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Abstract. Quantitative tectonic geomorphology hinges on the analysis of longitudinal river profiles. The model

behind almost all approaches in this field originates from an empirical relationship between channel slope and

catchment size, often substantiated in the form of the stream-power model for fluvial incision. Significant

methodological progress was recently achieved by introducing the χ transform. It defines a nonlinear length

coordinate in such a way that the inherent curvature of river profiles due to the increase of catchment sizes in

the downstream direction is removed from the analysis. However, the limitation to large catchment sizes inher-

ited from the stream-power approach for fluvial incision persists. As a consequence, only a small fraction of all

nodes of a digital elevation model (DEM) can be used for the analysis. In this study we present and discuss some

empirically derived extensions of the stream power law towards small catchment sizes in order to overcome this

limitation. Beyond this, we introduce a simple method for estimating the adjustable parameters in the original χ

method as well as in our extended approaches. As a main result, an approach originally suggested for debris flow

channels seems to be the best approximation if both large and small catchment sizes are included in the same

analysis.

1 Introduction

The vast majority of the approaches used to derive informa-

tion on tectonic processes from topography are based on the

analysis of longitudinal river profiles. The fundamental re-

lationship between channel slope S and upstream catchment

size A,

S = ksA
−θ , (1)

which is used to infer such information, dates back to a sem-

inal empirical study of Hack (1957) and is often referred to

as Flint’s law (Flint, 1974). The parameters ks and θ denote

steepness index and concavity index, respectively.

Understanding and quantitative interpretation of Eq. (1)

hinges on the stream-power approach (e.g., Howard, 1994;

Whipple and Tucker, 1999; Whipple, 2004; Wobus et al.,

2006), where it is assumed that the rate of fluvial erosion in

a bedrock channel depends on the product AθS. In this con-

text, Eq. (1) reflects a constant erosion rate along the river as

it occurs, e.g., in equilibrium with homogeneous uplift.

In the simplest version of the stream-power approach it is

assumed that the erosion rate E is linearly proportional to

AθS. The more general approach implements a power-law

relationship

E = K

(

(

A

A0

)θ

S

)n

, (2)

where K denotes erodibility. The arbitrary reference catch-

ment size A0 has been introduced as a scaling parameter
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2 S. Hergarten et al.: Tectonic geomorphology at small catchment sizes

in order to avoid an odd physical dimension of K . Using

this scaling, K describes the erosion rate at a catchment size

A0 and a (hypothetical) channel slope of 1. Although called

erodibility, K not only refers to the properties of the channel

bed but also contains the effect of precipitation, as the ero-

sion rate in principle depends on the discharge instead of the

catchment size.

Physically based models of bedrock incision suggest that

the concavity index θ of a steady-state bedrock river un-

der homogeneous conditions depends not only on the con-

stitutive laws of the erosion process but also on the cross-

sectional geometry of the channels (e.g., Whipple, 2004;

Whipple et al., 2013; Lague, 2014). This explains some

variation in θ around the value θ ≈ 0.5 originally found by

Hack (1957) or around the reference value θref = 0.45 being

widely assumed for perfect bedrock channels under homoge-

nous steady-state conditions (Whipple et al., 2013; Lague,

2014).

A range of θ between about 0.4 and 0.7 has been found un-

der relatively homogeneous conditions (e.g., Whipple, 2004;

Whipple et al., 2013), while a wider range from less than

0.2 in steep headwater channels to more than 1 in some allu-

vial channels has been reported (Brummer and Montgomery,

2003; Montgomery, 2001; Sofia et al., 2015). Apparent vari-

ations in θ may also arise from spatial inhomogeneity or

non-steady topography. Analyzing channel slopes at constant

catchment sizes, Hergarten et al. (2010) found a strong pos-

itive correlation between surface elevation and slope in sev-

eral orogens, suggesting a correlation between uplift rate and

elevation. This correlation will lead to a higher apparent con-

cavity index when following individual rivers, which may ex-

plain why the majority of the values of θ found in nature are

greater than θref = 0.45.

Compared to the concavity index θ , less is known about

the exponent n as it cannot be determined from individual

equilibrium river profiles under uniform conditions. Accord-

ing to Eq. (4), the exponent n can be determined by compar-

ing river segments being in equilibrium with different uplift

rates, and the results tentatively suggest that n should not be

far away from 1 (Wobus et al., 2006).

Using Eq. (2), the evolution of the surface elevation

H (x, t) along the stream profile through time under a given

uplift rate U follows the partial differential equation

∂H

∂t
= U − K

(

(

A

A0

)θ
∂H

∂x

)n

, (3)

where the linear coordinate x follows the upstream direction

of the considered river. Both U and K may vary spatially and

temporally.

The simplest interpretation of Eq. (3) refers to steady-state

topography where uplift and erosion are in local equilibrium.

Under these conditions, the ratio of uplift rate and erodibil-

ity can be directly obtained from the steepness index (Eq. 1)

according to

U

K
=

(

ks

Aθ
0

)n

. (4)

The most interesting applications of the stream-power ero-

sion equation (Eq. 3), however, concern nonequilibrium river

profiles due to temporally changing uplift rates or due to

climate-induced changes in the erodibility. If such changes

are discontinuous, they result in distinct knickpoints propa-

gating in the upstream direction.

2 The χ transformation and its limitation

Recently, the so-called χ plot (or χ transformation) has in-

troduced the perhaps most important methodic progress in

evaluating and interpreting longitudinal river profiles since

the seminal work of Howard (1994). It transforms the up-

stream coordinate x into a new coordinate χ in such a way

that the inherent curvature of equilibrium profiles due to the

reduction in catchment size in the upstream direction van-

ishes. The catchment size A can be eliminated from Eq. (3)

if the transformation satisfies the condition

dx

dχ
=
(

A

A0

)θ

, (5)

which can be achieved by

χ (x) =
x
∫

x0

(

A(ξ )

A0

)−θ

dξ, (6)

where x0 is an arbitrary reference point. As the channel slope

is S = ∂H
∂x

, the erosion rate (Eq. 2) can be written in the form

E = K

(

dx

dχ

∂H

∂x

)n

(7)

= K

(

∂H

∂χ

)n

. (8)

Thus, the local erosion rates is directly related to the slope

of the river profile in the H vs. χ representation, and Eq. (3)

simplifies to

∂H

∂t
= U − K

(

∂H

∂χ

)n

. (9)

The solutions of this equation and their potential for un-

raveling the uplift and erosion history have been discussed

by Royden and Perron (2013), and a formal inversion pro-

cedure for the linear case (n = 1) has been presented by

Goren et al. (2014).

The most striking property of the χ transformation is im-

mediately recognized in Eq. (9): if U and K are spatially ho-

mogeneous, all upstream paths starting from x0 are described
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by the same differential equation, so that the H vs. χ curves

of all tributaries must collapse with the H vs. χ curve of the

main stream. Conversely, spatial inhomogeneity results in a

deviation of the curves belonging to different branches that

increases in the upstream direction. Thus, a narrow bunch

of H vs. χ curves with a nonlinear overall shape is the fin-

gerprint of temporal variations under spatially homogeneous

conditions, while a wide but overall straight bunch points

towards spatial heterogeneity under steady-state conditions.

This simple interpretation, however, only holds as long as the

drainage pattern has not changed in the past, since changes

in catchment sizes also result in deviations between different

branches (Willett et al., 2014; Yang et al., 2015).

Since a clear distinction requires the consideration of a

large number of tributaries, the inherent limitation of the

stream-power approach to the fluvial regime also limits the χ

method. As addressed in several studies, Flint’s law (Eq. 1),

and thus the stream-power erosion equation (Eq. 2) with a

constant concavity index θ , breaks down at small catchment

sizes where lower limits between about 0.1 and 5 km2 have

been reported (Montgomery and Foufoula-Georgiou, 1993;

Stock and Dietrich, 2003; Wobus et al., 2006).

The transition from a fluvial regime at large catchment

sizes to a regime dominated by hillslope processes is ex-

plored by an example from Taiwan in Fig. 1. Based on the re-

cently released SRTM1 digital elevation model (DEM) with

a mesh width of 1 arcsecond, flow directions (D8 algorithm;

O’Callaghan and Mark, 1984), catchment sizes, and chan-

nel slopes were computed for the entire island after filling

all local depressions. For comparison, the same analysis was

performed on the older SRTM3 DEM with a mesh width

of 3 arcseconds. The mean slope (black markers) follows

Eq. (1) well above a catchment size of a few square kilo-

meters with a steepness index θref = 0.45. Clear deviations

from this behavior are visible at catchment sizes below about

2 km2 in the Taiwan data set. These deviations are even more

pronounced in the finer SRTM1 data set than in the SRTM3

data set, suggesting that they indeed arise from a limitation

of the stream-power approach and not from the potentially

inadequate representation of the drainage pattern on coarse

DEMs (Stock and Dietrich, 2003).

On the other hand, the number of nodes with a catchment

size of A or larger roughly decreases like A−0.5 (Maritan

et al., 1996). For a DEM with a mesh width of 1 arcsecond,

this means that only some 2 % of all DEM nodes have a

catchment size A ≥ 2 km2; thus, about 98 % of all nodes can-

not be used in the χ method here. Therefore, an extension of

the χ method towards smaller catchment sizes is desirable

for deriving maps of χ in order to separate temporal varia-

tions from effects of spatial heterogeneity. Beyond increasing

the pure data density, it is also helpful with regard to the con-

test of catchments brought into discussion by Willett et al.

(2014). Growing or shrinking catchments are characterized

by the curvature in the H vs. χ plot becoming more and more

significant close to the migrating drainage divide. Therefore,
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Figure 1. Relationship between mean channel slope and catchment

size for the topography of Taiwan. Channel slopes and catchment

sizes were derived from the SRTM1 and SRTM3 DEMs, and mean

slopes were obtained from logarithmic bins with a factor of
√

2

(black markers).

analyzing the migration of drainage divides quantitatively re-

quires a χ transform free of any bias at small catchment sizes

induced by the limited applicability of the stream-power law.

3 Extending the χ method to small catchment sizes

In the following we present two extensions of the basic re-

lationship between channel slope and catchment size (Eq. 1)

towards small catchment sizes and their implementation in

the χ method. In most applications of the χ method, the con-

cavity index θ is considered an adjustable parameter and used

to improve either the straightness of the H vs. χ plot or the

collinearity with tributaries. In the following, the approach

with adjustable concavity index θ is denoted χθ , while χ

represents the version with the reference value θref = 0.45.

However, the curvature of the data in Fig. 1 already suggests

that the adjustment of θ may only introduce a limited im-

provement at small catchment sizes compared to the refer-

ence value θref.

The approaches presented in the following are intended to

be as simple as possible. First, we aim at a representation by

a uniform equation without distinguishing different regimes,

although the domain below (concerning catchment size) the

region where Flint’s law holds is sometimes described as the

debris flow regime (Stock and Dietrich, 2003). Second, it

should involve as few parameters as possible in order to limit

the numerical effort of parameter estimation.

The data shown in Fig. 1 suggest that the erosion rate still

depends on the catchment size at least for A ≥ 0.01 km2,

but this dependence is weaker than predicted by the stream-

power law. A simple modification of Eq. (1) consists in

adding a constant value a to the catchment size, i.e., to

assume

S = ks(A + a)−θ . (10)
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The respective modification of the χ transformation is ob-

tained by replacing A in Eq. (6) with A + a:

χa(x) =
x
∫

x0

(

A(ξ ) + a

A0

)−θ

dξ. (11)

This extension can be either considered a one-parameter ap-

proach where a is an adjustable parameter, while θ = θref is

pre-defined, or a two-parameter approach with both a and θ

being free parameters. For consistency, the latter is denoted

χθa in the following.

As an alternative approach, a constant value can be added

to the term Aθ . In order to avoid odd physical dimensions,

this term is written in the form bθ , where b has the dimension

of an area. With this extension, Eq. (1) turns into

S =
ks

Aθ + bθ
, (12)

and the erosion rate (Eq. 2) becomes

E = K

(

Aθ + bθ

Aθ
0

S

)n

. (13)

In the linear case (n = 1), this extension can be interpreted

as an erosion rate consisting of two additive components be-

ing both proportional to the channel slope. One of them de-

pends on the catchment size according to the stream-power

law, while the second one is independent of the catchment

size and may correspond, for example, to hillslope erosion.

Equation (12) is essentially the same as the empirical rela-

tionship

S =
s0

1 + a1A
a2

(14)

suggested by Stock and Dietrich (2003) for debris flow val-

leys. Here, s0 is the hypothetic slope at the valley head

(A = 0), and a2 is the counterpart of the concavity index θ .

The parameters a1 and s0 are related to those from Eq. (12)

by a1 = b−θ and s0 = ksb
−θ . In this sense the difference be-

tween the approaches only concerns the considered regime

and the definition of the parameters. We use a parameter b

characterizing the catchment size where fluvial erosion and

the sum of surface processes independent of the catchment

size contribute equally to total erosion, while Stock and Di-

etrich (2003) used a more abstract parameter a1.

The respective modified χ transformation reads

χb(x) =
x
∫

x0

Aθ
0

A(ξ )θ + bθ
dξ. (15)

Similar to the first approach, χb(x) refers to the one-

parameter version with θ = θref in the following, while χθb

denotes the two-parameter version with adjustable parame-

ters b and θ .

As shown by the red and green lines in Fig. 1, both exten-

sions with θ = θref do not capture the behavior of the mean

slope at small catchment sizes perfectly. While the first ver-

sion (χa) should be better at catchment sizes moderately be-

low the range where the original stream-power approach is

valid, the second version (χb) should be preferable if the en-

tire range shown in Fig. 1 is considered.

Each of the approaches contains one or two adjustable pa-

rameters (a, b and/or θ ) where the optimum value differs

from catchment to catchment. As already pointed out by Per-

ron and Royden (2013) for the one-parameter version χθ with

variable θ , determining the respective optimum parameter

value is nontrivial.

In the simplest situation, a steady-state topography un-

der homogeneous uplift and erodibility, the H vs. χ plot

should be a straight line. Here, the R2 value (coefficient of

determination) of a linear fit and Pearson’s correlation coeffi-

cient provide equivalent objective functions to be minimized.

However, this may lead to systematic bias for transient to-

pographies. An extension based on fitting piecewise linear

functions was recently suggested by Mudd et al. (2014), but

this algorithm may become numerically expensive, in par-

ticular if applied to a large number of catchments or if two

adjustable parameters are involved.

Including small catchment sizes in the analysis even fa-

cilitates the determination of the adjustable parameters since

the collinearity of a large bunch of lines in the H vs. χ plot

can be tested. Therefore, a criterion that measures how well

the data follow a monotonic relationship between H and χ

without being too sensitive to the shape of this relationship

(such as R2 and Pearson’s correlation coefficient preferring

linear relations) should be used. Spearman’s rank correlation

coefficient is the most widely used criterion in this context.

Here, both the H values and the χ values are sorted indepen-

dently. Then, an H rank and a χ rank are assigned to each

data point, and the correlation coefficient of the two ranks is

computed. However, this approach suffers from the χ rank

being a discontinuous function of the χ values and thus of

the adjustable parameters. As a consequence, the rank corre-

lation coefficient is a piecewise constant function of the pa-

rameters with a huge number of discontinuities, which makes

its numerical maximization at least theoretically problematic.

This problem could be avoided by considering the correlation

between the χ values themselves and the H rank as the el-

evations are fixed values. However, this would introduce a

bias towards a certain overall relationship depending on the

hypsographic curve of the catchment, so that there is no ad-

vantage to the R2 value or Pearson’s correlation coefficient

(preferring a linear relationship).

Due to the problems with the rank correlation coefficients

discussed above, we suggest an alternative criterion for as-

sessing the collinearity of all rivers in the H vs. χ plot. In a

first step, all pairs of χi and Hi are sorted in order of increas-
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ing H , and the sum

S =
∑

i

|χi+1 − χi | (16)

is computed. This sum becomes minimal if H and χ are re-

lated monotonically and increases with each pair of subse-

quent points where χ decreases. However, S linearly scales

with the absolute χ values; therefore, minimizing S would

introduce a bias towards parameters leading to small overall

χ values. Thus, S must be rescaled appropriately. As the χ

values start from zero, the lowest possible value of S is the

maximum χ value, χmax, occurring for the given parameter

set. Thus, the straightforward rescaled objective function to

be minimized is

D =
S − χmax

χmax
, (17)

=
∑

i |χi+1 − χi | − χmax

χmax
, (18)

denoted χ disorder in the following. A perfect monotonic

relationship between H and χ is characterized by D = 0.

Some attention should be paid to pairs of identical ele-

vation values occurring frequently in integer-valued DEMs.

Here we suggest to assume that all χ values belonging to the

same elevation are always in ascending order, so that they do

not increase D artificially.

4 Results and discussion

In the following we compare the different approaches χa , χb,

χθ , χθa , and χθb using the recently released SRTM1 DEM

with a mesh width of 1 arcsecond. Taiwan was selected as

a region with high tectonic activity where glaciation only

affected rather small regions around the highest mountains

(Ono et al., 2005). Therefore, Taiwan should be an almost

perfect example of a fluvial landscape.

In order to get a sufficient number of catchments of simi-

lar sizes where each catchment contains a significant portion

in the fluvial regime, a procedure to automatically delineate

catchments with a size A ≈ 100 km2 was implemented. In a

first step, all sites with catchment sizes A < 100 km2 where

the catchment size of the respective flow target is greater than

100 km2, and where the site itself makes the largest contribu-

tion to its flow target, are determined. These points or, more

precisely, their flow targets are considered the base points

(x0) of the respective catchments. The drainage pattern is

then followed in the upstream direction down to a catchment

size of 0.01 km2, and the different methods are applied to

each of the catchments. All DEM nodes without valid eleva-

tion data or where the surface elevation had to be increased

when filling local depressions were disregarded.

The topography of Taiwan yields 89 catchments meeting

these criteria, with each of them containing between 6464

and 27 732 valid SRTM1 DEM nodes. These catchments are

Figure 2. Map of the 89 considered catchments in Taiwan with

catchment sizes A ≈ 100 km2. The two catchments bordered in ma-

genta and yellow are considered in detail in Figs. 4–6.
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Figure 3. Cumulative distribution of the χ disorder for the 89 con-

sidered catchments in Taiwan for 0.01 km2 ≤ A ≤ 100 km2. Each

curve describes the relative number of the catchments with a χ dis-

order lower than or equal to the value D on the x axis.

shown in Fig. 2, while Fig. 3 displays the resulting cumula-

tive distribution of the χ disorder of the five approaches – χa ,

χb, χθ , χθa , and χθb – compared to the reference χ . As ex-

pected, the three approaches involving an adjustable param-

eter are much better than χ , and χb is the best among these
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Figure 4. The mountainous catchment in Taiwan with the lowest

χ disorder. (a) Topography and drainage pattern for A ≥ 0.01 km2.

The largest river is drawn in light blue. (b) H vs. χ plots of the main

river. χ0 refers to θ = 0, so that χ0 = x, and the plot describes the

original river profile. (c) H vs. χ plots for the entire drainage net-

work. The plots are shifted horizontally in order to avoid overlap-

ping curves. The black lines show the part of the drainage network

with A ≥ 1 km2.

approaches if the entire range 0.01 km2 ≤ A ≤ 100 km2 is

considered. For 46 out of the 89 catchments, χb yields the

best approximation (lowest χ disorder) among the three one-

parameter approaches, while χa was found to be best for 17

catchments, and χθ for 26 catchments. As an immediate con-

sequence of the additional parameters, both two-parameter

approaches χθa and χθb yield a further improvement. The

benefit is, however, weaker than that of the one-parameter

approaches towards the version χ involving no adjustable

Figure 5. A catchment in Taiwan with a rather high χ disorder.

(a) Topography and drainage pattern for A ≥ 0.01 km2. The largest

river is drawn in light blue. (b) H vs. χ plots of the main river. χ0

refers to θ = 0, so that χ0 = x, and the plot describes the original

river profile. (c) H vs. χ plots for the entire drainage network. The

plots are shifted horizontally in order to avoid overlapping curves.

The black lines show the part of the drainage network with A ≥
1 km2.

parameters. The difference between χθa and χθb seems to

be negligible.

Figures 4 and 5 show two examples of catchments and

their representation in the H vs. χ plot. The first one (Fig. 4)

is the catchment with the lowest χ disorder in all approaches

except χ (ranging from D = 199 for χθb to D = 230 for χθ )

located in the mountain range. The χ disorder of the second

example (Fig. 5) is more than 2 times higher than in the first

catchment (ranging from D = 474 for χθa to D = 502 for

χθ ). These values are close to the two-thirds quantile of the

Earth Surf. Dynam., 4, 1–9, 2016 www.earth-surf-dynam.net/4/1/2016/
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respective distribution, which means that about two-thirds of

the 89 considered catchments have a lower χ disorder than

this example.

Taking into account the width of the H vs. χ bunches,

none of the two catchments shows a significant overall curva-

ture in the H vs. χ plot except for the lowermost region of the

first example (Fig. 4). However, this small part of the catch-

ment is located at the edge of the mountain belt and even in

an anthropogenically disturbed region. This finding suggests

that spatial heterogeneity has a stronger effect on the H vs. χ

plot than potential temporal changes in uplift rate in the past.

This heterogeneity may be due to spatial variations in uplift

rate, precipitation or, perhaps most likely at the catchment

scale, the resistance of the rocks to erosion.

The relevance of spatial heterogeneity to the H vs. χ plot

is obviously related to the topology of the drainage network.

The example shown in Fig. 4 is an elongated catchment con-

sisting of one main river and several smaller tributaries. The

drainage network of the other example (Fig. 5) is character-

ized by confluences of rivers of similar sizes, and thus sub-

catchments with comparable χ values may occur at quite

large spatial distances. For such a topology, spatial hetero-

geneity will likely generate diverging segments in the overall

H vs. χ plot. In this example, it is readily recognized that a

large part of the heterogeneity even arises from a small region

when plotting χ (here χθb) and elevation in a map (Fig. 6).

In a region east of the center of the map, the contour lines of

χ are at significantly higher elevations than elsewhere in the

domain. This behavior corresponds to the single very steep

tributary visible in Fig. 5. Therefore, a limited region east of

the center of the map seems to be characterized by a lower

erodibility than the rest of the domain.

If only a smaller range of catchment sizes is considered,

the differences between the methods partly disappear. Fig-

ure 7 shows the same analysis applied down to catchment

sizes of 1 km2 instead of 0.01 km2. Here the approach χθ

outcompetes the other one-parameter concepts by providing

a better approximation in 78 out of 89 catchments and even

comes close to the two-parameter approaches. As the exten-

sions involving the parameters a and b were designed to cap-

ture the behavior at small catchment sizes, this result is not

surprising.

It is also immediately recognized that restricting the lower

limit of catchment size reduces the absolute values of the

χ disorder. The reduction mainly arises from the number of

valid DEM nodes decreasing by more than 1 order of mag-

nitude to a range from 670 to 2174. However, the χ disorder

is diminished by less than 1 order of magnitude here. This

nonlinear scaling is presumably related to the scale depen-

dence of spatial heterogeneity. Nonlinear scaling properties

can also be expected with respect to the total catchment size

and to the resolution of the DEM, but investigating this in

detail would go beyond the scope of this study. Thus the χ

disorder is found to be a good criterion for comparing dif-

ferent extensions of the χ method and for determining the
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Figure 6. Map of elevation (coded by color) and χθb values (con-

tour lines) of the catchment considered in Fig. 5. The contour line

interval is 0.5 km, and the lines of χθb = 2.5 km and χθb = 5 km

are emphasized in white.
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Figure 7. Cumulative distribution of the χ disorder for the 89

considered catchments in Taiwan for 1 km2 ≤ A ≤ 100 km2. Each

curve describes the relative number of the catchments with a χ dis-

order lower than or equal to the value D on the x axis.

respective parameter values, but it cannot be used for com-

paring catchments of different sizes and data obtained from

different DEMs.

As a second example we consider the European Alps as

an orogen that was heavily affected by glacial erosion in the

past. For simplicity, we define the region as the domain in-

side the 600 m elevation contour line as previously done by

Hergarten et al. (2010). Although the properties having an

influence on the absolute values of the χ disorder (upper and

lower limit of catchment size and DEM resolution) are the

same as for the Taiwan example, the values of the χ disorder
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Figure 8. Cumulative distribution of the χ disorder for the 371

considered catchments in the European Alps for 0.01 km2 ≤ A ≤
100 km2. Each curve describes the relative number of the catch-

ments with a χ disorder lower than or equal to the value D on the

x axis.

shown in Fig. 8 are significantly higher than those obtained

for Taiwan. This increase is presumably related to glacia-

tion causing strong local deviations from fluvial topography.

The observed differences between the different approaches,

however, persist or become even more pronounced. Here, the

method χb yields the best results among the one-parameter

approaches for more than 75 % of all catchments (280 out of

371).

Beyond the goodness of the fit expressed by the χ disor-

der, the best-fit parameter values may also be taken into ac-

count when comparing the different approaches. In this con-

text, the concavity index θ is the most important parameter as

it has already been addressed in numerous studies on larger

catchment sizes. Figure 9 compares the statistical distribu-

tions of the best-fit θ values for the three methods involving

θ as an adjustable parameter in the Taiwan example. If θ is

the only parameter (χθ ), the best-fit θ values tend to be be-

low the widely used reference value θref = 0.45. This effect

becomes more pronounced if points with small catchments

size are included. The median for 0.01 km2 ≤ A ≤ 100 km2

is θ = 0.33, and 82 out of 89 catchments have θ < 0.45. As

the deviations from Flint’s law at small catchment sizes can

only be compensated for by smaller θ values here, the sig-

nificant bias towards smaller θ values found for χθ is not

surprising. In return, the two-parameter approach χθa ex-

hibits a tendency towards values θ > θref, reflected in me-

dian of θ = 0.56. The other two-parameter approach, χθb,

yields best-fit θ values with a median of θ = 0.47 close to

the reference value θref = 0.45. While χθa and χθb are evenly

matched with respect to the χ disorder on average, χθa obvi-

ously needs artificially increased θ values for achieving the

best fit. The approach χθb turns out to be more robust against

this bias, although some tendency towards larger θ values

occurs if the catchment sizes are restricted to a narrower
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Figure 9. Cumulative distribution of the concavity index θ for the

89 considered catchments in Taiwan. Each curve describes the rel-

ative number of the catchments with an estimated concavity index

lower than or equal to the value θ on the x axis. Solid lines refer to

fits over the entire range 0.01 km2 ≤ A ≤ 100 km2, while dashed

lines correspond to fits for A ≥ 1 km2 only.

range (here, 1 km2 ≤ A ≤ 100 km2). Under this aspect, the

approach χθb should be superior to χθa if a wide range of

catchment sizes is taken into account.

5 Conclusions

We have presented and investigated several concepts of ex-

tending Flint’s law and the χ method towards small catch-

ment sizes. Including points with small catchment sizes into

the analysis of stream profiles strongly increases the data

density and thus allows for a better distinction between ef-

fects of temporal changes in uplift rate or climate and spatial

heterogeneity.

Among the approaches considered in this study, an exten-

sion of Flints’s law similar to an equation originally sug-

gested for debris flow channels (Stock and Dietrich, 2003)

turned out to be the most suitable concept if a wide range of

catchment sizes is included. The respective definition of the

extended χ transform (Eq. 15) can be implemented either as

a two-parameter approach where both θ and b are adjustable

parameters or as a one-parameter approach where b is vari-

able and θ = θref with θref = 0.45 or any other fixed reference

value.

Minimizing the χ disorder defined in Eq. (18) provides

a simple way to determine the best values of the adjustable

parameters. The χ disorder refers to the collinearity of trib-

utaries and does not require any further assumptions such as

spatial homogeneity or an uplift rate being constant over dis-

tinct time intervals and should thus be applicable in a wide

context.
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