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Preface 

Plenum's initial inquiry two years ago about a volume on tectonics and climate 

came at just the right time. Although Plenum had in mind a broad overview 

treatment of this subject, I felt there was good reason to put together a volume 

focused entirely on one such connection, the link between plateau~mountain 

uplift and global climate over the last 50 million years. A series of papers 

published in the middle~late 1980s had proposed several linkages between uplift 

and climate, and these hypotheses had been sUbjected for almost a decade to the 

usual critical scrutiny by the scientific community. It was my not unbiased sense 

that the original hypotheses had emerged from this scrutiny largely intact 

(though, of course, not entirely), and that their scope had in fact been expanded 

by the subsequent addition of new concepts. If these earlier phases represented 

the "thesis" and "antithesis" phases of the dialectical method of science, the time 

now seemed ripe for an attempt at a "synthesis." This seemed particularly 

desirable because the many publications on this topic lay scattered among 

disciplinary journals, and there was no central source to provide a complete 

overview. This volume attempts to fill that need. 

Although focused on a single set of hypotheses, this volume is far from 

narrow in scope. Indeed, it encompasses most of the massive and dramatic 

transformations of the Earth's surface in recent geologic history. These include: 

the collision of continents, the uplift of massive plateaus and mountain belts, 

changes in the position of the jet stream and westerly winds, the creation of 

monsoon circulations that focus heavy rainfall on uplifted terrain, rapid and 

intense physical weathering of rocks in plateaus and mountain belts, runoff of 

sediment-laden rivers to the ocean, chemical weathering of rock and slow removal 

of CO2 from the atmosphere, gradual cooling of global climate, formation of 

permanent ice sheets over Antarctica and Greenland, development of sea-ice 

cover in the Arctic Ocean, expansion of tundra and boreal forest southward from 

the Arctic margins of Asia and North America, replacement of tree and shrub 

vegetation by grassland in the subtropics, and, finally, the onset of periodic 

fluctuations of massive ice sheets over North America and Eurasia. A story that 

begins with tectonic uplift in the tropics and subtropics thus ends with glaciation 

of the polar regions. 

For teaching-related purposes, this volume is unique in combining a broad 

interdisciplinary scope with a close focus on a single central issue (the uplift~ 
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x PREFACE 

climate connection). It will probably prove most useful in graduate or advanced 

undergraduate seminars or in combined lecture-seminar courses. Many of the 

individual chapters could be the basis for a detailed investigation of the methods 

used and results obtained from specific Earth Sciences disciplines (such as 

geochemistry, atmosphere and ocean modeling, tectonophysics, and paleobotany). 

Yet the results from each chapter fit into a larger picture that will expand the 

breadth of vision of students who are too often focused only on one method or 

disciplinary area. This approach is well matched to an ongoing trend evident in 

most research universities, which are creating or encouraging new alignments 

among component departments in the Earth and Environmental Sciences in an 

effort to stimulate interdisciplinary research. I believe this volume represents a 

highly successful example of the kind of research that could emerge from such 

efforts. 

The value of this volume as a reference source for researchers is obvious. All 

the chapters are current to the very end of 1996, and all the authors are recognized 

experts in their fields. It was my choice to pick the best people and give them the 

freedom of a nonrefereed volume, both to encourage cross-disciplinary thinking 

(and even speculation) and to speed the volume toward timely publication. The 

most obvious omission in the book is the absence of chapters on the timing of 

uplift in North America; these were solicited early, but fell through too late in the 

process for me to be able to obtain others. 

I thank the following people for help and encouragement in seeing this 

project through to rapid completion: the authors, who all did their job in a timely 

way; Ken Howell, who nudged and nagged at about the right level of frequency 

and intensity; long-term colleagues Maureen Raymo, John Kutzbach, and Warren 

Prell, for past and present scholarly collaboration that has been both educational 

and enjoyable; and both Ginger and Debra Angelo, for literally making this 

volume possible. 

W. F. Ruddiman 

Charlottesville 
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