
DLCT: A New Tool for Differential-Linear

Cryptanalysis

Achiya Bar-On1, Orr Dunkelman2, Nathan Keller1, and Ariel Weizman1

1 Department of Mathematics, Bar-Ilan University, Israel
2 Computer Science Department, University of Haifa, Israel

Abstract. Differential cryptanalysis and linear cryptanalysis are the
two best-known techniques for cryptanalysis of block ciphers. In 1994,
Langford and Hellman introduced the differential-linear (DL) attack
based on dividing the attacked cipher E into two subciphers E0 and E1

and combining a differential characteristic for E0 with a linear approxi-
mation for E1 into an attack on the entire cipher E. The DL technique
was used to mount the best known attacks against numerous ciphers,
including the AES finalist Serpent, ICEPOLE, COCONUT98, Chaskey,
CTC2, and 8-round DES.
Several papers aimed at formalizing the DL attack, and formulating as-
sumptions under which its complexity can be estimated accurately. These
culminated in a recent work of Blondeau, Leander, and Nyberg (Journal
of Cryptology, 2017) which obtained an accurate expression under the
sole assumption that the two subciphers E0 and E1 are independent.
In this paper we show that in many cases, dependency between the two
subcipher s significantly affects the complexity of the DL attack, and in
particular, can be exploited by the adversary to make the attack more
efficient. We present the Differential-Linear Connectivity Table (DLCT)
which allows us to take into account the dependency between the two
subciphers, and to choose the differential characteristic in E0 and the
linear approximation in E1 in a way that takes advantage of this depen-
dency. We then show that the DLCT can be constructed efficiently using
the Fast Fourier Transform. Finally, we demonstrate the strength of the
DLCT by using it to improve differential-linear attacks on ICEPOLE
and on 8-round DES, and to explain published experimental results on
Serpent and on the CAESAR finalist Ascon which did not comply with
the standard differential-linear framework.

1 Introduction

1.1 Background and previous work

Cryptanalysis of block ciphers. A block cipher is an encryption scheme which
accepts an n-bit plaintext and transforms it into an n-bit ciphertext using a
k-bit secret key. Block ciphers are the most widely used class of symmetric key
primitives nowadays. Most of the modern block ciphers are iterative, i.e., consist
of a sequence of simple operations called rounds repeated multiple times with

2 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

small alterations. We denote a plaintext/ciphertext pair of a block cipher by
(P,C) and the n-bit state at the beginning of the r’th round of the encryption
process by Xr.

While the design of block ciphers is a well-developed field and various block
cipher designs (most notably, the AES [36]) are widely accepted to provide strong
security, there is no block cipher with a security proof that is fast enough for
being used in practice. Instead, our confidence in the security of block ciphers
stems from analyzing their resistance with respect to all known cryptanalytic
techniques. Thus, development of cryptanalytic techniques is the main means
for understanding the practical security of block ciphers.

Differential cryptanalysis and linear cryptanalysis. The two central statistical
techniques in cryptanalysis of block ciphers are differential cryptanalysis, intro-
duced by Biham and Shamir [8], and linear cryptanalysis, introduced by Mat-
sui [31].

Differential cryptanalysis studies the development of differences between two
encrypted plaintexts through the encryption process. An r-round differential
with probability p of a cipher is a property of the form Pr[Xi+r ⊕ X ′

i+r =

∆O|Xi ⊕X ′
i = ∆I] = p, denoted in short ∆I

p
−→ ∆O. Differential attacks exploit

long (with many rounds) differentials with a non-negligible probability.
Linear cryptanalysis studies the development of parities of subsets of the

state bits through the encryption process of a single plaintext. An r-round linear
approximation with bias q is a property of the form Pr[Xi+r ·λO = Xi·λI] =

1
2+q,

denoted in short λI
q
−→ λO. (Recall that the scalar product of x, y ∈ {0, 1}n

is defined as (
∑n

i=1 xiyi) mod 2.) Linear attacks exploit “long” approximations
with a non-negligible bias.

Differential and linear cryptanalysis were used to mount the best known
attacks on numerous block ciphers, most notably DES [35]. As a result, resis-
tance to these two cryptanalytic techniques, and in particular, non-existence of
high-probability differentials or high-bias linear approximations spanning many
rounds of the cipher, has become a central criterion in block cipher design.

Differential-linear cryptanalysis and other combined attacks on block ciphers.
While precluding long differentials and linear approximations seems to be suffi-
cient for making the cipher immune to differential and linear attacks, it turned
out that in many cases, short characteristics and approximations can also be
exploited to break the cipher. The first cryptanalytic technique to demonstrate
this was differential-linear cryptanalysis (in short: DL technique), introduced by
Langford and Hellman [27] in 1994. Langford and Hellman showed that if the
cipher E can be decomposed as a cascade E = E1 ◦E0, then a high-probability
differential for E0 and a high-bias linear approximation for E1 can be combined
into an efficient distinguisher for the entire cipher E. The DL technique was used
to attack many block ciphers, and in particular, yields the best known attacks
on the AES finalist Serpent [20,30], the CAESAR [16] candidate ICEPOLE [22],
COCONUT98 [4], Chaskey [28], CTC2 [30], etc.

DLCT: A New Tool for Differential-Linear Cryptanalysis 3

Differential-linear cryptanalysis was followed by several other combined at-
tacks. In particular, boomerang [38], amplified boomerang [24], and rectangle [3]
attacks show that high-probability differentials in E0 an E1 can also be com-
bined into an attack on the entire cipher. Other combinations include differential-
bilinear, higher-order differential-linear, boomerang-linear attacks, etc. [7]. These
combined attacks make non-existence of high-probability short differential and
linear approximations a desirable (but harder to fulfill) criterion in block cipher
design.

An informal description of the differential-linear attack. The DL attack works

as follows. Assume that we have a differential ∆I
p
−→ ∆O for E0 and a linear

approximation λI
q
−→ λO for E1. In order to distinguish E from a random per-

mutation, the adversary considers plaintext pairs with input difference ∆I and
checks, for each pair, whether the corresponding ciphertexts agree on the parity
of the mask λO.

Denote the plaintexts by P, P ′, the ciphertexts by C,C ′, and the intermediate
values between E0 and E1 by X,X ′, respectively. The attack combines three
approximations: The values C · λO and C ′ · λO are correlated to X · λI and
X ′ · λI , respectively, by the linear approximation for E1. The values X · λI and
X ′ · λI are correlated, as consequence of the differential for E0. Hence, C · λO is
correlated to C ′ · λO. Figure 1 depicts the relations.

P

ΩI

P ′

E0

X

ΩO

X ′

p

E1

C

C′

λI
q

λO

λI q λO

C · λOX · λI
1/2 + q

C′ · λOX ′ · λI 1/2 + q

1
/
2

+
p
/
2

E

Fig. 1. Differential-Linear Cryptanalysis

Computation shows that under some randomness assumptions to be dis-
cussed below, the equality C ·λO = C ′ ·λO holds with probability 1

2+2pq2. Hence,
if p, q are sufficiently large, then the adversary can distinguish E from a ran-
dom permutation using O(p−2q−4) chosen plaintexts. As usual, the distinguisher
can be transformed into a key recovery attack by guessing some key material,
performing partial encryption/decryption, and applying the distinguisher.

4 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

Randomness assumptions behind the DL attack. The attack analysis described
above (initially presented in [4]) crucially depends on two assumptions:

1. Among the cases where the differential is not satisfied, X ′ ·λI = X ·λI holds
in half of the cases, as the cipher behaves randomly.

2. There is independence between the two subciphers E0 and E1. In particular,
the bias of the linear approximations in E1 is not affected by the fact that
they are applied to two intermediate values which correspond to plaintexts
with a fixed difference.

As for the first assumption, already in [4] the authors noted that it may fail in
many cases, and suggested to check the overall bias of the approximation experi-
mentally whenever possible. Several subsequent papers aimed at formalizing the
assumption and at taking into consideration multiple linear approximations for
E1 instead of a single one. The first of those were by Liu et al. [29] and by Lu [30].
Recently, Blondeau et al. [10] presented a formal treatment of the DL attack,
based on a general link between differential and linear attacks introduced by
Chabaud and Vaudenay [13] and developed by Blondeau and Nyberg [11]. The
formal treatment provides an exact expression for the bias of the approximation
under the sole assumption that the two parts of the cipher are independent.

Independence between the subciphers in the boomerang attack. While the assump-
tion on independence between E0 and E1 was not studied in previous works on
the DL attack, it was studied for another combined attack – the boomerang
attack. In 2011, Murphy [33] showed that in various cases of interest, the depen-
dency between E0 and E1 may significantly affect the complexity and even the
possibility of success of the boomerang attack. Murphy’s claims were supported
by several concrete examples given in other papers. In particular, in [9] and [21],
dependency between the subciphers was used to significantly reduce the com-
plexity of the boomerang attacks on SAFER++ and on KASUMI, respectively.
On the other hand, it was shown in [25] that the boomerang attack on KASUMI
presented in [6] fails (i.e., never succeeds), due to dependency between the sub-
ciphers. In [21], Dunkelman et al. proposed the sandwich framework in order to
take into account the dependency between the subciphers in the attack analysis.

The Boomerang Connectivity Table (BCT). The inspiration to our work comes
from the boomerang connectivity table (BCT), proposed by Cid et al. [14] at
Eurocrypt’2018 as a new tool for the boomerang attack. The BCT allows com-
puting the complexity of the boomerang attack more accurately, and moreover,
enables the adversary to choose the differentials of E0 and E1 in a way that
exploits the dependency between the subciphers to amplify the overall probabil-
ity of the boomerang distinguisher. Cid et al. applied the BCT to improve the
boomerang attack on the CAESAR finalist Deoxys [23] and to explain an un-
solved probability amplification for generating a quartet in the tweakable block
cipher SKINNY [2].

DLCT: A New Tool for Differential-Linear Cryptanalysis 5

1.2 Our results

In this paper we study the effect of dependency between the subciphers on
differential-linear cryptanalysis.

Inaccuracy of previous analysis due to dependency between the subciphers. We
show that in differential-linear attacks on several cryptosystems, due to the effect
of dependency, complexity analysis using the standard DL framework led to
incorrect estimates, which sometimes were very far from the correct value found
experimentally. One concrete example is the attack of Dobraunig et al. [19] on a
5-round variant of the CAESAR finalist Ascon [18]. The authors of [19] state that
while by the theory of the DL attack, the overall bias of their approximation
is expected to be 2−20, experiments show that the bias is significantly larger:
2−2. The discrepancy is attributed in [19] to multiple linear approximations that
affect the overall bias. We show that the huge discrepancy comes mainly from
dependency between the two subciphers, and in fact, when we take dependency
into account using our new tool presented below, the bias estimate is increased
from 2−20 all the way to 2−5. (The rest of the difference is indeed explained by
the effect of other approximations, as claimed in [19]).

The differential-linear connectivity table. In order to (partially) take the effects
of dependency into account, we introduce a new tool: the differential-linear con-
nectivity table (DLCT). For a vectorial Boolean function S : {0, 1}n → {0, 1}m

(e.g., an n-to-m bit S-box in a block cipher), the DLCT of S is an 2n× 2m table
whose rows correspond to input differences to S and whose columns correspond
to bit masks of outputs of S. The value in the cell (∆,λ), where ∆ is a difference
and λ is a mask, is

DLCTS(∆,λ) = |{x : S(x) · λ = S(x⊕∆) · λ}| − 2n−1.

We replace the decomposition E = E1 ◦ E0 used in the standard DL attack by
the decomposition E = E′

1 ◦ Em ◦ E′
0, where E

′
0 is covered by the differential,

Em is covered by the DLCT, and E′
1 is covered by the remainder of the linear

approximation. Usually, Em covers the first round of E1 and thus consists of
several DLCTs of individual S-boxes applied in parallel. In this case, when com-
puting the overall bias of the DL distinguisher, we replace the biases computed
in the first round of the linear approximation by the entries of the DLCT in the
corresponding S-boxes. Thus, the DLCT fully addresses the issue of dependency
in the switch between E0 and E1. Note however that it does not resolve the
possible effect of other characteristics and approximations, which still has to be
handled using the framework of Blondeau et al. [10] (see Section 2).

Relation of the DLCT to the Fourier transform. We show that each row of the
DLCT is equal (up to normalization) to the Fourier transform of the Boolean
function represented by the corresponding row of the Differential Distribution
Table (DDT) constructed in differential cryptanalysis.

6 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

As a result, the DLCT can be computed efficiently using the Fast Fourier
Transform. Specifically, each row of the DLCT can be constructed in time O(2n+
m2m) operations (instead of the trivial 2m+n), and thus, the entire DLCT can
be computed in time O(22n +m2m+n) operations. This makes computation of
the DLCT feasible even for larger encryption units (e.g., when one wants to
compute a single row of the 32-bit Super S-box of AES [36]).

Applications of the DLCT. While the basic use of the DLCT is obtaining a
more accurate complexity analysis of the DL attack, it can be used to obtain
improved DL attacks as well. Indeed, the adversary can use the DLCT to choose
the differential for E0 and the linear approximation for E1 in a way that exploits
the dependency between the subciphers in her favor. We demonstrate this on
two concrete ciphers.

Improved DL attack on ICEPOLE. ICEPOLE [32] is a hardware-oriented au-
thenticated cipher designed by Morawiecki et al. in 2014 and submitted as a
candidate to the CAESAR competition. In [22], Huang et al. presented a state-
recovery attack in the repeated-nonce settings on 128-bit ICEPOLE with data
and time complexity of about 246, using differential-linear cryptanalysis. This
attack is the best known attack on ICEPOLE.

We show that by using better differentials which exploit the dependency
between the two underlying subciphers, one can reduce the complexity of the
attack to 242. Furthermore, by exploiting using a better method for choosing the
plaintexts, the complexity can be further reduced 236. We have fully implemented
and verified our attack.

Improved DL attack on 8-round DES. One of the first applications of the DL
technique is an attack on 8-round DES [35] presented by Biham et al. [4]. The
attack is based on a 7-round differential-linear distinguisher with bias 2−5.91.
By analyzing the DLCT of the DES S-boxes, we show that the differential and
the linear approximation used in the attack can be replaced which leads to an
improved bias of 2−5.6, thus reducing the complexity of the attack from about
30,000 plaintexts to about 20,000 plaintexts.

As in the case of ICEPOLE, we have fully implemented and verified the
attack. While the improvement of our attack over the result of [4] is rather
modest, it is another clear example of the applicability of the DLCT and of its
ability to exploit dependency in favor of the adversary.

1.3 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we give an overview of
the DL attack, and then we present the DLCT and prove that it can be computed
efficiently. We use the newly introduced tool to revisit the cryptanalytic results
on Ascon [19] in Section 3 and on Serpent [5,20] in Section 4, and explain the
discrepancy between the theoretical estimate and the experimental results in
these two works. In Sections 5, 6 we present improved DL attacks on ICEPOLE
and reduced-round DES, respectively. We conclude the paper with a few open
problems for future research in Section 7.

DLCT: A New Tool for Differential-Linear Cryptanalysis 7

2 The Differential-Linear Connectivity Table

In this section we introduce and discuss the DLCT. We begin with an overview
of the DL attack, then we present the DLCT and obtain a new formula for the
bias of the DL distinguisher, and finally, we discuss the relation of the DLCT to
the Fourier transform and its implications on the DL technique.

2.1 The differential-linear attack

Let E be a cipher that can be decomposed into a cascade E = E1 ◦E0. Assume

that we have a differential ∆I
p
−→ ∆O for E0, i.e., an input difference ∆I to

E0 leads to an output difference ∆O from E0 with probability p, and a linear

approximation λI
q
−→ λO for E1, i.e., for 1/2+q of the input/output pairs (Ii, Oi)

of E1 satisfy λI · Ii = λO ·Oi. Denote plaintexts by P, P ′, ciphertexts by C,C ′,
and intermediate values between E0 and E1 by X,X ′, respectively.

The procedure of the DL attack. As mentioned above, the attack procedure is
very simple. In order to distinguish E from a random permutation, the adversary
considers plaintext pairs (P, P ′) such that P ⊕ P ′ = ∆I and checks whether
the corresponding ciphertext pairs (C,C ′) satisfy C · λO = C ′ · λO. Following
Blondeau et al. [10], we denote the overall bias of the DL distinguisher by

E∆I ,λO
= Pr[C · λO = C ′ · λO|P ⊕ P ′ = ∆I]. (1)

Naive analysis of the attack complexity. The attack uses a combination of three
approximations:

1. We have Pr[C · λO = X · λI] =
1
2 + q, by the linear approximation for E1.

2. We have Pr[X ′ · λI = X · λI] = 1
2 ± p

2 (where the sign depends on the
parity of ∆O · λI). This is because by the differential for E0, for fraction p
of the plaintext pairs we have X ⊕ X ′ = ∆O, and in particular, X ′ · λI =
X · λI ⊕∆O · λI , and we assume that among the rest of the plaintext pairs,
X ′ · λI = X · λI holds in half of the cases.

3. We have Pr[C ′ · λO = X ′ · λI] =
1
2 + q, by the linear approximation for E1.

Note that the equality C · λO = C ′ · λO holds if among the three equalities
(1),(2), (3), either all three hold or exactly one holds. Using Matsui’s Piling-up
lemma [31] (similar analysis holds also when using correlation matrices [17]), we
have

E∆I ,λO
= Pr[C · λO = C ′ · λO] =

1

2
+ 2pq2. (2)

Hence, if p, q are sufficiently large, then the adversary can distinguish E from
a random permutation using O(p−2q−4) chosen plaintexts (see [10,37] for the
exact relation between the data complexity and the success probability of the
distinguisher). As usual, the distinguisher can be transformed into a key recovery
attack by guessing some key material, performing partial encryption/decryption,
and applying the distinguisher.

8 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

The exact complexity analysis of Blondeau et al. [10]. As mentioned above, the
naive complexity analysis crucially depends on two randomness assumptions.
The first is that the equality X ′ · λI = X · λI holds in approximately half of
the cases in which the differential in E0 fails; the second is that E0 and E1

are independent. Blondeau et al. [10] provided an exact expression for E∆I ,λO
,

relying only on the latter assumption. In order to present their result, we need
a few more notations (adapted from [10]).

Consider an encryption function E′ and denote its inputs by Z,Z ′ and its
outputs byW,W ′. We use the notation ∆I −→

E′

∆O for the differential transition

∆I → ∆O through E′, and the notation λI −→
E′

λO for the linear transition

λI → λO through E′. For an input difference ∆I and an output mask λ, we
denote

ǫE
′

∆I ,λ
= Pr[W · λ =W ′ · λ|Z ⊕ Z ′ = ∆I]−

1

2
,

and for two masks λI , λO, we denote

cE
′

λI ,λO
= 2

(

Pr[W · λO =W ′ · λO

∣

∣

∣Z · λ = Z ′ · λ]−
1

2

)

.

Note that cE
′

λI ,λO
/2 is the bias of the linear approximation λI −→

E′

λO.

By [10, Theorem 2], assuming only independence between E0 and E1, we
have:

E∆I ,λO
=

∑

λI

ǫE0

∆I ,λI
(cE1

λI ,λO
)2. (3)

Of course, the expression (3) is usually hard to evaluate, and thus, in practice
one mostly has to rely (at least partially) on randomness assumptions and verify
the results experimentally.

2.2 The differential-linear connectivity table and its properties

Definition of the DLCT. Let S : {0, 1}n → {0, 1}m be a vectorial Boolean
function. The DLCT of S is an 2n × 2m table whose rows correspond to input
differences to S and whose columns correspond to bit masks of outputs of S.
Formally, for ∆ ∈ {0, 1}n and λ ∈ {0, 1}m, the DLCT entry (∆,λ) is

DLCTS(∆,λ) ,
∣

∣

∣

{

x
∣

∣

∣
λ · S(x) = λ · S(x⊕∆)

}∣

∣

∣
− 2n−1.

Sometimes it will be more convenient for us to use the normalized DLCT entry

DLCTS(∆,λ) ,
DLCTS(∆,λ)

2n
= Pr[λ · S(x) = λ · S(x⊕∆)]−

1

2

instead of DLCTS(∆,λ). The DLCT of Serpent’s S-box S0 is given in Table 1.
A natural interpretation of the DLCT is the following. Assume that S is

equal to the entire encryption function E. Then DLCTS(∆,λ) is equal (up to

DLCT: A New Tool for Differential-Linear Cryptanalysis 9

Table 1. The DLCT of Serpent’s S0

∆ \ λ 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1x 8 0 -4 0 -4 -4 0 4 0 -4 0 0 0 4 0 0
2x 8 0 0 0 -4 0 0 -4 -8 0 0 0 4 0 0 4
3x 8 -4 0 0 4 -4 0 -4 0 0 -4 0 0 4 0 0
4x 8 0 0 -8 0 0 0 0 -8 0 0 8 0 0 0 0
5x 8 4 0 0 0 0 -4 0 0 0 4 0 -4 0 -4 -4
6x 8 -4 -4 0 0 0 0 0 8 -4 -4 0 0 0 0 0
7x 8 0 4 0 0 0 -4 0 0 4 0 0 -4 0 -4 -4
8x 8 -4 0 0 -4 0 -4 4 0 0 -4 0 0 0 4 0
9x 8 0 0 -8 0 0 0 0 0 0 0 0 0 0 0 0
Ax 8 0 -4 0 4 0 -4 -4 0 -4 0 0 0 0 4 0
Bx 8 0 0 0 -4 0 0 -4 0 0 0 -8 4 0 0 4
Cx 8 0 4 0 0 -4 0 0 0 4 0 0 -4 -4 0 -4
Dx 8 -4 -4 8 0 4 4 0 0 -4 -4 0 0 -4 -4 0
Ex 8 4 0 0 0 -4 0 0 0 0 4 0 -4 -4 0 -4
Fx 8 0 0 0 0 4 4 0 0 0 0 -8 0 -4 -4 0

normalization) to the bias we obtain when we apply to E a DL distinguisher
with ∆I = ∆ and λO = λ (that is, to the bias E∆,λ). Thus, if we could construct
a DLCT for the entire encryption scheme E, then the DLCT would completely
capture the DL attack. As such a construction is mostly infeasible, we construct
the DLCT for small components of the cryptosystem (usually, single S-boxes or
Super S-boxes) that lie on the boundary between E0 and E1, in order to obtain
accurate analysis of the transition between the two subciphers.3

The DLCT framework. Like in the sandwich [21] and the BCT [14] frameworks
of the boomerang attack, when we use the DLCT, we divide the cipher E into
three subciphers: E = E′

1 ◦ Em ◦ E′
0, where E

′
0 is covered by the differential

∆I → ∆, Em is covered by the DLCT (or by several DLCTs applied in parallel),
and E′

1 is covered by the remainder of the linear approximation λ→ λO. Usually,
Em covers the first round of E1 and thus it consists of several DLCTs of single
S-boxes applied in parallel. However, if it is feasible to cover by the DLCT a
larger part of the cipher, this is advantageous, as the DLCT gives the exact
result for the part of the cipher it covers. For example, we construct such a
(partial) DLCT for three rounds in our improved DL attack on 8-round DES
presented in Section 6.

Complexity analysis. Assume that we have a differential ∆I
p
−→ ∆ for E′

0 and a

linear approximation λ
q′

−→ λO for E′
1. (Note that since E′

1 is typically a subcipher

3 An important independence assumption on the transition is that the active S-boxes
(with non-zero input difference and non-zero output) of the transition are indepen-
dent of each other.

10 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

of E1, it is expected that |q′| > |q|). Denote the intermediate values after E′
0 by

X,X ′ and the intermediate values after Em by Y, Y ′.
Adapting the naive analysis of the DL attack complexity presented above

(i.e., Eq. (2)), we obtain

E∆I ,λO
= 4p ·

DLCTEm(∆,λ)

2n
· (q′)2 = 4p ·DLCTEm

(∆,λ) · (q′)2. (4)

Note that in the degenerate case where Em = Id, we have DLCTEm(∆,λ) =
2n−1 for all (∆,λ) and q′ = q, and thus, we obtain E∆I ,λO

= 2pq2 which is
equivalent to Eq. (2) above. Interestingly, when E′

1 = Id, the resulting bias is
E∆I ,λO

= p ·DLCTEm
(∆,λO).

In order to adapt the exact analysis of [10] (i.e., Eq. (3)), a bit more compu-
tation is needed. Note that for any λ, we have

ǫ
Em◦E′

0

∆I ,λ
=

∑

∆

(Pr[∆I −−→
E′

0

∆] Pr[Y · λ = Y ′ · λ|X ⊕X ′ = ∆])−
1

2

=
1

2n

∑

∆

Pr[∆I −−→
E′

0

∆] ·DLCTEm
(∆,λ) =

∑

∆

Pr[∆I −−→
E′

0

∆] ·DLCTEm(∆,λ).

Plugging this expression into Eq. (3) (where E′
1 is used instead of E1 and Em◦E′

0

is used instead of E0), we obtain that the exact bias of the DL distinguisher is

E∆I ,λO
=

∑

∆,λ

Pr[∆I −−→
E′

0

∆] ·DLCTEm(∆,λ)(c
E′

1

λ,λO
)2. (5)

Note that Eq. (5) is still not free of randomness assumptions; e.g., it relies
on round independence within E′

0 and E′
1 (see [10]). However, it is the most

accurate expression for the bias of the DL distinguisher obtained so far. On the
other hand, Eq. (5) is usually hard to evaluate, and in the actual applications of
the DLCT we do rely on some randomness assumptions and verify our results
experimentally.

Properties of the DLCT. A trivial property of the DLCT is that for any S, we
have DLCTS(0, λ) = 2n−1 for all λ. Indeed, if two inputs to S are equal then
the corresponding outputs agree on any bit mask. This means that in the DL
attack, if for some S-box in the first round of E1, the difference ∆O is zero in
the entire S-box, then the linear approximation in that S-box holds for sure,
while without the dependency between the intermediate values X,X ′ it was
anticipated to hold only probabilistically. This trivial property corresponds to
the middle round S-box trick used in [9] to speed up the boomerang attack and
covered by the BCT [14]. Surprisingly, this feature was not noted before explicitly
in the context of the DL attack. For example, even if we take into account only
this trivial type of dependency, the bias of the DL distinguisher of Dobraunig et
al. [19] on Ascon increases from 2−20 to 2−8. Interestingly, the authors of [19]
chose the linear approximation deliberately in such a way that the active S-boxes
in its first round correspond to inactive S-boxes in ∆. However, they did not take

DLCT: A New Tool for Differential-Linear Cryptanalysis 11

this dependency into account in the computation of the bias, as it is neglected
in the classical DL model.

Another trivial property of the DLCT is that for any S, we haveDLCTS(∆, 0) =
2n−1 for all ∆’s. Indeed, if the the input mask is zero (i.e., no output bits are
approximated), then their actual value (and by proxy, their input difference), is
of no importance.

Inspection of the DLCT of Serpent’s S-box S0 presented in Table 1 shows
that it contains the value ±2n−1 not only in the trivial entries of the form
DLCTS(0, λ) or DLCTS(∆, 0), but also in 9 additional places. Moreover, it
contains many very high / very low values that can be used by an adversary,
if she can adjust the differential and the linear approximation such that these
high/low values are used. The existence of such high/low value entries is not
surprising, as current design of S-boxes does not take the DLCT into account.
Hence, the DLCT can serve as a new design criterion for S-boxes, partially
measuring immunity of the cipher with respect to DL attacks.

2.3 Relation of the DLCT to the Fourier transform

We now show that the DLCT is closely related to the Fourier transform of the
DDT and that this relation can be used to efficiently compute the DLCT. We
begin with a few preliminaries.

The Fourier-Walsh transform of Boolean functions. Let f : {0, 1}m → R be a
Boolean function. (Note that f does not have to be two-valued.) The Fourier-

Walsh transform of f is the function f̂ : {0, 1}m → R defined by

f̂(y) =
1

2m

∑

x∈{0,1}m

f(x) · (−1)x·y =
1

2m

∑

{x:x·y=0}

f(x)−
∑

{x:x·y=1}

f(x)

 .

The DDT and the LAT. The DLCT resembles in its structure the two cen-
tral tools used in differential and linear cryptanalysis – the Difference Distribu-
tion Table (DDT) and the Linear Approximation Table (LAT). For a vectorial
Boolean function S : {0, 1}n → {0, 1}m, the DDT of S is an 2n × 2m table
whose rows correspond to input differences to S and whose columns correspond
to output differences of S. Formally, for ∆I ∈ {0, 1}n and ∆O ∈ {0, 1}m, we
have

DDTS(∆I , ∆O) =
∣

∣

∣

{

x
∣

∣

∣S(x)⊕ S(x⊕∆I) = ∆O

}∣

∣

∣ .

Similarly, the LAT of S is an 2n × 2m table whose rows correspond to bit masks
of inputs to S and whose columns correspond to bit masks of outputs of S.
Formally, for λI ∈ {0, 1}n and λO ∈ {0, 1}m, we have

LATS(λI , λO) =
∣

∣

∣

{

x
∣

∣

∣λO · S(x) = λI · x
}∣

∣

∣− 2n−1.

12 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

Relation of the DLCT to the Fourier-Walsh transform of the DDT. We assert
that each row of the DLCT is equal (up to normalization) to the Fourier-Walsh
transform of the corresponding row of the DDT. Formally, for each ∆ ∈ {0, 1}n,
denote the Boolean function which corresponds to the ∆’s row of the DDT by
f∆. That is, f∆ : {0, 1}m → R is defined by

f∆(∆′) = DDTS(∆,∆
′) =

∣

∣

∣{x ∈ {0, 1}n
∣

∣

∣S(x)⊕ S(x⊕∆) = ∆′}
∣

∣

∣ .

Proposition 1. For any λ ∈ {0, 1}m, we have DLCT (∆,λ) = 2m−1f̂∆(λ).

Proof. By the definitions of the DLCT and of the Fourier-Walsh transform, we
have

DLCTS(∆,λ) =
∣

∣

∣

{

x
∣

∣

∣
λ · S(x) = λ · S(x⊕∆)

}∣

∣

∣
− 2n−1

=
1

2

(∣

∣

∣

{

x
∣

∣

∣
λ · S(x) = λ · S(x⊕∆)

}∣

∣

∣
−
∣

∣

∣

{

x
∣

∣

∣
λ · S(x) 6= λ · S(x⊕∆)

}∣

∣

∣

)

=
1

2

(∣

∣

∣

{

x
∣

∣

∣
λ · (S(x)⊕ S(x⊕∆)) = 0

}∣

∣

∣
−
∣

∣

∣

{

x
∣

∣

∣
λ · (S(x)⊕ S(x⊕∆)) = 1

}∣

∣

∣

)

=
1

2

∑

{∆′:∆′·λ=0}

f∆(∆′)−
∑

{∆′:∆′·λ=1}

f∆(∆′)

 = 2m−1f̂∆(λ),

as asserted. �

A theoretical implication. The relation of the DLCT to the Fourier-Walsh trans-
form of the DDT yields an interesting theoretical insight on the differential-linear
attack.

It is well-known that the DDT and the LAT have the following mathematical
interpretations.

– The DDT: If we model the evolution of differences through the encryption
process of a plaintext pair as a Markov chain, then the DDT is simply the
transition matrix of the chain (see, e.g., [26]). In this regard, a differential
attack utilizes a classical probability-theoretic tool for cryptanalysis.

– The LAT: For each mask λ, the λ’s column of the LAT is equal (up to normal-
ization) to the Fourier-Walsh transform of the Boolean function x 7→ λ ·S(x)
(see, e.g., [15]). In this regard, linear cryptanalysis studies the function S via
its Fourier transform, as is commonly done in Boolean function analysis (see,
e.g., [34]).

Proposition 1 shows that each row of the DLCT is equal (up to normalization)
to the Fourier-Walsh transform of the corresponding row of the DDT. Since
the DLCT of the entire encryption scheme E completely captures DL attacks as
shown above, this implies that the differential-linear attack utilizes an interesting
combination of probabilistic and Fourier-analytic techniques: it considers the
probability-theoretic transition matrix of a Markov chain associated with the
function, and studies it via its Fourier-Walsh transform.

DLCT: A New Tool for Differential-Linear Cryptanalysis 13

A practical implication. It is well-known that the Fourier-Walsh transform of a
function f : {0, 1}m → R can be computed in time O(m · 2m) operations. Since
each row of the DDT of S can be easily constructed in time O(2n) operations,
Proposition 1 implies that each row of the DLCT can be computed in timeO(2n+
m2m) operations, and that the entire DLCT can be computed in time O(22n +
m2m+n) operations. This significantly improves over the trivial algorithm which
requires O(22n+m) operations.

This speedup is practically important as it allows us to compute the DLCT
for larger parts of the cipher, and thus, obtain a more accurate estimate of
the complexity of the DL attack. For example, in the attack on 8-round DES
presented in Section 6, we compute one DLCT entry for three rounds of DES as
a single unit, and so the ability to compute the DLCT efficiently is crucial.

3 Differential-Linear Cryptanalysis of Ascon, Revisited

Ascon [18] is an authenticated encryption algorithm that was recently selected
to the final round of the CAESAR [16] competition. In [19], Dobraunig et al. pre-
sented a practical differential-linear attack on up to 5 rounds of the Ascon per-
mutation, based on a 4-round DL distinguisher. The authors of [19] stated that
while by the theory of the DL attack, the overall bias of the approximation is
expected to be 2−20, experiments show that the bias is significantly higher – 2−2.
They attributed the difference between practice and the theoretical estimate to
multiple linear approximations that affect the overall bias, and used the correct
value in their attack. We recompute the bias of the distinguisher using the DLCT
and show that a large part of the discrepancy results from dependency between
the two subciphers.

In order to recompute the bias, we have to provide some more details on the
specific distinguisher used in [19]. We present the distinguisher only schemati-
cally.

The theoretical analysis of [19]. The DL distinguisher of [19] targets a 4-round
reduced variant of Ascon denoted by E and decomposed as E = E1 ◦E0, where
E0 consists of rounds 1–2 and E1 consists of rounds 3–4. For E0, the distinguisher
uses a differential characteristic of the form

∆0
p0=2−2

−−−−−→
L◦S

∆1
p1=2−3

−−−−−→
L◦S

∆2,

where ∆2 is a truncated difference. For E1, the distinguisher uses a linear ap-
proximation of the form

λ0
q0=2−7

−−−−−→
L◦S

λ1
q1=2−2

−−−−−→
L◦S

λ2,

where λ2 consists of a single bit, and all nonzero bits of the mask λ0 are included
in S-boxes in which the all the input bits are known to be zero in ∆2. Using
the naive complexity analysis of the DL attack (i.e., Equation (2) above), the

14 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

authors of [19] concluded that the theoretical estimate for the overall bias of
the approximation is 2 · 2−5 · (2−8)2 = 2−20. On the other hand, they found
experimentally that the bias is as high as 2−2.4

Partial explanation of the discrepancy using only the trivial property of the
DLCT. As mentioned above, the linear approximation of E1 was chosen by
Dobraunig et al. in such a way that all nonzero bits of the mask λ0 are included
in S-boxes in which all the input bits are known to be zero in ∆2. By the triv-
ial property of the DLCT presented in Section 2, this implies that the linear
approximation in round 3 holds with bias 1/2, instead of the theoretical bias
q0 = 2−7. Therefore, the estimated bias of the approximation is increased to
2 · 2−5 · (2−2)2 = 2−8, which is already much higher than 2−20.

Analysis using the DLCT. We now obtain a higher bias of 2−5 by revisiting
the analysis using the DLCT. Let us decompose E into E = E′

1 ◦ Em ◦ E′
0,

where E′
0 consists of rounds 1–3, Em consists of round 4, and E′

1 = Id. Note
that since in the DL distinguisher of [19], the output mask λ2 consists of the
MSB in the output of S-box no. 9, we are only interested in the entries of the
DLCT of that S-box (which we denote by S). For E0, we use a differential of the

form ∆0
p=2−3

−−−−−−→
3 rounds

∆3, where ∆0 is the input difference of the DL distinguisher

of [19]. In our value of ∆3, three of the input bits to S-box no. 9 are known to
be zero; specifically, the input is of the form ?0?00. (Note that the S-box is from
5 bits to 5 bits). The relevant normalized entries of the DLCT of S satisfy:

DLCTS(16, 16) = 0, DLCTS(4, 16) = 0,

DLCTS(20, 16) = 2−1, and DLCTS(0, 16) = 2−1.

Hence, assuming that each input difference of S occurs in ∆3 with the same
probability 2−2 and using Equation (4), we obtain the estimate

4 · 2−3 · 2−2(0 + 0 + 2−1 + 2−1) · (2−1)2 = 2−5

for the overall bias of the DL distinguisher of [19]. This value is, of course, much
lower than the experimentally obtained bias of 2−2 (which may be explained by
the effect of other differentials and linear approximations). On the other hand,
it is significantly higher than the value 2−20 which follows from the classical DL
framework. This demonstrates the importance of taking the dependency between
subciphers into account, which the DLCT facilitates in an easy manner.

4 Differential-Linear Cryptanalysis of Serpent, Revisited

One of the first applications of the DL technique is an attack on the AES finalist
Serpent [1] presented in [5]. The attack is based on a 9-round DL distinguisher

4 We emphasize that the results of [19] were not affected by the theoretical estimate,
since the authors of [19] used the experimentally verified value instead of the theo-
retically computed value.

DLCT: A New Tool for Differential-Linear Cryptanalysis 15

with bias of 2−59 and targets an 11-round variant of the cipher. An improved
attack was presented in [20]. The authors of [20] performed experiments with
reduced round variants of Serpent, and concluded that the actual bias of the
approximation is 2−57.75 and not 2−59. Using the improved bias, they extended
the attack to 12 rounds of Serpent (out of its 32 rounds) yielding the best
currently known attack on the cipher.

In [20], the increased bias was attributed to the existence of other approx-
imations that affect the overall bias. In this section we recompute the bias of
the distinguisher using the DLCT and obtain the value 2−57.68, which is very
close to the experimental value. Thus, we conclude that the increased bias in the
experiment results mostly from the dependency between the two subciphers.

In order to recompute the bias, we have to provide some more details on the
specific distinguisher used in [5]. For sake of clarity, we present it only schemat-
ically, and refer the reader to [5] for the exact difference and mask values.

The analysis of [5]. The DL distinguisher of [5] targets a 9-round reduced variant
of Serpent that starts with round 2 of the cipher. This variant is denoted by E
and decomposed as E = E1◦E0, where E0 consists of rounds 2–4 and E1 consists
of rounds 5–10. For E0, the distinguisher uses a differential characteristic of the
form

∆0
p0=2−5

−−−−−→
L◦S2

∆1
p1=2−1

−−−−−→
L◦S3

∆2
p2=1
−−−→
L◦S4

∆3,

where ∆2, ∆3 are truncated differences. For E1, the distinguisher uses a linear
approximation of the form

λ0
q0=2−5

−−−−−→
L◦S5

λ1
q1=2−23

−−−−−−→
5 rounds

λ7,

where all nonzero bits of the mask λ0 are included in the bits that are known
to be zero in ∆3. Using the naive complexity analysis of the DL attack (i.e.,
Equation (2) above), the authors of [5] concluded that the overall bias of the
approximation is 2 ·2−6 · (2−27)2 = 2−59. (Actually, in their attack they used the
lower value of 2−60 due to the effect of other differentials.)

The experimental results of [20]. The authors of [20] checked experimentally the
first 4 rounds of the DL distinguisher of [5] (i.e., a 4-round distinguisher which
starts with the difference ∆0 and ends with the mask λ1) and found that its
bias is 2−13.75, instead of the theoretical estimate 2 · 2−6 · (2−5)2 = 2−15. They
concluded that the overall bias of the 9-round distinguisher is 2−57.75 instead of
2−59, and used the conclusion to extend the key-recovery attack based on the
distinguisher from 11 rounds to 12 rounds.

Analysis using the DLCT. We considered a 3-round variant of Serpent that
starts at round 3, denoted it by E′, and computed the normalized DLCT entry
DLCTE′(∆1, λ1). (Note that computing the entire DLCT for E′ is infeasible.
However, due to the low diffusion of Serpent, one can compute efficiently part

16 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

of the entries, including the entry we needed). We obtained DLCTS(∆1, λ1) =
2−8.68.

Using Equation (4) (for the case of E′
1 = Id) we conclude that the bias of the

4-round distinguisher examined in [20] is p1 ·DLCTS(∆1, λ1) = 2−5 · 2−8.68 =
2−13.68, which is very close to the experimental result 2−13.75 of [20].

Note that we obtained an estimate which is very close to the actual value,
using only the naive Equation (4) and not the more accurate Equation (5) that
takes into account the effect of other differentials. This shows that the increased
bias found experimentally in [20] follows almost solely from dependency between
the subciphers, and demonstrates how the DLCT methodology can be used for
obtaining an accurate estimate of the DL attack complexity.

5 Improved Differential-Linear Attack on ICEPOLE

ICEPOLE is an authenticated encryption cipher based on the duplex construc-
tion proposed by Morawiecki et al. submitted to the CAESAR competition [32].
The main two versions, ICEPOLE128 and ICEPOLE128a are initialized with a
128-bit key. In addition ICEPOLE128 accepts 128-bit nonce and 128-bit secret
message number, in comparison, ICEPOLE128a accepts 96-bit nonce and 0-bit
secret message number (to serve as a drop-in replacement for AES-128-GCM).5

After initialization, the associated data is absorbed into the 1280-bit state. For
the processing of the plaintext (encryption and authentication), a block of 1024
bits is extracted (to be XORed to the plaintext) and the plaintext is XORed into
1024 bits of the state.6 This state is then updated using 6-round Permutation
P6 which iterates a round function P 6 times over 1280 bits. After the entire
plaintext has been encrypted, a tag is produced by extracting bits of the internal
state. The entire process is depicted in Figure 2.7

After ICEPOLE has been introduced, Huang et al. presented a differential-
linear attack against ICEPOLE-128 and ICEPOLE-128a [22]. The attack recov-
ers the internal state using a differential-linear attack, where the bias of the
differential-linear depends on the value of some bits. Hence, observing the bias
in the output allows identifying internal state bits. After full recovery of the
internal state, one can extract the secret key (as long as the scheme is not us-
ing secret message numbers) or forge new messages (when using secret message
numbers).

5 We note that ICEPOLE256a is a variant designed to serve as a drop-in replacement
for AES-256-GCM, thus it has the same parameters as AES-256-GCM.

6 Actually, two additional bits are appended – the frame bit which is set to 0 in
all blocks but the last authenticated data block and the last message block, and a
padding bit, but their rule and effect on the attack are negligible.

7 We disregard the exact initialization and the handling of associated data which are
of no relevance to this paper. The interested reader is referred to [32] for more
information.

DLCT: A New Tool for Differential-Linear Cryptanalysis 17

Fig. 2. General Structure of ICEPOLE

In
it
ia
l
co
n
st
an

t
P12

⊕

key||nonce

Initialization

P6 P6 P6 P6 P6

⊕

pad

σSMN

⊕

cSMN

⊕

pad

σAD
0

· · ·

· · ·

⊕

pad

σAD
m

⊕

pad

σP
0

⊕

c0

· · ·

· · ·

⊕

pad

σP
n

⊕

cn

Processing phase

T

Tag generation

5.1 A Short Description of ICEPOLE-128

We first note that there are three variants of ICEPOLE (ICEPOLE-128, ICEPOLE-
128a, and ICEPOLE-256), but our attacks and description concern only the
128-bit variants, ICEPOLE-128 and ICEPOLE-128a.

The internal state of ICEPOLE, denoted by S is composed of 20 64-bit
words organized in a 4-by-5 matrix. We follow [32] notations: the bit S[x][y][z]
is the z’th bit of the word at position (x, y) where 0 ≤ x ≤ 3, 0 ≤ y ≤ 4, and
0 ≤ z ≤ 63. This bit is considered to be bit 64(x+4y) + z of the state. The first
n bits of S are denoted by by S⌊n⌋. The z’th slice of S is a 4-by-5 binary matrix
(S[x][y][z])x,y. When z and x are fixed, the 5-bit vector S([x][y][z])y is called a
row.

The round function P is composed of five operations, P = κ ◦ ψ ◦ π ◦ ρ ◦ µ
which are:

– µ operates on each of the 64 slices independently by treating each 20-bit
slice as a vector (Z0, Z1, Z2, Z3) ∈ GF (25) and multiplying this vector by
the MDS matrix

M =

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

.

The multiplication is done over GF (25) (with the irreducible polynomial
x5 + x2 + 1).

– ρ is a cyclic rotation applied to each of the 20 64-bit words of S. Each word
(x, y) is rotated by a different constant, i.e., S[x][y] = S[x][y] ≪ offsets[x][y]
where the table of offsets[x][y] can be found in [32].

– π reorders the words in S by moving the word S[x][y] into S[x′][y′] according
to the formula:

{

x′ = (x+ y) mod 4
y′ = (((x+ y) mod 4) + y + 1) mod 5

– ψ applies a 5-bit S-box to each of the 256 rows of the state.

– κ adds a round constant (constant[round]) to S[0][0]. The constants are
generated by an LFSR and can be found in [32].

18 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

For the sake of clarity, we shall denote the linear parts of the round function by
L = π ◦ ρ ◦ µ.

As mentioned before, the internal state S is initialized using a constant which
is XORed with (key||nonce) value. After than P12 (12 rounds of P are used to
mix the key and nonce into the state). If secret message numbers are used, they
are encrypted using the duplex operation. The associated data is chopped into
blocks of 1026-bit each (after padding). They are absorbed into the state S, and
then the encryption/authentication of the plaintext takes place following the
duplex operation using P6. After the entire plaintext is processed, P6 is applied
to the internal state (or P12 in ICEPOLEv2), and the 128-bit tag is computed
as T0 = S[0][0], T1 = S[1][0].

In the followings, we use ei to denote a 64-bit word which is 0 in all bits,
besides the i’th bit.

5.2 Huang et al.’s Differential-Linear Attack on ICEPOLE-
128/ICEPOLE-128a

Huang et al. have presented a differential-linear attack against ICEPOLE-128
and ICEPOLE-128a in the repeated nonce settings [22]. As the attack recovers
the internal state, if the scheme is not using a secret message number, then one
can obtain the key by inverting the internal state. Otherwise, the recovery of the
internal state allows encrypting/authenticating any data.

The attack targets the first application of P6 after the plaintext is introduced
by injecting differences through the plaintext block σ0 and observing biases in
the key stream used to encrypt σ1. Its general structure is depicted in Figure 3.
For the sake of its description, we denote by I the input to P6 (after the XOR
with the plaintext) and by O the output of P6. Moreover, we denote by ψi, Li,
and κi the ψ, L, and κ of the i’th round.

Fig. 3. Differential-Linear Attack on the “First” P6 of ICEPOLE

IS L1 ψ1 f L6 ψ6 κ6
⊕

pad

σP
0

⊕

c0

⊕

pad

σP
1

⊕

c1

X Y Z W V

P6I O

∆ ∆L−1(∆) Ω Ω′

p = 1 bi =? Char p = 1 pL

f = P ◦ P ◦ P ◦ P ◦ κ

The attack of [22] uses the 1024 bits of I and O which can be easily obtained
by knowing the plaintext and ciphertext blocks for a 2-block long message. The
attack introduces differences in the first plaintext block, which does not affect
the fifth column of I. This difference is transformed into an input difference ∆
after the application of the linear layer L (i.e., the introduced difference into
the state is L−1(∆)). Due to the MDS property of µ and the zero difference

DLCT: A New Tool for Differential-Linear Cryptanalysis 19

in the fifth column, ∆ must have at least two active S-boxes. The behavior of
these two active S-boxes, namely, the probability of the differential transition
through them highly depends on the actual value of some bit bi (or two bits).
Hence the input difference ∆∗ of the differential-linear approximation appears
with different probabilities, depending on the value of this bit. Luckily for us,
this bit (or pair of bits) is the outcome of XORing an unknown input bit (from
the fifth column of I) with known bits (which are controlled by the adversary).
This allows the adversary to partition the plaintext pairs into sets according to
the possible values of bi, where for the “correct” set, we expect a significantly
higher bias.

The differential-linear approximation ∆∗ → λ covers the 4 rounds until
round 6, and can be extended until the end of the linear layer L6. We note
that in ψ1, the differential characteristic in use is ∆∗ → ∆ = ∆∗. Interestingly,
ψ has a very useful property – given the 4 least significant bits of the output,
one can partially recover the input. Table 2 suggests the values, and the prob-
ability that partial information can be found given these 4 output bits. Hence,
any differential-linear whose output mask can be deduced from the partial in-
formation can be used with some probability, which we denote by pL.

Table 2. Deducing Input Bits of ψ from the Four LSBs of the Output

Input
Output MSB Bit 3 Bit 2 Bit 1 LSB

?0000 1 ? 1 ? 1
?0001 ? ? ? ? ?
?0010 ? 0 ? 1 0
?0011 ? ? ? ? 1

?0100 ? ? ? 0 ?
?0101 ? 0 ? 0 ?
?0110 ? 0 ? 1 0
?0111 ? ? ? 1 1

?1000 ? 1 0 1 0
?1001 ? ? 0 ? 1
?1010 ? 1 0 0 0
?1011 ? ? 0 ? 1

?1100 ? ? 1 0 1
?1101 ? 1 1 0 0
?1110 ? 1 1 1 0
?1111 0 0 ? ? ?

Probability 1/8 1/2 1/2 5/8 3/4
(pL)

? – unknown value

Due to the structure of ICEPOLE, any differential characteristic and any lin-
ear approximation can be rotated (by rotating each word, respectively). Hence,
the attack is repeated with the 64 rotated versions of the differential-linear ap-
proximation. Each time, it recovers the bit bi (which affects bias of the approx-

20 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

imation). This is done by encrypting multiple pairs of plaintexts with input
difference ∆ with two active S-boxes (and covering all possible values of the
recovered bit bi), and observing the set which has the highest bias.

Actually, instead of taking all ciphertext pairs, only the pairs which can be
used to predict the input of ψ6 from their 1024-bit outputs O are considered (as
each ciphertext can be used with probability, this is actually probability p2L). The
different approach of extending the differential-linear approximation to cover ψ6

leads to much worse performance (as there are many active S-boxes in the ψ6

layer).
After studying the differentials and linear approximations that can be used

for the attack, Huang et al. [22] identified 5 input difference patterns∆1, ∆2, . . . , ∆5

that after L activate only two S-boxes, as well as two good linear approximations
λmid
1 → λ1 and λmid

2 → λ2. Given the word-oriented nature of the permuta-
tion P , one can rotate the differences (or masks) by rotating each word of the
mask/difference. Hence, for each bit position it is possible to consider all the
combinations of ∆i and λj and experimentally calculate the bias of the resulting
differential-linear.

The actual attack tries to find the last column of I (as the first four can be
trivially deduced). Denote this fifth column by the four words (U0, U1, U2, U3).
The first phase recovers U0 and U3, the second phase recovers U2, and finally
the third phase recovers U1. All phases follow an essentially similar process – a
differential-linear approximation is built from a differential characteristic which
probability (in the first round) depends on the value of some specific (unknown)
bits. Then, by observing enough plaintext/ciphertext pairs and evaluating the
bias, one can determine the unknown bits, from which corresponding bits of Ui

are computed.
Following the above steps, we give detailed explanation on how to find the

first bits of U0 and U3 in the attack. For that phase, Huang et al. propose to use
the following ∆2:

∆2 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 e10 e41 0 0

which under L−1 has differences in the LSBs of the words S[0][2], S[1][0], S[1][1],
S[1][2], S[1][3], S[2][1], S[2][3], S[3][0], and S[3][2]. Another technicality is that
the adversary fixes 18 bits (by knowing the first four columns of I she can select
the corresponding σ0), then the probability of the differential transition depends
on two unknown bits – for one of the four possibilities it is significantly higher
probability than for the rest, as presented in Table 3. The specific fixed bits and
their values is given in [22].

The linear mask in use ends with the mask

λ1 =

0 0 0 0 0
0 e33 0 0 0
0 0 0 0 0
0 0 0 0 0

L6−−→ λ′1 =

e18 e0 0 e43 0
0 e2 0 0 0
0 e21 e61 0 0
0 0 e41 e56 0

.

DLCT: A New Tool for Differential-Linear Cryptanalysis 21

Using Table 2, this suggests that with probability pL = 2−6.45 one can compute
the output mask from a given output O. As each pair requires the evaluation of
two O’s, the probability that a pair can be used for the analysis is p2L = 2−11.9.

For the specific differential-linear characteristics presented above the two
unknown at the entrance of ψ1 which can be recovered are b1 = U31

3 ⊕ a0 and
b3 = U43

0 ⊕ U43
3 ⊕ a1, where a0 and a1 can be computed from the four known

columns of I. Table 3 offers the different biases as a function of b1 and b3. These
biases were experimentally computed in [22] by taking 230 plaintexts pairs with
the required values fixed.

To conclude, given the above differential-linear characteristic, the recovery
of two bits b1 and b3 is as follows:

1. Collect N plaintext pairs with the required input difference and the 18 bits
fixed.

2. For each pair, check whether one can deduce the bits that enter the linear
mask of ψ6 for both ciphertexts.

3. Divide the remaining pairs into four sets according to the value of unknown
values of b1 and b3.

8

4. Find the set with the maximal bias (which suggests the correct values of b1
and b3). Compute from b1, b3 and the known bits the value of the unknown
bits.

The analysis shows that when taking N = 233.9 plaintext pairs (with 18 bits
fixed) we obtain about 233.9 · p2L = 221 pairs which can be analyzed (as we know
the input linear mask to ψ6). These pairs can be divided into four sets of about
219 pairs each, one of which with a bias of 2−7.3, which is significantly higher
than the rest, and thus can be easily detected. The data complexity is thus
233.9 pairs of 2-block messages for each pair of bits b1, b3 recovered, or a total
of 64 · 2 · 2 · 233.9 = 241.9 1024-bit data blocks. We list in Table 3 the different
bits recovered in each phase, the relevant pL, and the data complexity. The full
details are available at [22].

5.3 Our New Results on ICEPOLE-128/ICEPOLE-128a

The main reason the attack of [22] used a single-bit mask for the output is
to ensure a low hamming weight mask. This was chosen to optimize the two
conflicting effects of λ on the complexity of the attack – the more active bits
in L6(λ) there are (which translates to more active bits in λ when λ is of low
hamming weight), the lower pL is. At the same time, λ affects the bias as it sets
the output mask of ψ5, suggesting that constraints on λ may lead to sub-optimal
linear approximations.

Moreover, as the actual biases were measured experimentally (rather than
analytically) we decided to pick a slightly different approach. Instead of studying
single-bit λ we decided to try output masks with a single active S-box. This

8 We remind the reader that these bits are the XOR of a fixed unknown bits from U0

and U3 with bits that are known to us).

22 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

Table 3. The Different Phases of the Attack of [22]

Phase Recovered Bits Value/log2(bias) pL Data Complexity

1
bi1 = U31+i

3 , bi2 = U43+i
0 ⊕ U43+i

3

i ∈ {0, 1, . . . 63}

(b1 = 0, b3 = 0) -13
(b1 = 0, b3 = 1) -7.3
(b1 = 1, b3 = 0) -13.9
(b1 = 1, b3 = 1) -11.9

2−6.45 64 · 2 · 2 · 233.9 = 241.9

2
bi2 = U24+i

2

i ∈ {0, 1, . . . 63}
b2 = 0 -11
b2 = 1 -15.4

2−5.86 64 · 2 · 2 · 236.7 = 244.7

3
bi0,3 = U12+2i

1 , bi1,1 = U13+2i
1

i ∈ {0, 1, . . . 31}

(b0,3 = 0, b1,1 = 0) -11.2
(b0,3 = 0, b1,1 = 1) -15.2
(b0,3 = 1, b1,1 = 0) -16.4
(b0,3 = 1, b1,1 = 1) -14.8

2−5.86 32 · 2 · 2 · 237.7 = 244.7

Total 245.8

allowed raising the bias of the transition in ψ5 from at most 3/16 to 4/16 (which is
significant due to the quadratic effect on the bias, which translates to a quadratic
effect on the data and time complexities).

The increase in the number of possible output masks carries with it a com-
putational problem – one needs to cover more masks in the process of computing
the bias, by a factor of almost 6, for any chosen input difference. Hence, instead
of relying on multiple time consuming experiments for each input difference ∆,
we use the DLCT of ψ to obtain estimates for the bias of the differential-linear
approximation. This is done by taking the input difference ∆ and computing for
each S-box in ψ5 the distribution of input differences (i.e., if the input difference
is δ, determaining pδ). Then, for all the active S-boxes in the mask leaving ψ5, for
each S-box’ mask ω we compute

∑

δ pδ ·DLCT (δ, ω) to evaluate the probability
of the differential-linear transition in ψ5. As the evaluation of pd for each S-box
is independent of the mask ω, and as the DLCT is computed once, this offers a
very efficient procedure.

The result is the discovery of better differential-linear approximation for the
second and third phase. We give in Table 4 the new differential-linear approxi-
mations used in the second and third phase. Due to the reduced data required
in the later phases, we also reduce the data complexity in the first round (to
reduce the total data complexity) and change a bit the constraints on the actual
values (but they serve the same purpose as in the original attack). One main
difference is that the constraints are not on the values, but rather on the parity
of some subsets of bits. We list these subsets in Table 5.

Using the new differential-linear approximations (and bit-fixing) we obtain
an attack on the full ICEPOLE in complexity of 241.58 data and time. Its phases
are listed in Table 6. We note that the first phase has a slightly lower success rate.
After presenting a new approach for generating the data that further reduces the
data and time (to 235.85) we discuss how to mitigate this slightly lower success
rate.

DLCT: A New Tool for Differential-Linear Cryptanalysis 23

Table 4. Our New Different-Linear Approximations for Phases 2 and 3 of the Attack

Phase ∆ λ λ′ pL Bias

2

e8 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 e0 0 0

0 e49 e49 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

e3 e49 0 0 0
0 e51 0 0 0
0 0 e46 0 0
0 0 e26 e41 0

2−4.77 2−8.88

3

0 0 e0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 e1 0

0 e43 e43 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

e61 e43 0 0 0
0 e45 0 0 0
0 0 e40 0 0
0 0 e20 e35 0

2−4.77 2−9.49

Efficient Data Generation We note that each of the three phases of the
attack is composed of 64 applications of the same attack up to rotating the
differences/masks. Hence, if each such attack requires about N plaintext pairs,
a trivial implementation requires 64N plaintext pairs. Luckily, there is a more
efficient way to do so.

Our key observation is that one can select Pi in advance to satisfy all the
conditions of the 64 possible rotations. This can be easily done when there is at
least one word which has no conditions/restrictions. For such a Pi we test for
each of the 64 rotations whether one can deduce the needed bits at the input of
ψ6. If so, we generate its counterpart P ∗

i which satisfies the required difference,
and apply the attack as before (with probability of pL that P ∗

i allows recovering
the input of ψ6).

This reduces the data complexity of Phase 1 from 2 · 2 · 64 · 232.8 plaintexts
to 2 · (232.8 +64 · 232.8−6.45) = 234.6 plaintexts (as for each of the 64 rotations of
the differential-linear approximation there is probability of pL that Pi is useful).
Similar analysis reduces the data complexity of the second phase to 2 · (231.33 +
64 · 231.33−4.77) = 234.07 which is the same also for the third phase. Hence, the
total data complexity of the attack is 235.85 chosen plaintexts.

We note that the reduced data complexity of the first phase may negatively
affect the success rate. Moreover, an error in the first phase is expected to cause
errors in the next phases. However, we note that one can easily test the obtained
values for correctness. If the recovered internal state is not accurate, the adver-
sary can exhaustively test internal states of hamming distance up to 5 from the

extracted one in time of

(

256
5

)

≈ 233.1 recomputations (using simple linear

algebra). In other words, as long as the attack has at most 5 wrong bits, the
correct internal value can be extracted.

5.4 Experimental Verification of Our Attack

We have experimentally verified our attack. We run the full attack 16 times,
using a random key and nonce. The machine was a virtual machine on the
Azure infrastructure (instance Standard F64s v2). The machine has 64 vCPUs

24 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

Table 5. Bit Subsets Fixed for Our Attack

Phase Subset Parity(Subset) Subset Parity(Subset)

1

0 e4 0 0 0
e4 0 0 0 0
0 e4 0 0 0
e4 0 e4 0 0

1

0 e35 0 0 0
e35 0 0 0 0
0 e35 0 0 0
e35 0 e35 0 0

1

0 0 e33 0 0
0 0 0 e33 0
0 0 0 e33 0
0 0 0 e33 0

0

0 0 e0 0 0
0 0 0 e0 0
0 0 0 e0 0
0 0 0 e0 0

0

0 0 0 e27 0
0 0 0 e27 0
0 0 0 0 0
0 0 e27 0 0

1

0 e17 0 0 0
e17 0 e17 0 0
e17 0 0 0 0
0 e17 0 0 0

1

2

0 e58 0 0 0
e58 0 0 0 0
0 e58 0 0 0
e58 0 e58 0 0

1

0 0 0 0 e8
e8 0 0 0 0
e8 0 0 0 0
e8 0 0 0 0

0

0 0 e23 0 0
0 0 0 e23 0
0 0 0 e23 0
0 0 0 e23 0

0

0 0 0 0 e0
e0 0 0 0 0
e0 0 0 0 0
e0 0 0 0 0

1

0 0 0 e19 0
0 0 0 e19 0
0 0 0 0 e19
0 0 e19 0 0

1

3

0 0 e24 0 0
0 0 0 e24 0
0 0 0 e24 0
0 0 0 e24 0

1

0 0 e21 0 0
0 e21 0 0 0
0 0 e21 0 0
0 0 0 e21 0

0

0 0 e55 0 0
0 0 e55 0 0
0 0 0 e55 0
0 e55 0 0 e55

0

(Intel Xeon 8168 processor) with 128 GB RAM running Ubuntu 18.04.1 TLS.
We have used the official ICEPOLE code (written in C), while our attack was
written in C++. Compiling with gcc-7.3.0 using the optimization flag -O3, each
of the attack’s instances took about an hour. Its code is available at https:

//github.com/cryptobiu.

Out of the 16 experiments, 11 recovered the exact internal state. In 4 of
them, a single-bit error took place in phase 3 of the attack (resulting in a single-
bit error in the proposed internal state). Finally, in one experiment, a single-bit
error took place in the first phase, resulting in three bits error (single-bit error
in the second phase and in the third-phase). Of course, once the single-bit error
in the first phase is fixed, then the errors in the other phases are resolved as well.

https://github.com/cryptobiu
https://github.com/cryptobiu

DLCT: A New Tool for Differential-Linear Cryptanalysis 25

Table 6. The Different Phases of the New Attack

Phase Recovered Bits Value/log2(bias) pL Data Complexity

1
bi1 = U31+i

3 , bi2 = U43+i
0 ⊕ U43+i

3

i ∈ {0, 1, . . . 63}

(b1 = 0, b3 = 0) -13
(b1 = 0, b3 = 1) -7.3
(b1 = 1, b3 = 0) -13.9
(b1 = 1, b3 = 1) -11.9

2−6.45 64 · 2 · 2 · 232.8 = 240.8

2
bi4 = U27+i

2

i ∈ {0, 1, . . . 63}
b4 = 0 -14.32
b4 = 1 -8.8

2−4.77 64 · 2 · 2 · 231.33 = 239.33

3
bi3 = U21+i

1

i ∈ {0, 1, . . . 63}
b3 = 0 -9.49
b3 = 1 -13

2−4.77 64 · 2 · 2 · 231.33 = 239.33

Total 241.58

Hence, we conclude that all experiments succeeded to recover the internal state
(or were sufficiently close to the correct one) using 234.85 2-block plaintexts.

6 Improved Differential-Linear Attack on 8-Round DES

refined analysis of the DLCT, we found out that the attack can be improved
by replacing the differential characteristic and the linear approximation with
another combination of a characteristic and an approximation, which leads to a
higher bias due to dependency between the two underlying subciphers. First we
briefly recall the structure of DES and describe the attack of [4], and then we
present our improved attack.

In this section we use the DLCT methodology to revisit the DL attack on
8-round DES [35] presented by Biham et al. [4]. We show that the attack can be
improved by replacing the differential characteristic and the linear approximation
with another combination of a characteristic and an approximation, which leads
to a higher bias due to dependency between the two underlying subciphers.

6.1 The DL attack of [4] on 8-round DES

The attack of [4] is based on a 7-round DL distinguisher. Denote a 7-round
variant of DES by E. The distinguisher uses the decomposition E = E1 ◦ E0,
where E0 consists of rounds 1–4 and E1 consists of rounds 5–7. For E0, it uses
the truncated differential

0x00808200 60000000 = ∆I

p= 14
64−−−→

E0

∆O = 0x????M??? 00W0XY 0Z,

whereM ∈ {0, 1, 2, . . . , 7},W,X ∈ {0, 8}, and Y, Z ∈ {0, 2}. The characteristic is
composed of a 1-round characteristic with probability 14

64 and a 3-round truncated
characteristic with probability 1.

26 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

For E1 (rounds 5–7), it uses the linear approximation

0x21040080 00008000 = λI
q=2·(−20

64
)2

−−−−−−−→
E1

λI .

Note that all nonzero bits of λI are included in the bits that are known to be 0
in ∆O. Using the naive complexity analysis of the DL attack (i.e., Equation (2)
above), the authors of [4] concluded that the overall bias of the approximation
is 2pq2 = 2−5.91.

6.2 Our improved DL attack on 8-round DES

At a first glance, it seems unlikely that the distinguisher of [4] can be improved.
Indeed, the linear approximation it uses is known to be the best 3-round lin-
ear approximation of DES, and the only round in the differential characteristic
whose probability is less than 1, is almost the best possible (the highest possi-
ble probability being 16

64). In fact, we verified experimentally that for any other
combination of a differential with probability p′ and a linear approximation with
bias q′, we have 2p′(q′)2 < 2−5.91.

Nevertheless, we obtain a higher bias, using the dependency between the
subciphers. We decompose E as E = E′

1◦Em◦E′
0, where E

′
0 consists of rounds 1–

2, Em consists of rounds 3–5, and E′
1 consists of rounds 6–7. For E′

0, we use the
differential

0x00200008 00000400 = ∆I

p′= 16
64−−−−→

E′

0

∆O = 0x60000000 00000000.

For E′
1, we use the linear approximation

0x00808202 00000000 = λI
q′=−18

64−−−−−→
E′

1

λO = 00808202 80000000.

For Em, we use the DLCT entry9

DLCTEm(0x60000000 00000000, 0x00808202 00000000) ≈ 0.26.

Using Equation (4) above, we find that the overall bias of our approximation is

4p′ ·DLCTEm(∆O, λI) · (q
′)2 = 4 ·

(

16

64

)2

· 0.26 ·

(

−18

64

)2

= 2−5.6. (6)

Since the data complexity of the DL attack is quadratic in the bias, the improve-
ment from 2−5.91 to 2−5.6 reduces the data complexity of the attack of [4] on
8-round DES by a factor of about 1.5.

9 This entry was computed by looking at all 3-round differential characteristics starting
at input difference 0x60000000 00000000, computing their output difference δi (and
probability), and evaluating the bias of λI · δi. After summing over all differential
characteristics, we have experimentally verified that this DLCT entry is indeed about
0.26.

DLCT: A New Tool for Differential-Linear Cryptanalysis 27

Comparison between our distinguisher and the distinguisher of [4]. In order
to compare our distinguisher to that of [4], we present the latter within the

DLCT framework. It is composed of the differential 0x00200008 00000400
p′= 14

64−−−−→

0x00000400 00000000 for E′
0, the linear approximation 0x21040080 00000000

q′=−20

64−−−−−→
0x21040080 00008000 for E′

1, and the DLCT entryDLCTEm(0x00000400 00000000,
0x21040080 00000000) ≈ 0.24. Using Equation (4), its overall bias is 2−5.81. Note
that while the value p′(q′)2 in the distinguisher of [4] is larger than the corre-
sponding value in our distinguisher, the overall bias we obtain is higher due to
the larger value in the DLCT. This emphasizes that the advantage of our new
DL distinguisher stems mainly from dependency between the two subciphers,
reflected in the DLCT.

Experimental verification. We experimentally verified the bias of our DL distin-
guisher, using 100 different keys and 500,000 plaintext pairs for each key. The
average bias found in the experiments was 2−5.58, and the standard deviation
was 2−10.43. This shows that the theoretical estimate of the bias using Equa-
tion (4) is tight in our case, and thus, demonstrates the strength of the DLCT
as a tool for accurate evaluation of the DL attack complexity.

For sake of completeness, we verified experimentally also the distinguisher of
Biham et al. We checked 100 different keys and 500,000 plaintext pairs for each
key. The average bias found in the experiments was 2−5.72, and the standard
deviation was 2−10.56. In addition, we verified that our DL distinguisher has the
maximal bias among all 7-round DL distinguishers that start and end with a
single active S-box. While we could not check 7-round DL distinguishers with
more than one active S-box in the input difference or in the output bias, it seems
highly unlikely that such a distinguisher will have a higher bias, even if it exploits
the dependency between the subciphers.

Another 7-round DL distinguisher used in [4]. The authors of [4] present another
7-round DL distinguisher of DES, which they use in the key recovery attack on
9-round DES. (Its bias is somewhat lower, but it activates less S-boxes in the
round before the distinguisher). We checked this distinguisher using the DLCT
framework and found that its bias is 2−5.95, instead of 2−6.13 computed in [4].
We verified experimentally this result as well, and obtained average bias of 2−5.94

and standard deviation of 2−10.53. This slightly improved bias reduces the data
complexity of the attack of [4] on 9-round DES by a factor of about 1.3.

7 Summary and Conclusions

In this paper we studied the effect of the dependency between the subciphers
on the differential-linear attack. We showed that in various cases of interest,
including previously published DL attacks on Ascon and Serpent, the depen-
dency significantly affects the attack’s complexity. We presented a new tool –
the differential-linear connectivity table (DLCT) – which allows to (partially)

28 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

take the dependency into account and to use it for making DL attacks more effi-
cient. We showed a relation of the DLCT to the Fourier transform and deduced
from it a new theoretical insight on the differential-linear attack. Finally, we
demonstrated the strength of our new tool, by improving previously published
DL attacks against ICEPOLE and 8-round DES.

Our objective in this paper was to introduce the DLCT and to present a few
initial applications. Thus, several natural research directions are left for future
work. The first is formalizing the relation of the DLCT with consideration of
multiple linear approximations, as was done for the basic DL framework by
Blondeau, Leander, and Nyberg [10]. The second is finding a way to extend the
DLCT methodology so that it will cover more rounds at the boundary between
E0 and E1. The third direction is studying properties of the DLCT, in a similar
way to the way the properties of the BCT were recently studied by Boura and
Canteaut [12]. The fourth direction is finding other applications of the DLCT.
We believe that the DLCT is a useful generic tool, and so, we expect more
applications to be found.

Acknowledgements

The authors thank Ran Proshan from the BIU Center for Research in Applied
Cryptography and Cyber Security for his implementation skills and efforts.

The research was partially supported by European Research Council under
the ERC starting grant agreement n. 757731 (LightCrypt) and by the BIU Center
for Research in Applied Cryptography and Cyber Security in conjunction with
the Israel National Cyber Bureau in the Prime Minister’s Office. Orr Dunkelman
was supported in part by the Israel Ministry of Science and Technology, the
Center for Cyber, Law, and Policy in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office and by the Israeli Science Foundation
through grant No. 880/18.

References

1. Ross Anderson, Eli Biham, and Lars R. Knudsen. Serpent: A proposal for the
Advanced Encryption Standard, NIST AES Proposal, 1998.

2. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
Family of Block Ciphers and Its Low-Latency Variant MANTIS. In Advances in

Cryptology - proceedings of CRYPTO 2016, Lecture Notes in Computer Science

9815, pages 123–153. Springer, 2016.

3. Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rectan-
gling the Serpent. In Advances in Cryptology - proceedings of EUROCRYPT 2001,

Lecture Notes in Computer Science 2045, pages 340–357. Sprginer, 2001.

4. Eli Biham, Orr Dunkelman, and Nathan Keller. Enhancing Differential-Linear
Cryptanalysis. In Advances in Cryptology - proceedings of ASIACRYPT 2002,

Lecture Notes in Computer Science 2501, pages 254–266. Springer, 2002.

DLCT: A New Tool for Differential-Linear Cryptanalysis 29

5. Eli Biham, Orr Dunkelman, and Nathan Keller. Differential-linear cryptanalysis
of serpent. In proceedings of Fast Software Encryption, FSE 2003, Lecture Notes

in Computer Science 2887, pages 9–21. Springer, 2003.
6. Eli Biham, Orr Dunkelman, and Nathan Keller. A Related-Key Rectangle Attack

on the Full KASUMI. In Advances in Cryptology - proceedings of ASIACRYPT

2005, Lecture Notes in Computer Science 3788, pages 443–461. Springer, 2005.
7. Eli Biham, Orr Dunkelman, and Nathan Keller. New Combined Attacks on Block

Ciphers. In proceedings of Fast Software Encryption, FSE 2005, Lecture Notes in

Computer Science 3557, pages 126–144. Springer, 2005.
8. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.

J. Cryptology, 4(1):3–72, 1991.
9. Alex Biryukov, Christophe De Cannière, and Gustaf Dellkrantz. Cryptanalysis of

SAFER++. In Advances in Cryptology - proceedings of CRYPTO 2003, Lecture

Notes in Computer Science 2729, pages 195–211. Springer, 2003.
10. Céline Blondeau, Gregor Leander, and Kaisa Nyberg. Differential-Linear Crypt-

analysis Revisited. J. Cryptology, 30(3):859–888, 2017.
11. Céline Blondeau and Kaisa Nyberg. New Links between Differential and Linear

Cryptanalysis. In Advances in Cryptology - proceedings of EUROCRYPT 2013,

Lecture Notes in Computer Science 7881, pages 388–404. Springer, 2013.
12. Christina Boura and Anne Canteaut. On the Boomerang Uniformity of Crypto-

graphic S-boxes. IACR Trans. Symmetric Cryptol., 2018(3), 2018.
13. Florent Chabaud and Serge Vaudenay. Links Between Differential and Linear

Cryptanalysis. In Advances in Cryptology - proceedings of EUROCRYPT ’94,

Lecture Notes in Computer Science 950, pages 356–365. Sprginer, 1994.
14. Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang

Connectivity Table: A New Cryptanalysis Tool. In Advances in Cryptology - pro-

ceedings of EUROCRYPT 2018, Lecture Notes in Computer Science 10821, pages
683–714. Springer, 2018.

15. Baudoin Collard, François-Xavier Standaert, and Jean-Jacques Quisquater. Im-
proving the Time Complexity of Matsui’s Linear Cryptanalysis. In proceedings of

Information Security and Cryptology - ICISC 2007, Lecture Notes in Computer

Science 4817, pages 77–88. Springer, 2007.
16. The CAESAR committee. Caesar: Competition for authenticated encryption: Secu-

rity, applicability, and robustness, http://competitions.cr.yp.to/caesar.html, 2014.
17. Joan Daemen, René Govaerts, and Joos Vandewalle. Correlation Matrices. In

Bart Preneel, editor, Fast Software Encryption: Second International Workshop.

Leuven, Belgium, 14-16 December 1994, Proceedings, volume 1008 of Lecture Notes

in Computer Science, pages 275–285. Springer, 1994.
18. C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Ascon. Submission to

the CAESAR competition: http://ascon.iaik.tugraz.at, 2014.
19. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.

Cryptanalysis of Ascon. In Proceedings of Topics in Cryptology - CT-RSA 2015,

Lecture Notes in Computer Science 9048, pages 371–387. Springer, 2015.
20. Orr Dunkelman, Sebastiaan Indesteege, and Nathan Keller. A Differential-

Linear Attack on 12-Round Serpent. In proceedings of Progress in Cryptology

- INDOCRYPT 2008, Lecture Notes in Computer Science 5365, pages 308–321.
Springer, 2008.

21. Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-Key
Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony. J. Cryp-
tology, 27(4):824–849, 2014.

30 Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman

22. Tao Huang, Ivan Tjuawinata, and Hongjun Wu. Differential-Linear Cryptanalysis
of ICEPOLE. In proceedings of Fast Software Encryption - FSE 2015, Lecture

Notes in Computer Science 9054, pages 243–263. Springer, 2015.
23. Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. Deoxys v1.41.

Submission to the CAESAR competition, 2016.
24. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified Boomerang At-

tacks Against Reduced-Round MARS and Serpent. In proceedings of Fast Software

Encryption, FSE 2000, Lecture Notes in Computer Science 1978, pages 75–93.
Springer, 2000.

25. Jongsung Kim, Seokhie Hong, Bart Preneel, Eli Biham, Orr Dunkelman, and
Nathan Keller. Related-Key Boomerang and Rectangle Attacks: Theory and Ex-
perimental Analysis. IEEE Trans. Information Theory, 58(7):4948–4966, 2012.

26. Xuejia Lai, James L. Massey, and Sean Murphy. Markov Ciphers and Differential
Cryptanalysis. In Advances in Cryptology - proceedings of EUROCRYPT ’91,

Lecture Notes in Computer Science 547, pages 17–38. Springer, 1991.
27. Susan K. Langford and Martin E. Hellman. Differential-Linear Cryptanalysis. In

Advances in Cryptology - proceedings of CRYPTO ’94, Lecture Notes in Computer

Science 839, pages 17–25. Springer, 1994.
28. Gaëtan Leurent. Improved Differential-Linear Cryptanalysis of 7-Round Chaskey

with Partitioning. In Advances in Cryptology - proceedings of EUROCRYPT 2016,

Lecture Notes in Computer Science 9665, pages 344–371. Springer, 2016.
29. Zhiqiang Liu, Dawu Gu, Jing Zhang, and Wei Li. Differential-Multiple Linear

Cryptanalysis. In proceedings of Information Security and Cryptology, Inscrypt

2009, Lecture Notes in Computer Science 6151, pages 35–49. Springer, 2009.
30. Jiqiang Lu. A methodology for differential-linear cryptanalysis and its applications.

Des. Codes Cryptography, 77(1):11–48, 2015.
31. Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Advances in

Cryptology - proceedings of EUROCRYPT ’93, Lecture Notes in Computer Science

765, pages 386–397. Springer, 1993.
32. Pawel Morawiecki, Kris Gaj, Ekawat Homsirikamol, Krystian Matusiewicz, Josef

Pieprzyk, Marcin Rogawski, Marian Srebrny, and Marcin Wójcik. ICEPOLE: High-
Speed, Hardware-Oriented Authenticated Encryption. In proceedings of Crypto-

graphic Hardware and Embedded Systems - CHES 2014, Lecture Notes in Computer

Science 8731, pages 392–413. Springer, 2014.
33. Sean Murphy. The Return of the Cryptographic Boomerang. IEEE Trans. Infor-

mation Theory, 57(4):2517–2521, 2011.
34. Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,

2014.
35. US National Bureau of Standards. Data Encryption Standard, Federal Information

Processing Standards publications no. 46, 1977.
36. US National Institute of Standards and Technology. Advanced Encryption Stan-

dard, Federal Information Processing Standards publications no. 197, 2001.
37. Ali Aydin Selçuk. On Probability of Success in Linear and Differential Cryptanal-

ysis. J. Cryptology, 21(1):131–147, 2008.
38. David A. Wagner. The Boomerang Attack. In proceedings of Fast Software En-

cryption, Lecture Notes in Computer Science 1636, pages 156–170. Springer, 1999.

	DLCT: A New Tool for Differential-Linear Cryptanalysis

