fernandez and
Arenas, 2015), as well as the generation of unusually large allochthonous terranes like

the Iberian Allochthon in a collisional orogeny.

Underthrusting continued during the Tournaisian-Viséan (ca. 340-330 Ma).
However, the absence of regional, east to northeast verging folds of that age in the
Upper Allochthonous Units located south of the Coimbra-Cérdoba shear zone, suggests
that simple shearing at the base of the Iberian Allochthon (if any) did not trigger folding
in its outboard-most sections. In turn, continental convergence at this stage was
accommodated by the nucleation of discrete reverse faults cutting across the upper
plate. Among them we find the set out-of-sequence thrusts that bring pieces of an
underlying suture zone to internal sections of the Upper Allochthonous Units, in the
Obejo-Valsequillo Domain (Espiel Thrust; Apalategui and Pérez-Lorente, 1983;
Martinez Poyatos et al., 2001). These type of faults have been also described in NW
Iberia (Martinez Catalan et al., 2002), and altogether they depict an overthrusting event
that transported most of the Iberian Allochthon further inboard Gondwana, thus
enhancing its far-traveled nature. According to geological data, this out-of-sequence

thrusting event was accomplished by taking the Upper Devonian, intra-Gondwana
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suture zone and its major tectonic boundaries as primary detachment levels (e.g., Diez

Fernandez et al., 2013a).

Due to limited structural and tectonostratigraphic record, the role of Laurussia in
the course of all this continental accretion remains uncertain. However, the development
of coeval folds (south-) vergent to its mainland in the South Portuguese Zone (Martinez
Poza et al., 2012) suggests that the backstop effect exerted by the Rheic suture between
Gondwana and Laurussia —dipping to Gondwana since Lower Devonian times—
remained active up to the lowermost Carboniferous, at both sides of the suture zone. In
this scenario, the late amplification and development of south-directed thrusts affecting
the south-verging folds of the Upper Allochthonous Units of SW Iberia might have

occurred during the Upper Devonian through the early Carboniferous.

In the South Portuguese Zone, folding of sedimentary series postdating the onset
of the Rheic suture probably represents backs and forths in the far-field interaction
between Gondwana and Laurussia, as demonstrated by alternating compressional and
extensional events affecting the inner sections of Gondwana (see evolutionary model).
Subsequent folds verging toward Gondwana attest to a switch in the inclination of the
reference shear planes. The age and structural polarity of these folds fit the timing and
kinematics of ongoing crustal underthrusting under the Iberian Allochthon. Thus, we
speculate that understacking of Gondwanan lithosphere might have surpassed and

interplayed with the Rheic suture by the Tournaisian-Viséan.

Some of the lithosphere extension and related magmatism observed in the South

Portuguese Zone (not represented in Fig. 5) occurred in the early Carboniferous (ca.
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360-330 Ma). At that age, a progressive Laurussia-directed underthrusting of
Gondwanan lithosphere must have produced an incremental constriction in the mantle
wedge resting over the Upper Devonian continental subduction system. Such
constriction implies a lateral extrusion of that portion of mantle toward Laurussia, i.e.
toward the South Portuguese Zone. A readjustment like this in the mantle lithosphere
under Gondwana could have led to diffuse asthenosphere upwelling, extension, and
magmatism in the Laurussian side of the orogen during the course of ongoing
convergence. Some of the lowermost Carboniferous magmatism in SW Iberia might be
explained by this large-scale mechanism, which might also have contributed to

subsequent thermal anomalies in that region.

4.5. Opening of the Beja-Acebuches basin and the onset of orogenic collapse (Fig. 5¢)

The Viséan is a stage of major changes in the dynamics of the Variscan orogen.
A former period ruled by convergence between Gondwana and Laurussia gives way to a
new phase characterized by intra-orogenic extensional activity (Simancas et al., 2006;
Pereira et al., 2012b). Two main processes stand out: the opening of the Beja-
Acebuches basin (named after the Beja-Acebuches Ophiolite) and the start of orogenic

gravitational collapse.

Though speculative, a look into the mantle topography before the switch to an
extensional regime may offer a tectonic perspective about the origin of the latter. In our
model, Viséan extension followed the underthrusting of Gondwanan crust toward
Laurussia. Regardless of the amount of crustal material seated under the Iberian
Allochthon, such tectonic polarity favors a thicker crustal root toward Gondwana, i.e. a

higher mantle topography toward Laurussia (Fig. 5b). The constriction and lateral
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extrusion of the mantle resting below peri-Gondwana, in response to a protracted

underthrusting of mainland Gondwana, may have also favored such a higher mantle

topography.

The numerous occurrences of mafic to intermediate magmatism of Tournaisian-
Viséan age in SW Iberia have been related to a large-scale extensional event (Simancas
et al., 2003), in which the opening of the Beja-Acebuches basin, floored with mafic and
some ultramafic rocks, represents an eloquent proof of lithosphere necking (Azor et al.,
2008). In this process, the mantle certainly played a role, as shown by varied
petrological evidence from coeval mafic to intermediate magmatism (e.g., Moita et al.,
2009; Pereira et al., 2009, 2015; Cambeses et al., 2015). But there is no consensus on
whether or not extension was triggered by thermal anomalies in the mantle (e.g.,
plumes; Simancas et al., 2006), by subduction (Bard, 1977; Quesada et al., 1994), by a
process of transcurrent slab break-off after collision (Pin et al., 2008), or due to
intracontinental rifting in a transtensional (pull-apart?) setting (Bard, 1977; Azor et al.,
2008; Cambeses et al., 2015). A higher mantle topography toward Laurussia, as
suggested before, not only would imply a major thermal anomaly in the region, but also
explains the location of the Beja-Acebuches basin, which could have been opened using
this broad “lithosphere orogenic neck” as a trigger. The upwelling of the asthenosphere
was probably responsible for the decompressional melting of the lithospheric mantle,
which had already been metasomatized by a subducted slab (Rheic Ocean) leading to
the generation of mafic parental magmas (Pereira et al., 2015). Simultaneously, the
underplating of mafic magmas caused partial melting of continental crust. Time-
equivalent and mantle-influenced magmatic activity in other parts of the Iberian Massif

was apparently not related to the opening of additional oceanic basins (e.g., Pyrite belt;
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Mitjavila et al., 1997; Martin-Izard et al., 2016), so lithosphere extension at this stage
was probably heterogeneous (additional minor lithosphere necks might have existed)
and/or the far-field influence of the mantle high here suggested was not restricted to the

Gondwana-Laurussia suture.

A simple restoration of Variscan thrusts in SW Iberia indicates that the opening
of the Beja-Acebuches basin cut off the tectonic pile culminated by the Iberian
Allochthon. This implies that the former Rheic suture between Gondwana and
Laurussia in Iberia became part of a different plate than the rest of the orogen. The
actual location of that suture zone is a matter of debate, because traces of the Rheic
Ocean crust are yet to be found. The terrane capable of sourcing sediments dispersed on
both sides of the Rheic suture is interpreted to have been completely removed by
erosion in SW Iberia (Pereira et al., 2012a). In this regard, erosion of rift shoulders
during the opening of the Beja-Acebuches basin and/or subsequent crustal
understacking during its closure are two likely mechanisms capable of hiding most of
the previous orogenic record associated with the Rheic suture. This is particularly true
for the lower plate to the north-dipping suture of the Beja-Acebuches basin.
Interestingly, that plate is the one where the initial suture between Gondwana and
Laurussia was located after the intracontinental rifting that gave way to the Beja-
Acebuches basin. Therefore, even if separating Gondwanan and Laurussian domains,

the suture of the Beja-Acebuches basin should be considered as a reworked one.

Lessening of the gravitational disequilibrium created after the transference of the
Iberian Allochthon onto the Gondwana mainland was conducted by extensional

detachments in the upper part of the tectonic pile. The former understacking, thickening
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and pressurization of its relative autochthon favored the thermal disequilibrium of the
orogenic crust. This crust started to flow laterally and melt fertile crustal layers as
response to thermal reequilibration, giving rise to migmatitic domes across the Iberian
Autochthon and to felsic (crust-derived) magmatism after a period of thermal
maturation (Alcock et al., 2009; Pereira et al., 2009; Martinez Catalan et al., 2014). The
consequent crustal extension forced the mantle to rise to compensate for lithosphere
attenuation. The opening of the Beja-Acebuches basin was roughly coincidental with
the initiation of the gravitational collapse of the Variscan thrust pile. With this
perspective, we think that positive feedback probably existed between the early stages
of thermal and gravitational reequilibration of the orogen and the lithosphere extension

that led to the opening of that basin.

Thermal models suggest that the overriding of the Iberian Allochthon can
explain alone the extensional collapse of the Variscan crust and the generation of
abundant (crust-derived) magmatism of Serpukhovian-Bashkirian age (Alcock et al.,
2015). Yet, the mafic to intermediate (alkaline, calc-alkaline, and metaluminous)
magmatism of SW Iberia is slightly older (Tournaisian-Viséan) and shows fair mantle
input. Consequently, the mechanism(s) in place for the development of such mafic to
intermediate magmatism (e.g., plumes, transient arc, slab break-off, and/or orogenic
transtension) could have also contributed to the collapse of the orogenic hinterland in
the first place. In this regard, the existence of a higher mantle topography toward
Laurussia would explain not only older (mantle-induced?) extensional activity in SW
Iberia but also larger (petrological) mantle contributions in the lack of a thick crustal
root underneath this region. Remarkably, mantle contributions diminish toward the

north and northeast of the Iberian Massif, where extensional syn-orogenic magmatism is
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slightly younger and is clearly dominated by crustal sources (e.g., Villaseca et al.,
1998). That petrological and geochronological trend across the orogen accords well with
the existence of a thicker crustal root toward Gondwana, supports the existence of
irregular mantle topography before extension, and is consistent with protracted

underthrusting of Gondwanan crust toward Laurussia.

4.6. The collapse of Variscan orogenic crust (Fig. 5d)

Once the cohesion of the orogen was lost to its thermal re-equilibrium, the
gravitational collapse gained importance through Serpukhovian-Bashkirian times. This
stage is characterized by extensive felsic magmatism, which occurred preferentially in
areas subjected to severe denudation, i.e. under the Iberian Allochthon. Extensional
faults in the upper crust drove further tectonic denudation (e.g., Pico Sacro and Puente
Génave — Castelo de Vide detachments), whereas lower crustal flow distributed vertical
flattening and lithosphere attenuation across the orogen. Regions dominated by felsic
magmatism of Serpukhovian-Bashkirian age occur in the core of dome structures (e.g.,

Padron dome), revealing the contribution of diapiric flow to the reequilibration process.

The extensional collapse of the Variscan orogen has been classically viewed as a
syn-convergent process (Franke, 2000). One of the main reasons sustaining this idea in
the case of Iberia is that extension was preceded and followed by indisputable phases of
continental convergence (Martinez Catalan et al., 2002). Indeed, thermal and
gravitational re-equilibration were not acting alone on the overthickened crust. The
onset of the Central Iberian arc has been framed in this stage too (Martinez Catalén,
2012). Orogen-parallel extensional flow dominated the gravitational re-equilibration of

the hinterland, and has been interpreted as the result of ongoing oblique plate
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movements in the course of orogenic collapse (Diez Fernandez et al., 2012c).
Additionally, the development of strike-slip shear zones coeval with extension, furthers
the role exerted by lateral tectonics at this stage (Pereira et al., 2009). Any of the
aforementioned structural records could have been developed either under plate-scale
transtension and/or transpression. There is, however, a major geodynamic event on
which convergence setting at plate scale relies during Serpukhovian-Bashkirian times,

the closure of the Beja-Acebuches basin.

Dipping under the Iberian Allochthon and Autochthon, the Beja-Acebuches
Ophiolite has an age of accretion (ca. 342-328 Ma) that matches the age of the onset of
Variscan orogenic collapse. Hence, the subduction of oceanic lithosphere formed in the
Beja-Acebuches basin provides a convergence geodynamic setting under which ongoing
gravitational collapse must have evolved. The closure of the oceanic domain
represented in the Beja-Acebuches Ophiolite has been widely considered as related to a
subduction process (e.g., Munha et al., 1986; Eden and Andrews, 1990; Silva et al.,
1990; Fonseca and Ribeiro, 1993; Quesada et al., 1994; Simancas et al., 2003; Diaz
Azpiroz et al., 2006; Braid et al., 2010), although part of the tectonic evolution of this
domain could be also related to an obduction event (Pérez-Caceres et al., 2015a). Recent
findings of lawsonite-bearing rocks in the Pulo do Lobo Unit (Rubio Pascual et al.,
2013b) suggest the formation of a pressure-dominated metamorphic belt during the
accretion of the Beja-Acebuches Ophiolite, thus providing additional support to models
that acknowledge subduction as a driving mechanism during the closure of the Beja-

Acebuches basin.
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The development of SW-verging folds and thrusts affecting the previous record,
both in the Iberian Allochthon and Autochthon of SW Iberia during the Serpukhovian-
Bashkirian, can be explained by a NE-directed tectonic polarity for the closure of the
Beja-Acebuches basin. Convergence at this stage probably occurred in a transpressional
setting, as suggested by sinistral lateral movements along major tectonic boundaries of
SW Iberia (Crespo-Blanc, 1992). In this scenario, convergence may have also facilitated
reactivation of previous thrusts, particularly in the upper crust (e.g., out-of-sequence
thrusts with Serpukhovian-Bashkirian age). Later pronounced extension within the
orogenic hinterland facilitated the widening of former sedimentary basins over the

Variscan allochthonous nappes (e.g., Los Pedroches basin).

The opening of the Beja-Acebuches basin also covers the start of the orogenic
collapse (see section 4.5). Either a mantle upwelling in response to the inception of the
Beja-Acebuches basin, and/or the subsequent consumption of that same basin by NE-
directed subduction, are two expected contributors of deep-sourced material to bear on
the orogenic collapse. The ca. 328-317 Ma calc-alkaline to adakitic-like magmatism
(Pavia pluton; Lima et al., 2013) lying to the north of the Beja-Acebuches Ophiolite
may represent the product of such later subduction. In this way, we find older (and
much more abundant) evidence of such crustal growth toward SW Iberia (closer to the
Beja-Acebuches Ophiolite; e.g., Pereira et al., 2009; Cambeses et al., 2015) than to
Central and NW Iberia (toward the advancing front of Variscan allochthonous nappes;
e.g., Dias et al., 2002; Rodriguez et al., 2007). This makes a petro-geochronological
trend that may express either the lag in the rise of the mantle after maximum crustal
thickening (earlier in SW Iberia by favorable mantle topography after rifting), and/or

the arrival of mantle-derived melts related to a downgoing oceanic tract that sinks
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progressively to the northeast (consumption of the Beja-Acebuches basin), i.e. toward
the advancing front of Variscan allochthonous nappes. That sector of the orogen would
be equivalent to a broad back-arc region relative to the subduction zone closing the
Beja-Acebuches basin. Eventual migrations of its subduction hinge (e.g., Doglioni et al.,
2007) might explain transient extensional or compressional regimes affecting that

section of the orogen.

The east- and northeast-directed collapse of the eastern orogenic hinterland is
roughly contemporaneous with the early stages of east-directed thrusting in the western
part of the foreland of the Cantabrian Zone (Dallmeyer et al., 1997; Martinez Catalan et
al., 2003). Such coupling between orogen-perpendicular hinterland extension and
foreland compression in the Gondwanan flank of the orogen has its equivalent in the
Laurussian side (South Portuguese Zone). South-directed extension along the Puente
Génave-Castelo de Vide Detachment is coeval with the southerly propagation of thrusts
and folds in the foreland of the South Portuguese Zone. Therefore the lateral spreading
of the orogenic crust has been a fundamental cause for triggering Variscan shortening
across foreland basins at both sides of the orogen (Cantabrian and South Portuguese

zones).

4.7. Late strike-slip tectonics (Fig. 3)

Convergence persisted during the orogenic collapse, which, in turn, waned as
extensional flow reduced gradients of potential energy. Thermal equilibrium was not
fully achieved in the process, since syn-orogenic magmatism remained throughout the
Bashkirian and Moscovian (Pereira et al., 2009, 2015; Martinez Catalan et al., 2014;

Cambeses et al., 2015). Subhorizontal extension was eventually outpaced by
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superimposed subhorizontal compression in Moscovian times. Some of the magmatism
at this stage occurred in close relation to strike-slip shear zones (e.g., Aranguren et al.,
1997; Valle Aguado et al., 2005; Carracedo et al., 2009), which accommodated most of
the lateral components of convergence along their central parts and distributed
shortening in their tectonic blocks, thus producing open upright folds all over the
Variscan hinterland. Transcurrent deformation reworked previous thrusts and normal
faults and partly redrew the map of tectonic blocks. Dextral and sinistral strike-slip
shear zones acted together and created escape tectonics settings at local scale (Iglesias
Ponce de Leon and Choukroune, 1980). Such settings in the hinterland were coeval with
further propagation of thrusts and folds to both the Gondwanan and Laurussian
forelands. Oroclinal bending of the orogen occurred in the course of all of this
deformation, starting from the Serpukhovian-Bashkirian extensional collapse and
culminating with the folding of the latest syn-orogenic deposits of the Gondwanan

foreland.

5. Conclusions

Strike-slip deformation during the Moscovian segmented the hinterland of the
Variscan orogen into new tectonic blocks, partly different from those operating during
previous convergence processes between Gondwana and Laurussia. Becoming fully
aware of this particular switch in the architecture of the orogen (even if it was
transitional) is essential for understanding the common structural history linked to
previous tangential tectonics at both sides of major transcurrent shear zones, such as the
Coimbra-Cordoba shear zone. Shear zones accommodating large amounts of tangential
deformation, transported pieces of continental and oceanic crust located at the periphery

of Gondwana that were affected by previous Variscan deformation. These shear zones
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are envisaged as the rulers during the early stages of Pangea amalgamation, which,

however, did not seal Gondwana and Laurussia once for all. Inception of short-lived

oceanic basins following periods of convergence provides solid evidence on a complex

amalgamation process in southern Europe, hardly explainable by a single collisional

Process.

Based on our integration of structural and geochronological data, the Variscan

tectonic evolution of the Iberian Massif can be summarized as follows (Paleozoic

geographic coordinates):

1.

2.

3.

4.

Following the closure of the Rheic Ocean, Gondwana and Laurussia collided in
the Lower Devonian. Kinematics of major structures that developed toward the
most external margin of Gondwana support that Laurussia was the lower plate to
the Rheic suture.

Contraction over the margin of Gondwana initiated an intra-Gondwana,
continental subduction zone dipping to the north, which progressively spread
under the Rheic suture.

A transient period of extension after continental subduction led to the opening of
an intra-Gondwana oceanic basin in the Lower-Middle Devonian. Such intra-
orogenic rifting coupled with the initial exhumation of high-P rocks within the
former continental subduction system.

Closure of the intra-Gondwana basin in the Upper Devonian caused the
accretion to the north of Devonian oceanic crust, then Cambrian-Ordovician
transitional crust, and finally the subduction of inner sections of Gondwana to

the north.
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5.

6.

7.

8.

9.

Continuous convergence between Gondwana and Laurussia during the early
Carboniferous was accommodated by underthrusting of Gondwanan lithosphere
to the north, below the peri-Gondwanan domain that had been previously
involved in the collisional orogenesis. Protracted underthrusting locked the
Upper Devonian intra-Gondwana subduction first, and then forced the
mechanical coupling between the lower and upper tectonic plate. Coeval
shearing throughout the orogenic crust generated a series of south-directed folds
and a series of extensional faults in the upper plate. Ductile drag exerted by the
lower plate extended the Upper Devonian subduction system and the intra-
Gondwana suture zone under the upper plate, thus shaping this whole ensemble
of peri-Gondwanan terranes into a set of allochthonous units.

Further convergence nucleated a system of out-of-sequence thrusts, which
reworked the intra-Gondwana suture in the course of its obduction onto the
Gondwana mainland.

Rifting of the resulting overthickened crust led to the opening of a short-lived
oceanic basin (Beja-Acebuches Ophiolite) near the Gondwana-Laurussia suture
zone formed in the Lower Devonian.

Intra-continental extension was followed by or coeval with the gravitational
collapse and thermal re-equilibration of the orogen, which remained active up to
the late Carboniferous. Continental convergence resumed shortly afterwards, and
forced the closure of newly-formed oceanic basins. Deformation propagated via
thrusts and folds toward the mainland of both Gondwana and Laurussia and
favored the reactivation of former thrusts.

Lithosphere extension in the hinterland was progressively replaced by strike-slip

deformation. Oroclinal bending of the orogen started in this transition. Lateral
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tectonics at this stage was manifested in discrete, subvertical shear bands and in
the upright folding of previous flat-lying structures. Foreland propagation of
deformation continued during this period. Variscan deformation concluded with
the development of late oroclinal bends affecting the whole structural grain of

the orogen.
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Figure Captions
Fig. 1. Zonation of the Variscan orogen after Martinez Catalan et al. (2007) and Diez
Fernandez and Arenas (2015). The locations of the Coimbra-Cérdoba Shear Zone and

the oroclinal bends of the orogen are shown.

Fig. 2. Geological map showing the main zones of the Iberian Massif (after Diez
Ferndndez and Arenas, 2015). Abbreviations: AF — Azuaga Fault; BTolP — Basal
Thrust of the Iberian Parautochthon; BAO — Beja—Acebuches Ophiolite; CA —
Carvalhal Amphibolites; CF — Canaleja Fault; CMU — Cubito—Moura Unit; CO —
Calzadilla Ophiolite; CU — Central Unit; EST — Espiel Thrust; ET—Espina Thrust;
HF— Hornachos Fault; IOMZO —Internal Ossa-Morena Zone Ophiolites; J-PCSZ —
Juzbado-Penalva do Castelo Shear Zone; LFT — Lalin-Forcarei Thrust; LPSZ — Los
Pedroches Shear Zone; LLSZ — Llanos Shear Zone; MLSZ — Malpica—Lamego Shear
Zone; MF — Matachel Fault; OF — Onza Fault; OVD — Obejo—Valsequillo Domain;
PG-CVD — Puente Génave—Castelo de Vide Detachment; PRSZ— Palas de Rei Shear
Zone; PTSZ — Porto-Tomar Shear Zone; RF — Rias Fault; SISZ —South Iberian

Shear Zone; VF — Viveiro Fault; ZSI — Zalamea de la Serena Imbricates.

Fig. 3. Composite cross-section of major tectonic elements of the Iberian Massif (after
Diez Fernandez and Arenas, 2015). Abbreviations follow Figure 2. The location of the

Iberian Reflective Body is shown.
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Fig. 4. Idealized Variscan evolution of the Iberian Massif during the Devonian (see text
for explanation). Circled numbers refer to specific structures and basins of the Iberian
Massif. (a) Simplified pre-collisional paleogeography across the margin of Gondwana
after restoration of Variscan deformation. Note the model is at 50% scale relative to the
rest of the drawings (b) Tectonic setting showing the onset of Variscan deformation in
the peri-Gondwana realm after the closure of the Rheic Ocean. Note the north-directed
tectonic escape proposed for the peri-Gondwanan domain. (¢) Opening of an intra-
Gondwanan oceanic basin in the Lower-Middle Devonian. (d) Closure of the intra-
Gondwana basin by accretion of different tectonic slices of oceanic crust (ophiolitic
units) and followed by subduction of Gondwanan continental crust under the previously

stacked ophiolites.

Fig. 5. Idealized Variscan evolution of the Iberian Massif during the Carboniferous (see
text for explanation). Circled numbers refer to specific structures and basins of the
Iberian Massif (numbering continues list of Figure 4). (a) Thrust and fold nappe
tectonics during the early stages of the emplacement of the Iberian Allochthon.
Propagation of Gondwana-verging folds in the Allochthon accompanied the
underthrusting of the Iberian Autochthon and Parautochthon. (b) Climax of Gondwanan
lithosphere underthrusting and onset of out-of-sequence thrusts. Note the proposed
mantle topography near the Rheic suture that separates Gondwana from Laurussia. Time
lines in sections b and ¢ overlap each other because they both represent processes that
may have occurred simultaneously. (c¢) Inception of the Beja-Acebuches basin,
beginning of the orogenic extensional collapse and advance of out-of-sequence thrusts.

(d) Closure of the Beja-Acebuches basin, widespread collapse of the orogen and
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reactivation of out-of-sequence thrusts. Along-strike movements are not represented for
extensional faults. Location and kinematics of later strike-slip shear zones is shown.

Abbreviations: IRB — Iberian Reflective Body; SZ — Shear Zone.

Table 1. Summary of the main tectonic events recognized on each geotectonic zone of
the Iberian Massif during the Variscan orogeny. Dashed lines show a time-based
correlation. Names in capital letters refer to the nomenclature utilized in this work for
tectonic integration, while the commonly used regional names are shown in grey boxes
below (the terms autochthon and allochthon inside parentheses refer to the

allochthonous or autochthonous nature after Diez Fernandez and Arenas, 2015).
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