Teichmüller Curves in Genus Two: Discriminant and Spin

Citation

McMullen, Curtis T. 2005. Teichmüller curves in genus two: Discriminant and spin.
Mathematische Annalen 333(1): 87-130. Revised 2009.

Published Version

doi:10.1007/s00208-005-0666-y

Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:3446004

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use\#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story.

Accessibility

Teichmüller curves in genus two: Discriminant and spin

Curtis T. McMullen*

9 April, 2004

Contents

1 Introduction 1
2 Real multiplication 7
3 Prototypical splittings 10
4 Cusps 14
5 Spin 16
6 Square-tiled surfaces 21
$7 \quad$ Butterfly moves 22
8 From cusps to combinatorics 27
9 Relative primes 29
10 Combinatorial connectivity 31
11 Geometric connectivity 36
A Appendix: One-cylinder cusps 38

1 Introduction

Let \mathcal{M}_{g} denote the moduli space of Riemann surfaces of genus g, and $\Omega \mathcal{M}_{g} \rightarrow$ \mathcal{M}_{g} the bundle of Abelian differentials. A point in $\Omega \mathcal{M}_{g}$ is specified by a pair (X, ω), where $X \in \mathcal{M}_{g}$ and where $\omega \in \Omega(X)$ is a nonzero, holomorphic 1-form on X.

The bundle $\Omega \mathcal{M}_{g}$ admits a natural action of $\mathrm{SL}_{2}(\mathbb{R})$, and the projection of any orbit gives a holomorphic Teichmüller disk $f: \mathbb{H} \rightarrow \mathcal{M}_{g}$. If the stabilizer $\mathrm{SL}(X, \omega)$ of a form of genus g is a lattice in $\mathrm{SL}_{2}(\mathbb{R})$, then the disk generated by (X, ω) descends to a Teichmüller curve

$$
f: V=\mathbb{H} / \operatorname{SL}(X, \omega) \rightarrow \mathcal{M}_{g}
$$

whose image is isometrically embedded for the Teichmüller metric.
In this paper we discuss the infinite family of Teichmüller curves generated by forms of genus two with double zeros. We show each such curve is uniquely determined by two invariants: its discriminant D and, when $D \equiv 1 \bmod 8$, its spin invariant $\epsilon \in \mathbb{Z} / 2$. The proof is based on elementary moves that relate the cusps of V, and combinatorial number theory.

[^0]Conjecturally, this family accounts for all but one of the primitive Teichmüller curves in genus two.
Hilbert modular surfaces. In genus two, any Teichmüller curve as above lies on a unique Hilbert modular surface H_{D}, where $D>0$ is a real quadratic discriminant [Mc1]. More precisely, we have a commutative diagram

where $H_{D}=(\mathbb{H} \times \mathbb{H}) / \mathrm{SL}_{2}\left(\mathcal{O}_{D}\right)$ parameterizes the locus of Abelian surfaces $A \in \mathcal{A}_{2}$ with real multiplication by the quadratic order $\mathcal{O}_{D} \cong \mathbb{Z}[x] /\left(x^{2}+b x+c\right)$, $D=b^{2}-4 c$. We refer to D as the discriminant of the Teichmüller curve $f: V \rightarrow \mathcal{M}_{2}$.

The Weierstrass curve W_{D} is the locus of those Riemann surfaces $X \in \mathcal{M}_{2}$ such that
(i) $\operatorname{Jac}(X)$ admits real multiplication by \mathcal{O}_{D}, and
(ii) X carries an eigenform ω with a double zero at one of the six Weierstrass points of X.
(Here $\omega \in \Omega(X)$ is an eigenform if $\mathcal{O}_{D} \cdot \omega \subset \mathbb{C} \cdot \omega$.)
Every irreducible component of W_{D} is a Teichmüller curve of discriminant D. When $D \equiv 1 \bmod 8$, one can also define a spin invariant $\epsilon(X, \omega) \in \mathbb{Z} / 2$, which is constant along the components of W_{D}. Our main result shows that eigenforms with double zeros have no other discrete invariants.

Theorem 1.1 For any integer $D \geq 5$ with $D \equiv 0$ or $1 \bmod 4$, either:

- The Weierstrass curve W_{D} is irreducible, or
- We have $D \equiv 1 \bmod 8$ and $D \neq 9$, in which case $W_{D}=W_{D}^{0} \sqcup W_{D}^{1}$ has exactly two components, distinguished by their spin invariants.
(Note: $W_{D}=\emptyset$ for $D \leq 4$.)
Corollary 1.2 Every Teichmüller curve generated by a form $(X, \omega) \in \Omega \mathcal{M}_{2}(2)$ is determined up to isomorphism by its discriminant D and, if $D \equiv 1 \bmod 8$, by its spin invariant $\epsilon(X, \omega) \in \mathbb{Z} / 2$.

Here $\Omega \mathcal{M}_{2}(2)$ denotes the space of forms of genus two with double zeros.
Billiards. To relate the discussion to billiards, let $P \subset \mathbb{C}$ be a polygon with angles in $\pi \mathbb{Q}$. Via an unfolding construction, $(P, d z)$ determines a holomorphic form $(X, \omega) \in \Omega \mathcal{M}_{g}$, such that billiard trajectories in P go over to geodesics on the singular flat surface $(X,|\omega|)$. If (X, ω) generates a Teichmüller curve, we say P is a lattice polygon.

Figure 1. The billiard table $L(b, e)$, with $\lambda=\left(e+\sqrt{e^{2}+4 b}\right) / 2$.

Veech showed that the billiard flow in a lattice polygon has optimal dynamical properties: for example, every trajectory is either periodic or uniformly distributed [V1].

Now let $L(b, e)$ be the polygon obtained by stacking a $\lambda \times \lambda$ square atop a $1 \times b$ rectangle, where $\lambda=\left(e+\sqrt{e^{2}+4 b}\right) / 2$ and $b, e \in \mathbb{Z}$ (Figure 1). Let us say $L(b, e)$ is admissible if $e=-1,0$ or $1, e+1<b$, and if $e=1$ then b is even. (The condition $e+1<b$ just insures $\lambda<b$.) It can be checked that $L(b, e)$ generates a Teichmüller curve with discriminant $D=e^{2}+4 b$ and, when $D \equiv 1 \bmod 8$, with spin invariant $\epsilon= \pm 1$ depending on the sign of e (cf. Theorem 5.3 below). Since every possible (D, ϵ) occurs exactly once, we have:

Corollary 1.3 Every Teichmüller curve generated by a form of genus two with a double zero is also generated by a unique admissible billiard table $L(b, e)$.

For example, by applying the algorithm from $[\mathrm{Mc} 1]$ to the tables $L(4, \pm 1)$, one can obtain explicit presentations for the two components of W_{17} as quotients of the upper halfplane (Figure 2).

Figure 2. Uniformizations of the curves W_{17}^{0} and W_{17}^{1}.

Primitivity. A Teichmüller curve in \mathcal{M}_{g} is primitive if it does not arise from a curve in $\mathcal{M}_{h}, h<g$, via a branched covering construction. We suspect that the billiard tables above account for all but one of the primitive Teichmüller curves in genus two.

Conjecture 1.4 The regular decagon gives the only primitive Teichmüller curve $V \rightarrow \mathcal{M}_{2}$ generated by a form with simple zeros.

Added in proof: This Conjecture is established in [Mc3].
Topology of branched covers. The case $D=d^{2}$ of Theorem 1.1 has the following purely topological consequence.

Let Σ_{g} denote a closed oriented surface of genus g. Let us say two mappings $f, g: \Sigma_{2} \rightarrow \Sigma_{1}$ have the same type if there exist orientation-preserving homeomorphisms h_{1}, h_{2} such that the diagram

commutes.
Every eigenform (X, ω) for $\mathcal{O}_{d^{2}}$ is the pullback, by a degree d map to an elliptic curve, of a form of genus one. Thus the components of $W_{d^{2}}$ are labeled by types of branched covers. More precisely, Theorem 1.1 implies:

Corollary 1.5 For $d=3$, or any even $d \geq 4$, there is only one type of degree d covering

$$
f: \Sigma_{2} \rightarrow \Sigma_{1}
$$

branched over just one point and surjective on π_{1}. For odd $d \geq 5$, there are exactly two types of such branched coverings.
(For $d=1$ or 2 there are no such branched coverings at all.)

D	5	8	9	12	13	16	17	20	21	24	25	28
$\left\|C\left(W_{D}\right)\right\|$	1	2	$2+0$	3	3	3	$3+3$	5	4	6	$5+3$	7
D	29	32	33	36	37	40	41	44	45	48	49	52
$\left\|C\left(W_{D}\right)\right\|$	5	7	$6+6$	8	9	12	$7+7$	9	8	11	$10+8$	15

Table 3. The number of cusps of the Weierstrass curve, broken down as

$$
\left|C\left(W_{D}^{0}\right)\right|+\left|C\left(W_{D}^{1}\right)\right| \text { when } D \equiv 1 \bmod 8
$$

Cusps. In the course of studying the components of W_{D}, we develop a combinatorial enumeration of its two-cylinder cusps (§4). To complete the picture, in the Appendix we discuss the remaining cusps of W_{D} and how they are partitioned by spin. For example, we show that W_{D}^{0} and W_{D}^{1} have the same number of cusps when $D \equiv 1 \bmod 8$ is not a square. Table 3 lists the number of cusps of each component of W_{D} for $D \leq 52$.
Square-tiled surfaces. Hubert and Lelièvre showed that $W_{d^{2}}$ has at least two components when $d>3$ is odd, and exactly two when $d=p$ is prime [HL]. They also showed the genus of $W_{p^{2}}$ tends to infinity.

The components of $W_{d^{2}}$ are distinguished in [HL] by counting the number of integral Weierstrass points on square-tiled surfaces. In $\S 6$ we show this count can be viewed as a special case of the spin invariant. In the Appendix we also prove that every square-tiled surface of genus two has a one-cylinder direction, generalizing [HL, Theorem 5.1].

By counting square-tiled surfaces, Eskin, Masur and Schmoll show that the orbifold Euler characteristic of the Weierstrass curve satisfies

$$
\chi\left(W_{d^{2}}\right)=-\frac{1}{16} d^{2}(d-2) \sum_{r \mid d} \frac{\mu(r)}{r^{2}}
$$

where μ is the Möbius function [EMS, §4.2]. It would be interesting to obtain a similar formula for $\chi\left(W_{D}\right)$, valid for all D.
Spin, elementary moves, and components of $\boldsymbol{W}_{\boldsymbol{D}}$. We conclude with a sketch of the proof of Theorem 1.1.

1. Spin structures. The $2^{2 g}$ spin structures on a surface X of genus g correspond topologically to quadratic forms

$$
q: H_{1}(X, \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2
$$

The parity of a spin structure agrees with Arf invariant of q, given by

$$
\operatorname{Arf}(q)=\sum q\left(a_{i}\right) q\left(b_{i}\right) \in \mathbb{Z} / 2
$$

with respect to a symplectic basis for $H_{1}(X, \mathbb{Z} / 2)$.
Any surface of genus two admits six odd spin structures, which correspond naturally to its six Weierstrass points.
2. The spin invariant. Let $\Omega W_{D} \rightarrow W_{D}$ denote the bundle of eigenforms (X, ω) with double zeros. Then the Weierstrass point at which ω vanishes determines a spin structure on X, and hence a quadratic form $q: H_{1}(X, \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2$.
Now suppose $D \equiv 1 \bmod 8$. Write $D=E f^{2}$ where E is square-free and $f>0$. To extract the spin invariant of (X, ω), choose a generator T for \mathcal{O}_{D}, normalized so that

$$
T^{*}(\omega)=\frac{f+\sqrt{D}}{2} \omega
$$

Then T gives an endomorphism of $H_{1}(X, \mathbb{Z} / 2)$, whose image is a rank two symplectic subspace, say with basis $\langle a, b\rangle$.
The spin invariant of (X, ω) is then defined by

$$
\epsilon(X, \omega)=\operatorname{Arf}(q \mid \operatorname{Im}(T))=q(a) q(b) \in \mathbb{Z} / 2
$$

The eigenforms with even and odd spin invariant form \mathbb{C}^{*}-bundles over subsurfaces W_{D}^{0} and W_{D}^{1} of W_{D}. For $D \geq 17$ both spins occur, and thus W_{D} has at least two components (§5).
3. A model for W_{D}. The spin invariant provides a lower bound on the number of components of W_{D}. To obtain an upper bound, we analyze a combinatorial model for W_{D} given by

$$
S_{D}=\left\{e \equiv D \bmod 2: e^{2}<D \text { and }(e+2)^{2}<D\right\}
$$

equipped with the equivalence relation generated by

$$
\begin{equation*}
e \sim e^{\prime}=-e-2 q \text { whenenever } e^{\prime} \in S_{D} \text { and } \operatorname{gcd}(b, q)=1 \tag{1.1}
\end{equation*}
$$

Here $q>0$ and $b=\left(D-e^{2}\right) / 4$ is determined by the condition $e^{2}+4 b=D$. We refer to the equivalence classes of S_{D} as its components.
4. Elementary moves. In $\S 8$ we show the number of components of S_{D} is an upper bound for the number of components of W_{D}.

To prove this, we show each integer $e \in S_{D}$ labels a cusp of W_{D}, and the cusps so labeled meet every component W_{D}. Using an elementary butterfly move on connected sum decompositions of eigenforms (§7), we then show that cusps labeled by equivalent elements of S_{D} belong to the same component of W_{D}.
5. Relative primes. Relatively prime numbers play a central role in the structure of S_{D}, due to the condition $\operatorname{gcd}(b, q)=1$ in (1.1) above.
To show S_{D} is highly connected, in $\S 9$ we develop bounds for the smallest $x>1$ relatively prime to a given integer n, as well as for the smallest relative prime in an arithmetic progression. These bounds are succinctly expressed in terms of Jacobsthal's function $J(n)$, defined as the largest gap between consecutive integers relatively prime to n.
6. Combinatorial connectivity. In $\S 10$ we show that, apart from five exceptional cases, the space S_{D} has exactly two components when $D \equiv 1 \bmod 8$, and otherwise just one.
This agrees with the lower bound given by the spin invariant, and establishes our main result except for $D=9,49,73,121$ and 169. A short argument treats these cases as well (§11).
7. Stabilization. Due to irregularities in the distribution of prime numbers, our number-theoretic analysis of the connectivity of S_{D} applies only in the 'stable regime', when D is sufficiently large (e.g. $D \geq 2000$). The remaining values of D are treated by inspection, revealing the five exceptional cases above.

Notes and references. This paper is a sequel to [Mc1], as well as a complement to the classification of orbit closures and invariant measures for the action of $\mathrm{SL}_{2}(\mathbb{R})$ on $\Omega \mathcal{M}_{2}$ given in $[\mathrm{Mc} 4]$.

The curves W_{5} and W_{8} come from billiards in a regular pentagon and a regular octagon, and were studied in [V1]. Kontsevich and Zorich used spin
structures to determine the components of the strata $\Omega \mathcal{M}_{g}\left(p_{1}, \ldots, p_{k}\right)$ of holomorphic 1-forms with zeros of prescribed multiplicity [KZ]. Corresponding results for quadratic differentials are announced in [La]. See [EMS] and [HL] for additional results on the curves $W_{d^{2}}$, and [V1], [V2], [Vo], [Wa], [KS], [Pu], [GJ], [EO], and [Ca] for more on Teichmüller curves. I would like to thank D. Thurston for useful conversations.

2 Real multiplication

In this section we describe when a product of two elliptic curves, $E_{1} \times E_{2}$, admits real multiplication by \mathcal{O}_{D}. In $\S 3$ we will see that such products, interpreted as Jacobians of stable curves, arise from cusps of W_{D}.
The space of lattices. Let $\mathcal{M}_{1} \cong \mathbb{H} / \mathrm{SL}_{2}(\mathbb{Z})$ denote the moduli space of elliptic curves. Let $\Omega \mathcal{M}_{1} \rightarrow \mathcal{M}_{1}$ denote the bundle of pairs (E, ω), where $E \in \mathcal{M}_{1}$ and $\omega \in \Omega(E)$ is a nonzero holomorphic 1-form on E.

We can identify $\Omega \mathcal{M}_{1}$ with the space of lattices $\Lambda \subset \mathbb{C}$ via the correspondence

$$
\Lambda \leftrightarrow(\mathbb{C} / \Lambda, d z)=(E, \omega)
$$

We can also view $\Omega \mathcal{M}_{1}$ as the homogeneous space $\mathrm{GL}_{2}^{+}(\mathbb{R}) / \mathrm{SL}_{2}(\mathbb{Z})$; then $\mathbb{C}^{*} \cong$ $\mathbb{R}_{+} \cdot \mathrm{SO}_{2}(\mathbb{R})$ acts on the left with quotient \mathcal{M}_{1}.
Isogeny. Given $E_{1}, E_{2} \in \mathcal{M}_{1}$, an isogeny $p: E_{1} \rightarrow E_{2}$ is a surjective holomorphic group homomorphism. Its degree is given by $\operatorname{deg}(p)=|\operatorname{Ker}(p)|$. The dual isogeny $\bar{p}: E_{2} \rightarrow E_{1}$ is defined by

$$
\bar{p}\left(z_{2}\right)=\sum_{p\left(z_{1}\right)=z_{2}} z_{1}
$$

and satisfies $\bar{p}\left(p\left(z_{1}\right)\right)=\operatorname{deg}(p) z_{1}$. An isogeny is primitive if $\operatorname{Ker}(p) \cong \mathbb{Z} / \operatorname{deg}(p)$. Any isogeny can be factored as $p(z)=p_{0}(\ell z)$ where p_{0} is primitive.

Typically $q(z)=-p(z)$ is the only other isogeny between E_{1} and E_{2} with $\operatorname{deg}(q)=\operatorname{deg}(p)$; more are possible if p factors through an elliptic curve with extra automorphisms.

The Hecke correspondence of level m is the curve $T_{m} \subset \mathcal{M}_{1} \times \mathcal{M}_{1}$ defined by:

$$
T_{m}=\left\{\left(E_{1}, E_{2}\right): \text { there exists an isogeny } p: E_{1} \rightarrow E_{2} \text { of degree } m\right\}
$$

If we impose the additional requirement that p is primitive, we obtain an irreducible curve $F_{m} \subset \mathcal{M}_{1} \times \mathcal{M}_{1}$, and we have

$$
T_{m}=\bigcup_{\ell^{2} \mid m} F_{m / \ell^{2}}
$$

A point $\left(E_{1}, E_{2}\right) \in F_{m}$ is determined by the pair $\left(E_{1}, \operatorname{Ker}(p)\right)$, and thus the normalization of F_{m} is given by

$$
\widetilde{F_{m}} \cong \mathbb{H} / \Gamma_{0}(m)=\mathbb{H} /\left\{g \in \mathrm{SL}_{2}(\mathbb{Z}): g \equiv\left(\begin{array}{c}
* \\
0 \\
0
\end{array}\right) \bmod m\right\}
$$

The points of $\widetilde{F_{m}}$ correspond to pairs $\left(E_{1}, E_{2}\right)$ with a choice of a primitive degree m isogeny $p: E_{1} \rightarrow E_{2}$, up to sign.
Real multiplication. A real quadratic discriminant is an integer $D>0$ satisfying $D \equiv 0$ or $1 \bmod 4$. The corresponding real quadratic order is the ring $\mathcal{O}_{D} \cong \mathbb{Z}[x] /\left(x^{2}+b x+c\right), b^{2}-4 c=D$. We have

$$
\mathcal{O}_{D} \otimes \mathbb{Q} \cong \begin{cases}\mathbb{Q} \times \mathbb{Q} & \text { if } D=d^{2} \text { is a square } \\ \mathbb{Q}(\sqrt{D}) & \text { otherwise. }\end{cases}
$$

Let $A=\mathbb{C}^{2} / L$ be a principally polarized Abelian surface. The polarization is given by a unimodular symplectic form $x \cdot y$ on $H_{1}(A, \mathbb{Z}) \cong L$. Let $\operatorname{End}(A)$ denote the endomorphism ring of A as a complex Lie group. A subring $R \subset \operatorname{End}(A)$ is proper if $(n T \in R, n \neq 0) \Longrightarrow T \in R$, and an element $T \in \operatorname{End}(A)$ is self-adjoint if

$$
(T x) \cdot y=x \cdot(T y)
$$

for all $x, y \in H_{1}(A, \mathbb{Z})$.
We say A admits real multiplication by \mathcal{O}_{D} if there is a self-adjoint endomorphism $T: A \rightarrow A$ generating a proper subring $\mathbb{Z}[T] \cong \mathcal{O}_{D}$ in $\operatorname{End}(A)$. In this case the space of 1 -forms splits into eigenspaces

$$
\Omega(A)=S_{1} \oplus S_{2}
$$

for the action of \mathcal{O}_{D}; the nonzero elements of $S_{1} \cup S_{2}$ are eigenforms.
The moduli space of Abelian surfaces equipped with real multiplication by \mathcal{O}_{D} can be identified with the Hilbert modular surface $H_{D}=(\mathbb{H} \times \mathbb{H}) / \mathrm{SL}_{2}\left(\mathcal{O}_{D}\right)$.
Products of elliptic curves. Now consider the case of an Abelian surface which is a product of elliptic curves, $A=E_{1} \times E_{2}$. For any such A we have a natural isomorphism

$$
\Omega(A)=\Omega\left(E_{1}\right) \oplus \Omega\left(E_{2}\right)
$$

and a product polarization of coming from the isomorphism

$$
H_{1}(A, \mathbb{Z}) \cong H_{1}\left(E_{1}, \mathbb{Z}\right) \oplus H_{1}\left(E_{2}, \mathbb{Z}\right)
$$

The moduli space of holomorphic 1-forms

$$
(A, \omega)=\left(E_{1} \times E_{2}, \omega_{1}+\omega_{2}\right)
$$

on products of elliptic curves (with both $\omega_{i} \neq 0$) is naturally identified with $\Omega \mathcal{M}_{1} \times \Omega \mathcal{M}_{1}$. The group $\mathrm{GL}_{2}^{+}(\mathbb{R})$ acts diagonally on the product. Within this moduli space we wish to describe the locus

$$
\Omega Q_{D}=\left\{\left(E_{1} \times E_{2}, \omega\right): \omega \text { is an eigenform for real multiplication by } \mathcal{O}_{D}\right\}
$$

Prototypes. Let us say a triple of integers (e, ℓ, m) is a prototype for real multiplication, with discriminant D, if

$$
D=e^{2}+4 \ell^{2} m, \quad \ell, m>0, \quad \text { and } \quad \operatorname{gcd}(e, \ell)=1
$$

We begin by associating a prototype (e, ℓ, m) to each pair

$$
(A, \omega)=\left(E_{1} \times E_{2}, \omega_{1}+\omega_{2}\right) \in \Omega Q_{D}
$$

Let $T \in \operatorname{End}(A)$ generate the unique action of \mathcal{O}_{D} with ω as an eigenform. Then in terms of the product structure $A=E_{1} \times E_{2}$, we can write

$$
T\left(z_{1}, z_{2}\right)=\left(\begin{array}{cc}
e \cdot I & \bar{p} \tag{2.1}\\
p & f \cdot I
\end{array}\right)\binom{z_{1}}{z_{2}}
$$

The fact that T is self-adjoint with respect to the polarization insures the ondiagonal blocks are multiples of the identity, and the off-diagonals are dual isogenies (cf. [Mc4, Theorem 8.3]).

There is a unique choice of generator $T \in \mathcal{O}_{D}$ such that $f=0$ and such that $T^{*} \omega=\lambda \omega$ with $\lambda>0$. By fixing this choice, p and e become invariants of $\left(E_{1} \times E_{2}, \omega\right)$. Moreover p is a multiple of a primitive isogeny of degree m, giving a natural factorization

$$
\operatorname{deg}(p)=\ell^{2} m, \quad \ell, m>0
$$

Since $\mathbb{Z}[T]$ is a proper subring of $\operatorname{End}(A)$, we have $\operatorname{gcd}(e, \ell)=1$. The fact that $p \bar{p}=\operatorname{deg}(p)=\ell^{2} m$ implies

$$
T^{2}=e T+\ell^{2} m
$$

and therefore $D=e^{2}+4 \ell^{2} m$. Thus (e, ℓ, m) is a prototype for real multiplication by \mathcal{O}_{D}.

Theorem 2.1 The space of all eigenforms $\left(E_{1} \times E_{2}, \omega\right)$ for real multiplication by \mathcal{O}_{D} decomposes into a finite union

$$
\Omega Q_{D}=\bigcup \Omega Q_{D}(e, \ell, m)
$$

of closed $\mathrm{GL}_{2}^{+}(\mathbb{R})$ orbits, one for each prototype (e, ℓ, m). Each orbit projects to a Hecke curve $F_{m} \subset \mathcal{M}_{1} \times \mathcal{M}_{1}$, with generic fiber \mathbb{C}^{*}.

Proof. The possible choices for $\left(E_{1}, E_{2}\right)$ and $p: E_{1} \rightarrow E_{2}$ in (2.1) are parameterized by $\widetilde{F_{m}}$. Thus the space of eigenforms with a given prototype (e, ℓ, m) is a connected set of the form $\Omega Q_{D}(e, \ell, m) \cong \mathrm{GL}_{2}^{+}(\mathbb{R}) / \Gamma_{0}(m)$.

Corollary 2.2 The product $E_{1} \times E_{2}$ admits real multiplication by \mathcal{O}_{D} iff we have $\left(E_{1}, E_{2}\right) \in F_{m}$ and there exists an integral solution to the equation $e^{2}+$ $4 m \ell^{2}=D$ with $\ell>0$ and $\operatorname{gcd}(e, \ell)=1$.

Examples. We conclude with an example of an eigenform for each prototype (e, ℓ, m).

Let $\lambda>0$ be the unique positive root of the equation $\lambda^{2}=e \lambda+\ell^{2} m$. Define a pair of lattices in $\mathbb{C} \cong \mathbb{R}^{2}$ by

$$
\Lambda_{1}=\mathbb{Z}(\lambda, 0) \oplus \mathbb{Z}(0, \lambda), \quad \Lambda_{2}=\mathbb{Z}(\ell m, 0) \oplus \mathbb{Z}(0, \ell)
$$

Let $\left(E_{i}, \omega_{i}\right)=\left(\mathbb{C} / \Lambda_{i}, d z\right)$ be the corresponding forms of genus one, and let

$$
(A, \omega)=\left(E_{1} \times E_{2}, \omega_{1}+\omega_{2}\right)
$$

Then by construction, we have a pair of dual isogenies between E_{1} and E_{2} of the form

$$
p\left(z_{2}\right)=\lambda z_{2}, \quad \bar{p}\left(z_{1}\right)=\left(\ell^{2} m / \lambda\right) z_{1} .
$$

These isogenies have degree $\ell^{2} m$, and they are built from primitive isogenies of degree m. Defining T by (2.1) (with $f=0$), we find $T^{*}(\omega)=\lambda \omega$; therefore (A, ω) is an eigenform with invariants (e, ℓ, m). We refer to (A, ω) as the prototypical example of type (e, ℓ, m).

Corollary 2.3 Every eigenform $\left(E_{1} \times E_{2}, \omega\right)$ is equivalent, under the action of $\mathrm{GL}_{2}^{+}(\mathbb{R})$, to a unique prototypical example.

Notes. For more details on elliptic curves and isogeny, see e.g. [Ser, Ch. VII], [Kn], [Lang] and [GK]. Abelian varieties with real multiplication and their moduli are discussed in $[\mathrm{vG}],[\mathrm{Ru}],[\mathrm{BL}]$ and $[\mathrm{Mc} 4, \S 4]$.

One can regard Corollary 2.2 as a description of the intersection $H_{D} \cap H_{1}$ of two Humbert surfaces in \mathcal{A}_{2} : they meet along the divisor $\sum a_{m} F_{m}$, where a_{m} is the number of integral points (e, ℓ) on the ellipse $e^{2}+4 m \ell^{2}=D$ satisfying $\operatorname{gcd}(e, \ell)=1$ and $\ell>0$. This locus consists of Abelian surfaces admitting an action (by endomorphisms) of a quaternion ring generated by \mathcal{O}_{1} and \mathcal{O}_{D}.

It would be interesting to investigate more general intersections $H_{D} \cap H_{E}$ in the spirit of [HZ] and [GK].

3 Prototypical splittings

Every eigenform $(X, \omega) \in \Omega W_{D}$ splits, in infinitely many ways, as a connected sum

$$
(X, \omega)=\left(E_{1}, \omega_{1}\right) \underset{I}{\#}\left(E_{2}, \omega_{2}\right)
$$

of forms of genus one. In this section we determine the components of the covering space

$$
\Omega W_{D}^{s} \rightarrow \Omega W_{D}
$$

whose fibers encode all possible splittings of a given form.
Bundles over moduli space. We begin by recalling material from [Mc4].
Let $\Omega \mathcal{M}_{g} \rightarrow \mathcal{M}_{g}$ denote the bundle of holomorphic 1-forms $(X, \omega), \omega \neq 0$, over the moduli space of Riemann surfaces of genus g. The periods of ω will be denoted by

$$
\operatorname{Per}(\omega)=\left\{\int_{C} \omega: C \in H_{1}(X, \mathbb{Z})\right\} \subset \mathbb{C} \cong \mathbb{R}^{2}
$$

There is a natural action of $\mathrm{GL}_{2}^{+}(\mathbb{R})$ on $\Omega \mathcal{M}_{g}$, and we will denote the stabilizer of a given form by $\operatorname{SL}(X, \omega)$.

Within the space of forms of genus two, we let

- $\Omega \mathcal{M}_{2}(2)$ denote the forms with double zeros;
- ΩE_{D}, the eigenforms for real multiplication by \mathcal{O}_{D}; and
- $\Omega W_{D}=\Omega E_{D} \cap \Omega \mathcal{M}_{2}(2)$, the eigenforms with double zeros.

Each space above is also invariant under the natural action of $\mathrm{GL}_{2}^{+}(\mathbb{R})$.
The locus ΩW_{D} is a \mathbb{C}^{*}-bundle over the finite-volume (but possibly disconnected) hyperbolic surface

$$
W_{D}=\mathbb{C}^{*} \backslash \Omega W_{D}
$$

We refer to W_{D} as the Weierstrass curve of discriminant D, because ΩE_{D} parameterizes the eigenforms (X, ω) that vanish at a Weierstrass point of X.

For any $(X, \omega) \in \Omega W_{D}$, the group

$$
\mathrm{SL}(X, \omega) \subset \mathrm{SL}_{2}(\mathbb{R})
$$

is a lattice with trace field $\mathbb{Q}(\sqrt{D})$, and the corresponding component V of W_{D} is isomorphic to $\mathbb{H} / \operatorname{SL}(X, \omega)$. The natural projection $V \rightarrow \mathcal{M}_{2}$ gives a Teichmüller curve, i.e. an isometrically immersed algebraic curve in moduli space [Mc4, Cor. 5.11].
Connected sums. Let $I=[0, v]=[0,1] \cdot v$ be the segment from 0 to $v \neq 0$ in \mathbb{C}, and let $\left(E_{i}, \omega_{i}\right)=\left(\mathbb{C} / \Lambda_{i}, d z\right) \in \Omega \mathcal{M}_{1}$ be a pair of forms of genus one. Suppose I maps to an embedded arc under each projection $\mathbb{C} \rightarrow E_{i}$. Then by slitting along these arcs and gluing corresponding edges, we can form the connected sum

$$
(X, \omega)=\left(E_{1}, \omega_{1}\right) \underset{I}{\#}\left(E_{2}, \omega_{2}\right) \in \Omega \mathcal{M}_{2}
$$

The connected sum is a form of genus two, with a pair of simple zeros coming from the endpoints of I.

Figure 4. A connected sum resulting in a double zero.

Figure eights. To produce forms with double zeros, we extend the connected sum operation in a natural way to include the case where

$$
[0, v] \cap \Lambda_{1}=\{0, v\} \quad \text { and } \quad[0, v] \cap \Lambda_{2}=\{0\}
$$

or vice-versa. In this case I maps to a loop in E_{1} and remains embedded in E_{2}. The connected sum then results in a double zero for ω, lying on a figure eight $L \subset X$ coming from the slits on E_{1} and E_{2} (see Figure 4). That is, we can describe X as the disjoint union

$$
X=L \cup\left(E_{2}-I\right) \cup\left(E_{1}-I\right)
$$

Theorem 3.1 $\operatorname{Let}(X, \omega)=\left(E_{1}, \omega_{1}\right) \underset{I}{\#}\left(E_{2}, \omega_{2}\right)$. Then:
(i) ω is an eigenform for real multiplication by \mathcal{O}_{D} on $\operatorname{Jac}(X) \Longleftrightarrow$
(ii) $\omega_{1}+\omega_{2}$ is an eigenform for real multiplication by \mathcal{O}_{D} on $E_{1} \times E_{2}$.

Proof. The property of being an eigenform depends only on the absolute periods of ω [Mc4, Cor 5.6], so it is preserved as I varies. In the limit as $I \rightarrow 0$ the connected sum yields the form $\omega_{1}+\omega_{2}$ on the stable curve $E_{1} \vee E_{2}$ with Jacobian $E_{1} \times E_{2}$.

Splittings. Every form of genus two can be presented as a connected sum

$$
\begin{equation*}
(X, \omega)=\left(E_{1}, \omega_{1}\right) \underset{I}{\#}\left(E_{2}, \omega_{2}\right) \tag{3.1}
\end{equation*}
$$

in infinitely many ways [Mc4, Theorem 1.7], each of which we regard as a splitting of (X, ω). To give a criterion for splitting, let $\eta: X \rightarrow X$ denote the hyperelliptic involution and $Z(\omega) \subset X$ the zeros of ω. Then by [Mc4, Thm. 7.3] we have:

Theorem 3.2 Let $L_{0} \supset Z(\omega)$ be a saddle connection such that $L_{0} \neq L_{1}=$ $\eta\left(L_{0}\right)$. Then (X, ω) splits along $L=L_{0} \cup L_{1}$ as a connected sum of tori.
(Here a saddle connection is a geodesic segment for the metric $|\omega|$, joining a pair of zeros but with no zeros in its interior.)
The space of splittings. For $(X, \omega) \in \Omega W_{D}$, we adopt the convention that I maps to a loop in E_{1}, while it embeds in E_{2}; then the splitting (3.1) is uniquely determined by I.

Let ΩW_{D}^{s} denote the splitting space, consisting of triples (X, ω, I) such that $(X, \omega) \in \Omega W_{D}$ splits along I as in (3.1). There is a natural action of $\mathrm{GL}_{2}^{+}(\mathbb{R})$ on ΩW_{D}^{s}, and an equivariant projection

$$
\begin{equation*}
\Omega W_{D}^{s} \rightarrow \Omega \mathcal{M}_{1} \times \Omega \mathcal{M}_{1} \tag{3.2}
\end{equation*}
$$

which records the summands $\left(E_{i}, \omega_{i}\right)$ in (3.1). By Theorem 3.1, this projection sends ΩW_{D}^{s} by a covering map to the locus of eigenforms ΩQ_{D}.
Prototypes. Let us say a quadruple of integers (a, b, c, e) is a splitting prototype, of discriminant D, if it satisfies the conditions

$$
\begin{array}{lll}
D=e^{2}+4 b c, & 0 \leq a<\operatorname{gcd}(b, c), & c+e<b \\
0<b, & 0<c, \quad \text { and } & \operatorname{gcd}(a, b, c, e)=1
\end{array}
$$

Figure 5. Prototypical splitting of type (a, b, c, e). Parallel edges are identified as shown to obtain a surface $X=E_{1} \# E_{2}$ of genus two.

We denote the set of all such prototypes by P_{D}. For instance, we have:

$$
P_{17}=\left\{\begin{array}{lll}
(0,2,2,-1), & (0,4,1,-1), & (0,1,2,-3) \\
(1,2,2,-1), & (0,4,1,1), & (0,2,1,-3)
\end{array}\right\}
$$

Prototypical splittings. The prototypical splitting of type (a, b, c, e) is given by (3.1) with $I=[0, \lambda]$ and $\left(E_{i}, \omega_{i}\right)=\left(\mathbb{C} / \Lambda_{i}, d z\right)$, where

$$
\Lambda_{1}=\mathbb{Z}(\lambda, 0) \oplus \mathbb{Z}(0, \lambda), \quad \Lambda_{2}=\mathbb{Z}(b, 0) \oplus \mathbb{Z}(a, c)
$$

and $\lambda=(e+\sqrt{D}) / 2$ is the positive root of the equation $\lambda^{2}=e \lambda+b c$. Note that I projects to a loop in E_{1} since λ is a period of ω_{1}.

The resulting connected sum can be expressed in geometric terms as

$$
(X, \omega)=(P, d z) / \sim,
$$

where $P \subset \mathbb{C}$ is a polygon built from the period parallelograms for Λ_{1} and Λ_{2} as shown in Figure 5. The equivalence relation identifies parallel edges of P. The vertices of P are all equivalent, and correspond to the unique zero of ω on X.

The condition $c+e<b$ in the definition of a prototype is equivalent to $\lambda<b$, which insures that I projects an embedded arc in E_{2}.
Orbits. The stabilizer in $\mathrm{GL}_{2}^{+}(\mathbb{R})$ of the splitting above is the parabolic subgroup

$$
N(n \mathbb{Z})=\left\{\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right): t \in n \mathbb{Z}\right\}, \quad n=b / \operatorname{gcd}(b, c) .
$$

Indeed, the stabilizer of $I=[0, \lambda]$ is $N(\mathbb{R})$; the stabilizer of $\left(I, \Lambda_{1}\right)$ is $N(\mathbb{Z})$; the stabilizer of $\left(I, \Lambda_{2}\right)$ is $N((b / c) \mathbb{Z})$; and the intersection of all three is $N(n \mathbb{Z})$.

Thus the orbit of the prototypical splitting of type (a, b, c, e) is given by

$$
\Omega W_{D}^{s}(a, b, c, e) \cong G L_{2}^{+}(\mathbb{R}) / N(n \mathbb{Z}) \subset \Omega W_{D}^{s},
$$

a \mathbb{C}^{*}-bundle over the punctured disk $W_{D}^{s}(a, b, c, e) \cong \mathbb{H} / N(n \mathbb{Z}) \cong \Delta^{*}$.

Theorem 3.3 The splitting space ΩW_{D}^{s} is a finite union of closed, disjoint $\mathrm{GL}_{2}^{+}(\mathbb{R})$ orbits, one containing each prototypical splitting.

Proof. Let (X, ω, I) be an element of the splitting space, corresponding to connected summands $\left(E_{i}, \omega_{i}\right)=\left(\mathbb{C} / \Lambda_{i}, \omega_{i}\right), i=1,2$. Then

$$
(A, \omega)=\left(E_{1} \times E_{2}, \omega_{1}+\omega_{2}\right)
$$

is an eigenform for real multiplication by \mathcal{O}_{D}, say with prototype (e, ℓ, m).
Let $\lambda=(e+\sqrt{D}) / 2)$. By Theorem 2.1, we can normalize by the action of $\mathrm{GL}_{2}^{+}(\mathbb{R})$ so that

$$
I=[0, \lambda], \quad \Lambda_{1}=\lambda \mathbb{Z}^{2}, \quad \Lambda_{2} \subset \mathbb{Z}^{2} \text { and }\left[\mathbb{Z}^{2}: \Lambda_{2}\right]=d
$$

where $d=\ell^{2} m$. This normalization is unique up to the action of $N(\mathbb{Z})$. In these coordinates we can write

$$
\Lambda_{2}=\mathbb{Z}(b, 0) \oplus \mathbb{Z}(a, c)
$$

with $b, c>0$. The basis element $(b, 0)$ is canonical: it is the positive generator of $\Lambda_{2} \cap I \cdot \mathbb{R}$. The second basis element, however, is determined only up to adding a multiple of the first: $(a+n b, c)$ would work as well. Moreover (a, c) is not fixed by $N(\mathbb{Z})$; its orbit is $(a+n c, c), n \in \mathbb{Z}$. Thus there is a normalized basis of Λ_{2} such that $0 \leq a<\operatorname{gcd}(b, c)$.

By construction we have $D=e^{2}+4 d=e^{2}+4 b c$ and $0<b, c$. By properness of the action of \mathcal{O}_{D}, we have $\operatorname{gcd}(a, b, c, e)=1$. Since I embeds in E_{2}, we have $\lambda<b$ and therefore $c+e<b$. Thus the result of these normalizations is the unique prototypical splitting in the orbit of (X, ω, I).

Corollary 3.4 The Weierstrass curve W_{D} is nonempty iff $D \geq 5$.
Proof. For any discriminant $D \geq 5$ there is always at least one splitting prototype, namely $(a, b, c, e)=(0,(D-e) / 4,1, e)$, where $e=0$ or 1 is chosen so $e \equiv D \bmod 4$. For $D=1,4$ there are none.

Relation of prototypes. It is easy to see that the projection (3.2) sends $\Omega W_{D}^{s}(a, b, c, e)$ to $\Omega Q_{D}(e, \ell, m)$ with $\ell=\operatorname{gcd}(a, b, c)$ and $\ell^{2} m=b c$. Due to the ordering of E_{1} and E_{2}, some components of ΩQ_{D} may fail to be in the image of ΩW_{D}^{s}; for example, $\Omega Q_{5}(1,1,1)$ is omitted.

4 Cusps

In this section we will establish:
Theorem 4.1 There are natural bijections between:

1. The set of two-cylinder cusps $x \in C\left(W_{D}\right)$;
2. The set of components of the splitting space W_{D}^{s}; and
3. The set P_{D} of prototypes (a, b, c, e) of discriminant D.

Cusps. Let $V=\mathbb{H} / \Gamma$ be a hyperbolic surface. A cusp of Γ is a point $x \in \partial \mathbb{H}$ fixed by a parabolic element $\gamma \in \Gamma$. The orbit of x under Γ is a cusp of V.

The cusps of V correspond bijectively to the finite-volume ends of V, and will be denoted $C(V)$. If $V=\bigcup V_{i}$ has more than one component, we define $C(V)=\bigcup C\left(V_{i}\right)$. When V has finite volume, its cusps can be adjoined to obtain a closed surface $\bar{V}=V \cup C(V)$.

Each cusp x determines a connected covering space $\widetilde{V}(x) \rightarrow V$, isomorphic to a punctured disk, with $\pi_{1}(\widetilde{V}(x)) \cong \mathbb{Z}$ generated by a small loop around x. A point $\widetilde{p} \in \widetilde{V}(x)$ corresponds to a point $p \in V$ with a chosen homotopy class of path from p to x.
Cylinders. Let $(X, \omega) \in \Omega \mathcal{M}_{g}$ be a holomorphic 1-form of genus $g \geq 2$. Then for each $s \in \mathbb{P}^{1}(\mathbb{R})$, we have a foliation \mathcal{F}_{s} of $(X,|\omega|)$ by geodesics of slope s. The foliation \mathcal{F}_{s} is tangent to $\operatorname{Ker}(\rho)$, where ρ is the closed 1 -form $\operatorname{Re}(x+i y) \omega$, $s=x / y$.

The foliation \mathcal{F}_{s} is periodic if every leaf is closed. In this case we define the spine of \mathcal{F}_{s} to be the finite graph $S \subset X$ consisting of leaves through the zeros of ω. The components of $X-S$ form a finite set of open cylinders C_{1}, \ldots, C_{n}, swept out by circular leaves of \mathcal{F}_{s}.

A central result from [V1, 2.4,2.11] is:
Theorem 4.2 (Veech dichotomy) Suppose $\operatorname{SL}(X, \omega)$ is a lattice. Then for any slope s, either

- the foliation \mathcal{F}_{s} is uniquely ergodic, or
- \mathcal{F}_{s} is periodic with $n \geq 1$ cylinders, and $1 / s$ is a parabolic fixed-point of $\operatorname{SL}(X, \omega)$.

Thus the cusps of $V=\mathbb{H} / \operatorname{SL}(X, \omega)$ can be classified according to the number of cylinders of the corresponding periodic foliation \mathcal{F}_{s}.
Genus two. Recall that $\operatorname{SL}(X, \omega)$ is a lattice for any form in ΩW_{D}, so the Veech dichotomy applies.

Theorem 4.3 Let s be a periodic slope for $(X, \omega) \in \Omega W_{D}$. Then either:

- \mathcal{F}_{s} has one cylinder, and D is a square; or
- \mathcal{F}_{s} has two cylinders, and (X, ω) splits as a connected sum of tori foliated by leaves of \mathcal{F}_{s}.

Conversely, every splitting of (X, ω) comes from a periodic foliation \mathcal{F}_{s} with two cylinders.

Proof. Let s be a periodic slope, let $S \subset X$ denote the spine of \mathcal{F}_{s}, and let $X-S=C_{1} \cup \cdots \cup C_{n}$ be the complementary cylinders.

Let $\eta: X \rightarrow X$ denote the hyperelliptic involution. Then η fixes the 6 Weierstrass points of X, one of which is the double zero z_{0} of ω. We have $\eta\left(C_{i}\right)=C_{i}$ for every i, and thus each cylinder contains 2 Weierstrass points. On the other hand, S is a bouquet of 3 circles joined at z_{0}, so $\bigcup C_{i}$ contains at most 4 Weierstrass points, and thus $n=1$ or 2 .

If $n=2$, then S contains exactly one Weierstrass point p other than z_{0}. Therefore $S=L_{0} \cup L_{1} \cup K$ is a union of 3 loops meeting at z_{0}, with $p \in K$, $\eta(K)=K$ and $\left.\eta\left(L_{i}\right)=L_{1-i}\right)$. It follows from Theorem 3.2 that (X, ω) splits along $L_{0} \cup L_{1}$ as a connected sum of tori.

The case $n=1$ cannot arise when \sqrt{D} is irrational, by [Mc2, Thm. 9.2].
Finally, let $(X, \omega)=\left(E_{1}, \omega_{1}\right) \#\left(E_{2}, \omega_{2}\right)$ be a splitting where I has slope s. Since I represents a closed loop on E_{1}, the foliation $\mathcal{F}_{s} \mid E_{1}$ is periodic; by isogeny, $\mathcal{F}_{s} \mid E_{2}$ is also periodic, so \mathcal{F}_{s} gives a two-cylinder decomposition of X.

Cusps and prototypes. Since every (X, ω) has at least one splitting, we have:
Corollary 4.4 Every component of W_{D} has a two-cylinder cusp.
Proof of Theorem 4.1. A splitting $(X, \omega, I) \in \Omega W_{D}^{s}$, where I has slope s, picks out a parabolic point $1 / s$ for $\operatorname{SL}(X, \omega)$ and hence a path from $[(X, \omega)] \in$ W_{D} to a two-cylinder cusp. Thus the splitting space can be described as:

$$
W_{D}^{s}=\bigcup \widetilde{W}_{D}(x)
$$

where the union is over the two-cylinder cusps $x \in C\left(W_{D}\right)$. On the other hand, we also have

$$
W_{D}^{s}=\bigcup W_{D}^{s}(a, b, c, e)
$$

where the union is over the splitting prototypes of discriminant D. By matching components, we obtain a canonical labeling of the cusps x by components of W_{D}^{s}, which are in turn labeled by prototypes.

Corollary 4.5 When D is not a square, W_{D} has only two-cylinder cusps. In particular, $\left|C\left(W_{D}\right)\right|=\left|P_{D}\right|$.

The one-cylinder cusps of $W_{d^{2}}$ are studied in the Appendix.

5 Spin

In this section we introduce the spin invariant $\epsilon: \Omega W_{D} \rightarrow \mathbb{Z} / 2$, and use it to prove:

Theorem 5.1 The curve W_{D} has at least two components whenever $D \equiv$ $1 \bmod 8$ and $D>9$.

Spin structures. We begin with a brief discussion of spin structures on surfaces; for more details, see [At], [Jo] and [KZ].

Let V be a symplectic vector space of dimension $2 g$ over the field $\mathbb{F}_{2} \cong \mathbb{Z} / 2$. A quadratic form on V is a function $q: V \rightarrow \mathbb{Z} / 2$ satisfying

$$
\begin{equation*}
q(x+y)=q(x)+q(y)+x \cdot y \tag{5.1}
\end{equation*}
$$

where $x \cdot y$ is the symplectic form on V. The difference $q_{1}-q_{0}$ of any two quadratic forms is a linear form; thus the number of quadratic forms on V is $2^{2 g}$. The Arf invariant of q is given by

$$
\operatorname{Arf}(q)=\sum_{1}^{g} q\left(a_{i}\right) q\left(b_{i}\right) \in \mathbb{Z} / 2
$$

where $\left(a_{i}, b_{i}\right)$ is a symplectic basis for $H_{1}(X, \mathbb{Z})$; it is independent of the choice of basis. We say q is even or odd depending on the parity of $\operatorname{Arf}(q)$. There are 2^{g} more even forms than odd forms.

Now let $X \in \mathcal{M}_{g}$ be a compact Riemann surface. A spin structure $L \rightarrow$ X is the choice of a square-root of the canonical line bundle $K \rightarrow X$, up to isomorphism over X.

The spin structures on X correspond naturally to quadratic forms on $H_{1}(X, \mathbb{Z} / 2)$. The quadratic form q_{L} associated to $L \rightarrow X$ can be defined as follows. Let $C: \mathbb{R} / \mathbb{Z} \rightarrow X$ be a smooth embedded loop, representing a class in $H_{1}(X, \mathbb{Z} / 2)$. Let $\omega: C \rightarrow K$ be a smooth 1-form such that $\omega\left(C^{\prime}(t)\right)=1$ for all t. Then $q_{L}(C)=1$ if and only if there is a section $\eta: C \rightarrow L$ such that $\eta^{2}=\omega$.

A spin structure L is said to be even or odd depending on the value of $\operatorname{Arf}\left(q_{L}\right)$. The parity of L can also be described using the holomorphic structure of X : it is equal to $\operatorname{dim} H^{0}(X, L) \bmod 2$.
Spin from 1-forms. Any holomorphic 1-form $\omega \neq 0$ on X whose zeros have even order determines a spin structure, by taking $L=\mathcal{O}(D)$ where $2 D=(\omega)$ is the divisor of ω.

In this case q_{L} can be computed as follows. Let $C: \mathbb{R} / \mathbb{Z} \rightarrow X$ be a smooth embedded loop avoiding the zeros of ω. The 1-form ω determines a Gauss map $G: S^{1} \rightarrow S^{1}$ by

$$
G=\frac{\omega\left(C^{\prime}(t)\right)}{\left|\omega\left(C^{\prime}(t)\right)\right|}
$$

and we define $\operatorname{deg}(C, \omega)=\operatorname{deg}(G)$; then

$$
\begin{equation*}
q_{L}(C)=1+\operatorname{deg}(C, \omega) \bmod 2 \tag{5.2}
\end{equation*}
$$

Note that the value of $\operatorname{deg}(C, \omega)$ changes by an even number if we slide C over a zero of ω.

When X has genus $g=2$, each Weierstrass point $p \in X$ determines a spin structure on X, namely $L=\mathcal{O}(p)$. The six Weierstrass points correspond bijectively to the six odd spin structures on X.

Eigenforms. Now let (X, ω) be a form in $\Omega W_{D}, D \equiv 1 \bmod 8$. Since ω has a double zero, it determines a canonical odd spin structure on X.

This spin structure is one ingredient in the definition of the spin invariant $\epsilon(X, \omega)$. The other ingredient comes from the action of real multiplication.

Theorem 5.2 Let $(X, \omega) \in \Omega W_{D}$ be an eigenform for real multiplication by $\mathcal{O}_{D}=\mathbb{Z}[T]$, where $D \equiv 1 \bmod 8$. Then

$$
V=\operatorname{Im} T \subset H_{1}(X, \mathbb{Z} / 2)
$$

is a symplectic subspace isomorphic to $(\mathbb{Z} / 2)^{2}$.
Proof. In \mathcal{O}_{D} we have $T^{2}+a T+b=0$ where $D=a^{2}+4 b$. Since $D \equiv 1 \bmod 8$, a is odd and b is even; thus $T^{2}+T=0 \bmod 2$.

Recall that the action of \mathcal{O}_{D} on $H_{1}(X, \mathbb{Z})$ is self-adjoint. Thus the action of T on $H_{1}(X, \mathbb{Z} / 2)$ is also self-adjoint. Since $T(T+1)=0 \bmod 2$, the homology decomposes as a direct sum of symplectic eigenspaces

$$
H_{1}(X, \mathbb{Z} / 2)=V_{0} \oplus V_{1}
$$

where $V_{\lambda}=\operatorname{Ker}(T-\lambda I)$.
Since \mathcal{O}_{D} is a proper subring of $\operatorname{End}(\operatorname{Jac}(X))$, neither eigenspace can be trivial. For example, if V_{1} is trivial, then V_{0} is the whole space, which implies T is even and thus $(1 / 2) T \in \operatorname{End}(\operatorname{Jac}(X))$, contradicting properness. Thus both V_{0} and $V=V_{1}$ are nontrivial symplectic subspaces of $H_{1}(X, \mathbb{Z} / 2)$, so both have rank 2.

The virtual elliptic curve. The subspace V above has a simple geometric interpretation when $D=d^{2}$, d odd. In this case (X, ω) is an elliptic differential; that is, the periods of ω form a lattice $\Lambda \subset \mathbb{C}$, and the associated elliptic curve $E=\mathbb{C} / \Lambda$ is a factor of $\operatorname{Jac}(X)$. By integrating ω along paths based at its unique zero, we obtain a canonical degree d holomorphic map

$$
p: X \rightarrow E .
$$

Passing to cohomology, we obtain a map

$$
p^{*}: H^{1}(E, \mathbb{Z} / 2) \rightarrow H^{1}(X, \mathbb{Z} / 2)
$$

whose image is Poincaré dual to $\operatorname{Im}(T)$ for a suitable generator $T \in \mathcal{O}_{D}$.
When $D \equiv 1 \bmod 8$ is not a square, we lack the full geometry of E, but nevertheless the projection $X \rightarrow E$ persists on the level of mod 2 homology.
The conductor. The conductor f of \mathcal{O}_{D} is the index of \mathcal{O}_{D} in the maximal order of $K=\mathcal{O}_{D} \otimes \mathbb{Q}$.

When D is odd, we have $D=E f^{2}$ with E square-free. A convenient choice of generator for $\mathcal{O}_{D} \subset \mathbb{R}$ is then given by

$$
T_{f}=(f+\sqrt{D}) / 2=f(1+\sqrt{E}) / 2,
$$

since this is a multiple of a generator for the maximal order \mathcal{O}_{E}.
The spin invariant. We can now complete the definition of the spin invariant. Let (X, ω) be an eigenform in ΩW_{D} with $D \equiv 1 \bmod 8$. Let $L \rightarrow X$ be the spin structure determined by ω, with quadratic form

$$
q_{L}: H_{1}(X, \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2
$$

Let f be the conductor of \mathcal{O}_{D}, and let $\mathcal{O}_{D}=\mathbb{Z}\left[T_{f}\right]$ where

$$
T_{f}^{*}(\omega)=\frac{f+\sqrt{D}}{2} \omega
$$

Then the spin invariant is defined by

$$
\epsilon(X, \omega)=\operatorname{Arf}\left(q_{L} \mid \operatorname{Im} T_{f}\right)
$$

When $D=d^{2}$ is an odd square, the conditions above do not quite uniquely determine $T_{f} \in \mathcal{O}_{D}$, since $2 d-T_{f}$ satisfies the same conditions. The spin invariant is still well-defined, however, because $T_{f}=2 d-T_{f} \bmod 2$.
The spin ideal. Since $T^{2}=T \bmod 2$ for any generator T of \mathcal{O}_{D}, we have

$$
\begin{equation*}
1+\operatorname{Arf}\left(q_{L} \mid \operatorname{Im} T\right)=\operatorname{Arf}\left(q_{L} \mid \operatorname{Ker} T\right)=\operatorname{Arf}\left(q_{L} \mid \operatorname{Im}(T+1)\right) \tag{5.3}
\end{equation*}
$$

In particular, the map $\sigma: \mathcal{O}_{D} \rightarrow \mathbb{Z} / 2$ given by

$$
\sigma(U)=\operatorname{Arf}\left(q_{L} \mid \operatorname{Im} U\right)
$$

is a ring homomorphism. A more functorial version of the spin invariant is provided by the spin ideal

$$
I(X, \omega)=\operatorname{Ker}(\sigma) \subset \mathcal{O}_{D}
$$

The condition $D \equiv 1 \bmod 8$ is equivalent to the condition that $2 \mathcal{O}_{D}$ factors as a product of distinct prime ideals $P_{1} P_{2}$ in \mathcal{O}_{D}, and $I(X, \omega)$ coincides with one of these primes.

The invariant $\epsilon(X, \omega)=\sigma\left(T_{f}\right)$ is simply the image in $\mathcal{O}_{D} / I(X, \omega)$ of a convenient generator of \mathcal{O}_{D}; it also determines the spin ideal.
Even and odd eigenforms. For $D \equiv 1 \bmod 8$, we define the spaces of even and odd eigenforms by

$$
\Omega W_{D}^{i}=\left\{(X, \omega) \in \Omega W_{D}: \epsilon(X, \omega)=i\right\}, \quad i \in \mathbb{Z} / 2
$$

These spaces are $\mathrm{GL}_{2}^{+}(\mathbb{R})$-invariant \mathbb{C}^{*}-bundles over the even and odd subvarieties W_{D}^{0}, W_{D}^{1} of the Weierstrass curve W_{D}.
Spin and prototypes. We say a cusp x of W_{D} has spin invariant ϵ if x belongs to $\overline{W_{D}^{\epsilon}}$. Similarly, a splitting prototype (a, b, c, e) has spin invariant ϵ if the connected set $\Omega W_{D}^{s}(a, b, c, e)$ projects into ΩW_{D}^{ϵ}. The parity of a prototype is the same as the parity of the cusp it labels.

Theorem 5.3 The spin invariant of a splitting prototype (a, b, c, e) of discriminant $D \equiv 1 \bmod 8$ is given by

$$
\epsilon=\frac{e-f}{2}+(c+1)(a+b+a b) \bmod 2
$$

where f is the conductor of \mathcal{O}_{D}.
Proof. From the definitions the spin invariant of (a, b, c, e) is given by $\epsilon(X, \omega)$, where

$$
(X, \omega)=\left(E_{1}, \omega_{1}\right) \underset{I}{\#}\left(E_{2}, \omega_{2}\right)
$$

is the prototypical splitting of type (a, b, c, e). Using the identifications

$$
H_{1}(X, \mathbb{Z})=H_{1}\left(E_{1}, \mathbb{Z}\right) \oplus H_{1}\left(E_{2}, \mathbb{Z}\right)=\Lambda_{1} \oplus \Lambda_{2}
$$

$\Lambda_{i}=\operatorname{Per}\left(\omega_{i}\right)$, we have a symplectic basis $\left(a_{i}, b_{i}\right)$ for $H_{1}(X, \mathbb{Z})$ given by

$$
\begin{aligned}
& \Lambda_{1}=\mathbb{Z}(\lambda, 0) \oplus \mathbb{Z}(0, \lambda)=\mathbb{Z} a_{1} \oplus \mathbb{Z} b_{1} \quad \text { and } \\
& \Lambda_{2}=\mathbb{Z}(b, 0) \oplus \mathbb{Z}(a, c)=\mathbb{Z} a_{2} \oplus \mathbb{Z} b_{2}
\end{aligned}
$$

where $\lambda=(e+\sqrt{D}) / 2$.
Let $q: H_{1}(X, \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2$ be the quadratic form associated to the spin structure determined by ω. It is easy to see that the homology class a_{1} is represented by a loop $C: \mathbb{R} / \mathbb{Z} \rightarrow X$, avoiding the zero of ω and satisfying

$$
\omega\left(C^{\prime}(t)\right)=\int_{a_{1}} \omega=\lambda
$$

This loop can be taken as a closed geodesic on $\left(E_{1}-I,\left|\omega_{1}\right|\right)$, or equivalently as a horizontal line through the middle of the $\lambda \times \lambda$ square in Figure 5 of $\S 3$. Since the direction of C is constant, its Gauss map has degree zero and thus

$$
q\left(a_{1}\right)=1+\operatorname{deg}(\omega, C)=1
$$

by equation (5.2). Similarly $q\left(a_{2}\right)=q\left(b_{2}\right)=q\left(b_{1}+b_{2}\right)=1$, and thus $q\left(b_{1}\right)=0$ by (5.1).

Now let $\mathcal{O}_{D}=\mathbb{Z}\left[T_{e}\right]$, where $T_{e}^{*}(\omega)=\lambda \omega$. Then $\int_{T_{e}(C)} \omega=\lambda \int_{C} \omega$ for any cycle $C \in H_{1}(X, \mathbb{Z})$. Using the periods given above, we find the corresponding endomorphism of $H_{1}(X, \mathbb{Z} / 2)$ is given with respect to the basis $\left(a_{1}, b_{1}, a_{2}, b_{2}\right)$ by

$$
T_{e}=\left(\begin{array}{cccc}
e & 0 & b & a \\
0 & e & 0 & c \\
c & -a & 0 & 0 \\
0 & b & 0 & 0
\end{array}\right) \bmod 2
$$

Since $D \equiv 1 \bmod 8$, we have $e \equiv 1 \bmod 2$, and thus a symplectic basis for $V=\operatorname{Im} T_{e}$ is given by the first two columns $\left(A_{1}, B_{1}\right)$ above. Using the values of q already obtained and the rule (5.1), we find

$$
\begin{aligned}
q\left(A_{1}\right) & =q\left(a_{1}+c b_{1}\right)=1+c \\
q\left(B_{1}\right) & =q\left(b_{1}+a a_{2}+b b_{2}\right)=a+b+a b
\end{aligned}
$$

Therefore

$$
\operatorname{Arf}\left(q \mid \operatorname{Im} T_{e}\right)=q\left(A_{1}\right) q\left(B_{1}\right)=(1+c)(a+b+a b)
$$

since $T_{e}=T_{f}+(e-f) / 2$, this implies

$$
\epsilon(X, \omega)=\operatorname{Arf}\left(q \mid \operatorname{Im} T_{f}\right)=\frac{(e-f)}{2}+(1+c)(a+b+a b)
$$

by (5.3).
Proof of Theorem 5.1. For any $D \equiv 1 \bmod 8$ with $D>9$, we have a pair of splitting prototypes

$$
(a, b, c, e)=(0,(D-1) / 4,1, \pm 1)
$$

of discriminant D with opposite spin invariants. Thus ΩW_{D} contains both even and odd eigenforms, and therefore W_{D} has at least two components.

6 Square-tiled surfaces

In this section we show that for $D=d^{2}$, the spin invariant carries the same information as the number of integral Weierstrass points, an invariant introduced by Hubert and Lelièvre in [HL].

A square-tiled surface is a form $(X, \omega) \in \Omega \mathcal{M}_{2}(2)$ such that $\operatorname{Per}(\omega) \subset \mathbb{Z}^{2} \subset$ $\mathbb{R}^{2}=\mathbb{C}$. For such a surface, integration of ω gives a holomorphic map

$$
p: X \rightarrow E=\mathbb{C} / \mathbb{Z}^{2}
$$

which can be normalized so it is branched only over $z=0$. The $d=\operatorname{deg}(p)$ preimages of the square $[0,1] \times[0,1]$ provide a tiling of X. We say (X, ω) is primitive if $\operatorname{Per}(\omega)=\mathbb{Z}^{2}$; in this case, (X, ω) belongs to $\Omega W_{d^{2}}$. Conversely, every $\mathrm{GL}_{2}^{+}(\mathbb{R})$-orbit in $\Omega W_{d^{2}}$ contains finitely many square-tiled surfaces.

A Weierstrass point $x \in X$ is integral if it lies at the vertex of a tile; in other words, if $p(x)=0$.

Theorem 6.1 Let $(X, \omega) \in \Omega W_{d^{2}}$ be a primitive square-tiled surface, with d odd. Then the number of integral Weierstrass points on X is given by

$$
N= \begin{cases}1 & \text { if } \epsilon(X, \omega)=0, \text { and } \\ 3 & \text { if } \epsilon(X, \omega)=1\end{cases}
$$

Proof. The degree d projection $p: X \rightarrow E$ determines a natural symplectic splitting

$$
H_{1}(X, \mathbb{Z} / 2)=S_{0} \oplus S_{1}
$$

where $S_{0}=\operatorname{Ker}\left(p_{*}\right)$ and $S_{1} \cong H_{1}(E, \mathbb{Z} / 2)$.
Let $q: H_{1}(X, \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2$ denote the odd quadratic form coming from the spin structure associated to ω. Recall that the six Weierstrass points of X correspond naturally to the six odd quadratic forms on $H_{1}(X, \mathbb{Z} / 2)$. A Weierstrass point is integral iff the correspond form satisfies $q^{\prime}\left|S_{1}=q\right| S_{1}$, in which case we have

$$
\operatorname{Arf}\left(q^{\prime} \mid S_{0}\right)=1+\operatorname{Arf}\left(q^{\prime} \mid S_{1}\right)=1+\operatorname{Arf}\left(q \mid S_{1}\right)
$$

since q^{\prime} is odd. Conversely, the number of integral Weierstrass points agrees with the number of quadratic forms $q^{\prime} \mid S_{0}$ satisfying the parity condition above.

To bring the spin invariant into play, let us write $\mathcal{O}_{d^{2}}=\mathbb{Z}\left[T_{d}\right]$ where $T_{d}^{*}(\omega)=$ $d \omega$. Then $S_{1}=\operatorname{Im} T_{d}$. Since $d=f$ is also the conduction of $\mathcal{O}_{d^{2}}$, we have

$$
\operatorname{Arf}\left(q \mid S_{1}\right)=\operatorname{Arf}\left(q \mid \operatorname{Im} T_{f}\right)=\epsilon(X, \omega)
$$

Thus $q^{\prime} \mid S_{0}$ has the same parity as $1+\epsilon(X, \omega)$. Since S_{0} carries three even forms and one odd form, the Theorem follows.

Remark. The simple formulation of the preceding result is the reason we have used the conductor of \mathcal{O}_{D} in the definition of $\epsilon(X, \omega)$.
Example: $\boldsymbol{D}=\mathbf{9}$. The L-shaped surface $(X, \omega) \in \Omega W_{9}$ with $d=3$ square tiles has a unique integral Weierstrass point; thus $N=1$. For $D=9$ there is a unique splitting prototype, namely $(a, b, c, e)=(0,2,1,-1)$, and the conductor of \mathcal{O}_{D} is $f=3$. Thus by Theorem 5.3 we have $\epsilon(X, \omega)=(-1-3) / 2 \bmod 2=0$, in agreement with the Theorem above.

7 Butterfly moves

In this section we introduce an elementary move on splittings that yields a criterion for two cusps of W_{D} to belong to the same component.
Pairs of splittings. Let $(X, \omega) \in \Omega \mathcal{M}_{2}(2)$ be a form of genus two with a double zero, equipped with a splitting

$$
\begin{equation*}
(X, \omega)=\left(E_{1}, \omega_{1}\right) \underset{I}{\#}\left(E_{2}, \omega_{2}\right), \tag{7.1}
\end{equation*}
$$

where $\left(E_{i}, \omega_{i}\right)=\left(\mathbb{C} / \Lambda_{i}, d z\right)$ and $I=[0, v]$. Recall that I maps to an embedded arc under the projection $\pi: \mathbb{C} \rightarrow E_{2}$, by our conventional ordering of the summands. The hyperelliptic involution η of X, when restricted to $E_{2}-I$, has the form

$$
\begin{equation*}
\eta(z)=(v / 2)-z . \tag{7.2}
\end{equation*}
$$

Let $J=[0, w] \subset \mathbb{C}$ be a segment such that $\pi(J) \subset E_{2}$ is a simple loop. (This means $\pi \mid J$ identifies the endpoints of J but is otherwise injective.) Suppose in addition that

$$
\pi(J) \cap \pi(I)=\{0\} \subset E_{2}
$$

Then $\pi(J)$ represents a saddle connection L_{0} on X, satisfying $L_{0} \neq L_{1}=\eta\left(L_{0}\right)$ by (7.2). Thus by Theorem 3.2 we have a second splitting

$$
\begin{equation*}
(X, \omega)=\left(F_{1}, \eta_{1}\right) \underset{J}{\#}\left(F_{2}, \eta_{2}\right) \tag{7.3}
\end{equation*}
$$

where, following our convention, J projects to a closed loop on F_{1}.
We say the splittings (X, ω, I) and (X, ω, J) are related by a butterfly move, because I and J give a pair of linked figure eights on the surface X (Figure 6).

Figure 6. Butterfly move.

The geometric splitting (7.1) determines an algebraic splitting

$$
H_{1}(X, \mathbb{Z})=H_{1}\left(E_{1}, \mathbb{Z}\right) \oplus H_{1}\left(E_{2}, \mathbb{Z}\right)
$$

while the oriented $\operatorname{arcs} I$ and J determine homology classes $[I] \in H_{1}\left(E_{1}, \mathbb{Z}\right)$ and $[J] \in H_{1}\left(E_{2}, \mathbb{Z}\right)$. The next result describes how this algebraic splitting changes under a butterfly move.

Theorem 7.1 Let $\left(a_{i}, b_{i}\right)$ be symplectic bases for $H_{1}\left(E_{i}, \mathbb{Z}\right), i=1,2$, with $[I]=$ a_{1} and $[J]=b_{2}$. Then we have

$$
\begin{aligned}
H_{1}\left(F_{1}, \mathbb{Z}\right) & =\mathbb{Z}\left(a_{2}-a_{1}\right) \oplus \mathbb{Z} b_{2} \quad \text { and } \\
H_{1}\left(F_{2}, \mathbb{Z}\right) & =\mathbb{Z} a_{1} \oplus \mathbb{Z}\left(b_{1}+b_{2}\right)
\end{aligned}
$$

(By a symplectic basis we mean the intersection numbers satisfy $a_{i} \cdot b_{i}=1$.)
Proof. The parallel loops J and $\eta(J)$ cut $E_{2}-I$ into two pieces. One is an $I \times J$ rectangle R, and the other an open cylinder identified with $F_{1}-J$. The remainder of X is also an open cylinder, identified with $E_{1}-I$; that is, we have:

$$
X=\left(E_{1}-I\right) \cup \bar{R} \cup\left(F_{1}-J\right)
$$

In this symmetric description, the two different splittings are obtained by allotting R to one side or the other. That is, $F_{2}-J$ is obtained by gluing R to $E_{1}-I$, while $E_{2}-I$ is obtained gluing R to $F_{1}-J$.

Figure 7. The surface X splits in two different ways: as $E_{1} \# E_{2}$ (left) and $F_{1} \# F_{2}$ (right). The tori E_{2} and F_{2} are shaded.

The interchange of splittings is shown in Figure 7. Here (X, ω) is presented as the quotient $(P, d z) / \sim$ of an L-shaped polygon in \mathbb{C} with parallel sides identified. The corner rectangle of P corresponds to R, and the two parallelograms, to E_{1} and F_{1}.

As seen at the left, the edges of R represent the homology classes $a_{1}=[I]$ and $b_{2}=[J]$, and the edges of the lower parallelogram give the homology basis $\left(a_{1}, b_{1}\right)$ for $H_{1}\left(E_{1}, \mathbb{Z}\right)$. The edges of the shaded region formed by R and the parallelogram to its right give the homology basis $\left(a_{2}, b_{2}\right)$ for $H_{1}\left(E_{2}, \mathbb{Z}\right)$.

After performing a butterfly move, we obtain the splitting of X displayed at the right. Here R and E_{1} have been combined to form F_{2} (shaded), and the remaining parallelogram at the right represents F_{1}. As shown, $\left(a_{2}-a_{1}, b_{2}\right)$ is then a symplectic basis for $H_{1}\left(F_{1}, \mathbb{Z}\right)$, and $\left(a_{1}, b_{1}+b_{2}\right)$ is a symplectic basis for $H_{1}\left(F_{2}, \mathbb{Z}\right)$.

Next we examine how different prototypes are related by butterfly moves.
Admissibility. Recall P_{D} denotes the finite set of splitting prototypes of discriminant D. Given $p=(a, b, c, e)$ in P_{D}, let

$$
(X, \omega)=\left(E_{1}, \omega_{1}\right) \underset{I}{\#}\left(E_{2}, \omega_{2}\right)
$$

be the corresponding prototypical splitting (§3). Using the identifications $H_{1}\left(E_{i}, \mathbb{Z}\right)=$ $\operatorname{Per}\left(\omega_{i}\right)=\Lambda_{i}$, we have symplectic bases

$$
\begin{aligned}
& \Lambda_{1}=\mathbb{Z}(\lambda, 0) \oplus \mathbb{Z}(0, \lambda)=\mathbb{Z} A_{1} \oplus \mathbb{Z} B_{1} \quad \text { and } \\
& \Lambda_{2}=\mathbb{Z}(b, 0) \oplus \mathbb{Z}(a, c)=\mathbb{Z} A_{2} \oplus \mathbb{Z} B_{2}
\end{aligned}
$$

for the homology of E_{1} and E_{2}. We also have $I=[0, \lambda]$, where $\lambda=(e+\sqrt{D}) / 2>$ 0 . The projection of I to E_{1} represents the class

$$
[I]=A_{1} \in H_{1}\left(E_{1}, \mathbb{Z}\right)
$$

Now given an integer $q>0$, let $J_{q}=[0,(a, c)+q(b, 0)] \subset \mathbb{C}$; then J_{q} maps to a loop representing the class

$$
\left[J_{q}\right]=A_{2}+q B_{2} \in H_{1}\left(E_{2}, \mathbb{Z}\right)
$$

Similarly, we define $J_{\infty}=[0,(b, 0)]$; then $\left[J_{\infty}\right]=B_{2}$. In both cases, q records the homological slope of J_{q}.

We say q is admissible for $p=(a, b, c, e)$ if, under the projection $\pi: \mathbb{C} \rightarrow E_{2}$, we have $\pi\left(J_{q}\right) \cap \pi(I)=\{0\}$. It is easy to see that $q=1$ and $q=\infty$ are admissible for every prototype p.

Theorem 7.2 The following conditions are equivalent:

1. The integer $q>0$ is admissible for $(a, b, c, e) \in P_{D}$.
2. $|I|=\lambda=(e+\sqrt{D}) / 2$ is strictly less than b / q.
3. We have $(e+2 q c)^{2}<D$.

Proof. The loop $\pi\left(J_{q}\right)$ cuts $L=\mathbb{R} / \mathbb{Z}(b, 0) \subset E_{2}$ into intervals of length b / q, and I is a subarc of L abutting J_{q}. Thus the first two conditions are equivalent. To see the last equivalence, note that $e+q c<\sqrt{D}$ is equivalent to

$$
4 q c \lambda<(\sqrt{D}-e)(\sqrt{D}+e)=4 b c
$$

and thus to $\lambda<b / q$; and $-\sqrt{D}<e+q c$ is automatic, because $e^{2}<D$.

Butterfly maps. Let $P_{D}(q)$ denote the set of prototypes for which q is admissible.

When q is admissible for $p=(a, b, c, e)$, it defines a second splitting $\left(X, \omega, J_{q}\right)$ related to (X, ω, I) by a butterfly move. We have $\left(X, \omega, J_{q}\right) \in \Omega W_{D}^{s}\left(p^{\prime}\right)$, for a unique prototype p^{\prime}, and we define the butterfly map

$$
B_{q}: P_{D}(q) \rightarrow P_{D}
$$

by $B_{q}(p)=p^{\prime}$.
Theorem 7.3 For finite values of q, the butterfly map

$$
B_{q}(a, b, c, e)=\left(a^{\prime}, b^{\prime}, c^{\prime}, e^{\prime}\right)
$$

satisfies $c^{\prime}=\operatorname{gcd}(q c, b+q a)$ and $e^{\prime}=-e-2 q c$.
Note: for our applications we will not need to keep track of the value of a^{\prime}, and b^{\prime} is determined by the condition $D=\left(e^{\prime}\right)^{2}+4 b^{\prime} c^{\prime}$.
Proof of Theorem 7.3. Let $\left(a_{1}, b_{1}\right)=\left(A_{1}, B_{1}\right)$ and $\left(a_{2}, b_{2}\right)=\left(-B_{2}, A_{2}+q B_{2}\right)$ be symplectic bases for $H_{1}\left(E_{i}, \mathbb{Z}\right), i=1,2$, satisfying $[I]=a_{1}$ and $\left[J_{q}\right]=b_{2}$.

Then Theorem 7.1 provides a new splitting along J_{q}. The summands $\left(F_{i}, \eta_{i}\right)=$ $\left(\mathbb{C} / \Lambda_{i}^{\prime}\right)$ of the new splitting satisfy $\Lambda_{i}^{\prime}=M_{i}\left(\mathbb{Z}^{2}\right)$, where

$$
M_{1}=\left(\begin{array}{cc}
b+q a & \lambda+a \\
q c & c
\end{array}\right) \quad \text { and } \quad M_{2}=\left(\begin{array}{cc}
\lambda & b+q a \\
0 & \lambda+q c
\end{array}\right)
$$

correspond to the symplectic bases $\left(b_{2}, a_{1}-a_{2}\right)$ and $\left(a_{1}, b_{1}+b_{2}\right)$ for $H_{1}\left(F_{1}, \mathbb{Z}\right)$ and $H_{1}\left(F_{2}, \mathbb{Z}\right)$ respectively.

Following the proof of Theorem 3.3, we can now locate the unique prototypical splitting in the $\mathrm{GL}_{2}^{+}(\mathbb{R})$-orbit of $\left(X, \omega, J_{q}\right)$. To this end, let $e^{\prime}=-e-2 q c$, let $\lambda^{\prime}=\left(e^{\prime}+\sqrt{D}\right) / 2$, and let $g=\lambda^{\prime} M_{1}^{-1} \in \mathrm{GL}_{2}^{+}(\mathbb{R})$. Note that $\lambda^{\prime}>0$ by the admissibility of q. Then we have

$$
g\left(J_{q}\right)=\left[0, \lambda^{\prime}\right], \quad g\left(\Lambda_{1}^{\prime}\right)=\lambda^{\prime} \mathbb{Z}^{2}, \quad \text { and } \quad g\left(\Lambda_{2}^{\prime}\right)=N\left(\mathbb{Z}^{2}\right),
$$

where

$$
N=g M_{2}=\left(\begin{array}{cc}
c & -a-e-q c \\
-q c & b+q a
\end{array}\right)
$$

Clearly the projection of $N\left(\mathbb{Z}^{2}\right) \subset \mathbb{R}^{2}$ to the y-axis is the subgroup $c^{\prime} \mathbb{Z} \subset \mathbb{R}$, where $c^{\prime}=\operatorname{gcd}(q c, b+q a)$. Therefore we have

$$
N\left(\mathbb{Z}^{2}\right)=\mathbb{Z}\left(a^{\prime}, c^{\prime}\right) \oplus \mathbb{Z}\left(b^{\prime}, 0\right)
$$

for suitable integers $a^{\prime}, b^{\prime}>0$ with a^{\prime} reduced mod b^{\prime}. Moreover, we have

$$
\begin{gathered}
\left(e^{\prime}\right)^{2}+4 b^{\prime} c^{\prime}=(e+2 q c)^{2}+4 \operatorname{det}(N)=e^{2}+4 b c=D \\
\operatorname{gcd}\left(a^{\prime}, b^{\prime}, c^{\prime}, e^{\prime}\right)=\operatorname{gcd}\left(e^{\prime}, N_{i j}\right)=\operatorname{gcd}(a, b, c, e)=1 \\
\quad \text { and } c^{\prime}+e^{\prime}<b^{\prime}
\end{gathered}
$$

because $\lambda^{\prime}<b^{\prime}$.
Replacing g with $\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right) \cdot g$ for suitable n, we can further normalize so that $0 \leq a^{\prime}<\operatorname{gcd}\left(b^{\prime}, c^{\prime}\right)$. Then $\left(a^{\prime}, b^{\prime}, c^{\prime}, e^{\prime}\right)$ is a prototype of discriminant D, and $g \cdot\left(X, \omega, J_{q}\right)$ is the corresponding prototypical splitting. In particular, $\left(X, \omega, J_{q}\right)$ belongs to $\Omega W_{D}^{s}\left(a^{\prime}, b^{\prime}, c^{\prime}, e^{\prime}\right)$ with $c^{\prime}=\operatorname{gcd}(q c, b+q a)$ and $e^{\prime}=-e-2 q c$.

Corollary 7.4 If $\operatorname{gcd}(b, q c)=1$, then

$$
B_{q}(0, b, c, e)=\left(0, b-q c e-q^{2} c^{2}, 1,-e-2 q c\right) .
$$

Proof. Let $B_{q}(0, b, c, e)=\left(a^{\prime}, b^{\prime}, c^{\prime}, e^{\prime}\right)$. Then $e^{\prime}=-e-2 c$ and $c^{\prime}=1$ by the preceding result; the condition $\left(e^{\prime}\right)^{2}+4 b^{\prime} c^{\prime}=e^{2}+4 b c$ determines b^{\prime}; and $a^{\prime}=0$ since it is reduced $\bmod \operatorname{gcd}\left(b^{\prime}, c^{\prime}\right)=1$.

A similar calculation establishes:
Theorem 7.5 The butterfly map $B_{\infty}(a, b, c, e)=\left(a^{\prime}, b^{\prime}, c^{\prime}, e^{\prime}\right)$ satisfies $c^{\prime}=$ $\operatorname{gcd}(a, c)$ and $e^{\prime}=-e-2 c$.

8 From cusps to combinatorics

In this section we reduce the study of the geometric connectivity of W_{D} to a combinatorial problem, which we will solve in the next two sections.
Connecting prototypes. Let P_{D} be the set of splitting prototypes of discriminant D. Let $p \sim p^{\prime}$ denote the equivalence relation on P_{D} generated by

$$
\begin{equation*}
p \sim B_{q}(p) \text { whenever } q \in\{1,2,3, \ldots, \infty\} \text { is admissible for } p \tag{8.1}
\end{equation*}
$$

We say p and p^{\prime} are connected if they are equivalent, and we regard each equivalence class as a component of P_{D}. (This terminology refers to the topology on P_{D} whose open sets are unions of equivalence classes.)

Theorem 8.1 The number of components of P_{D} is an upper bound for the number of components of the Weierstrass curve W_{D}.

Proof. Recall there is a natural bijection

$$
f: P_{D} \rightarrow C\left(W_{D}\right)
$$

identifying the set of prototypes with the two-cylinder cusps of W_{D} (Corollary 4.4).

We claim that if p is connected to p^{\prime} in P_{D}, then $f(p)$ and $f\left(p^{\prime}\right)$ belong to the same component of W_{D}. Since the equivalence relation on P_{D} is generated by (8.1), it suffices to establish the claim when $p^{\prime}=B_{q}(p)$. But in this case there is a form (X, ω) admitting splittings $(X, \omega, I) \in \Omega W_{D}^{s}(p)$ and $\left(X, \omega, J_{q}\right) \in W_{D}^{s}(q)$. This implies $W_{D}^{s}(p)$ and $W_{D}^{s}\left(p^{\prime}\right)$ cover the same component of W_{D}, and hence $f(p)$ and $f\left(p^{\prime}\right)$ also belong to the same component.

By Corollary 4.4, every component of W_{D} has a two-cylinder cusp, and thus every component of W_{D} contains the image of a component of P_{D}.

Reduced prototypes. Let us say a prototype $p=(a, b, c, e) \in P_{D}$ is reduced if $c=1$; equivalently, if it has the form $p=(0, b, 1, e)$, where $e^{2}+4 b=D$.

Theorem 8.2 Every component of P_{D} contains a reduced prototype.
Proof. Let $(a, b, c, e)=p$ be a prototype that minimizes the value of c among all $p^{\prime} \sim p$. We will show p is reduced.

We begin by showing $a=0$ and $c \mid b$. To see this, recall that $q=1$ and $q=\infty$ are admissible for all p. By Theorem 7.5, $p \sim B_{\infty}(p)=\left(a^{\prime}, b^{\prime}, c^{\prime}, e^{\prime}\right)$ with $c^{\prime}=\operatorname{gcd}(a, c)$. Since $c^{\prime} \geq c>a \geq 0$, we have $a=0$.

Similarly, let

$$
p^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}, e^{\prime}\right)=B_{1}(a, b, c, e) \sim p
$$

By Theorem $7.3, c^{\prime}=\operatorname{gcd}(b, c) \leq c$; but c is minimal, so $c=c^{\prime}$ and $b \mid c$. Since $c^{\prime}=c$, the same reasoning shows $a^{\prime}=0$ and $c \mid b^{\prime}$. By Theorem 7.3 again, we have $e^{\prime}=-e-2 c$. We also know

$$
\left(e^{\prime}\right)^{2}+4 b^{\prime} c^{\prime}=e^{2}+4 b c=D
$$

and therefore $b^{\prime}=b-c-e$. Since $c \mid b$ and $c \mid b^{\prime}$, we have $c \mid e$. But then $c=$ $\operatorname{gcd}(a, b, c, e)=1$ by the definition of a splitting prototype, and therefore the prototype p is reduced.

Combinatorial connectivity. To parameterize the reduced prototypes, let

$$
S_{D}=\left\{e \in \mathbb{Z}: e \equiv D \bmod 2 \text { and } e^{2},(e+2)^{2}<D\right\}
$$

and define $\rho_{D}: S_{D} \rightarrow P_{D}$ by

$$
\rho_{D}(e)=\left(0,\left(D-e^{2}\right) / 4,1, e\right) .
$$

Then ρ_{D} maps S_{D} bijectively to the set of reduced prototypes in P_{D}. For example, we have

$$
S_{16}=\{-3,-1,1\} \quad \text { and } \quad \rho_{D}\left(S_{16}\right)=\{(0,3,2,-1),(0,6,1,-1),(0,6,1,1)\}
$$

Let $e \sim e^{\prime}$ be the equivalence relation on S_{D} generated by

$$
\begin{equation*}
e \sim e^{\prime}=-e-2 q \text { whenenever } e^{\prime} \in S_{D} \text { and } \operatorname{gcd}(b, q)=1 \tag{8.2}
\end{equation*}
$$

where $q>0$ and $b=\left(D-e^{2}\right) / 4$ is determined by the condition $e^{2}+4 b=D$. This relation describes the action of butterfly moves on reduced prototypes since, by Corollary 7.4, we have

$$
B_{q}\left(\rho_{D}(e)\right)=B_{q}(0, b, 1, e)=\left(0, b-q e-q^{2}, 1,-e-2 q\right)=\rho_{D}(-e-2 q)
$$

whenever q is admissible for e. In particular, the relation $e \sim e^{\prime}$ implies $\rho_{D}(e) \sim$ $\rho_{D}\left(e^{\prime}\right)$. Together with Theorem 8.2, this implies

Theorem 8.3 The number of components of S_{D} is an upper bound for the number of components of P_{D}.

Note that we do not need the action of B_{∞}, since $B_{\infty}(p)=B_{1}(p)$ when p is reduced.

Examples.

$\boldsymbol{D}=4$. Here $S_{D}=\emptyset$, so W_{4} is empty. (A surface of genus one admits no degree two cover branched over exactly one point.)
$\boldsymbol{D}=\mathbf{5}, \mathbf{9}$. Here $S_{D}=\{-1\}$, so W_{D} is connected.
$\boldsymbol{D}=\mathbf{8}, \mathbf{1 2}$. Here $S_{D}=\{-2,0\}$; taking $q=1$ in (8.2), we see S_{D} and W_{D} are connected in this case as well.
$\boldsymbol{D}=\mathbf{1 3}, \mathbf{1 7}$. Here $S_{D}=\{-3,-1,1\}$. Taking $q=1$ in (8.2), we see $-3 \sim 1$, so S_{D} has at most two components. When $D=13$ we also have $-3 \sim 1$ (by taking $q=2$), so W_{13} is connected; but W_{17} has exactly two components, because of the spin invariant (Theorem 5.1).

9 Relative primes

This section presents estimates for the smallest $x>1$ relatively prime to n, and the smallest relative prime in an arithmetic progression. These results will be applied in the next section, to determine the number of components of S_{D}.
The smallest relative prime. Let $(\mathbb{Z} / n)^{*} \subset \mathbb{Z} / n$ denote the multiplicative group of integers $x \bmod n$ with $\operatorname{gcd}(x, n)=1$. Its order is given by the Euler function

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

where the product is taken over all primes dividing n. Since $\sum_{p \leq x} 1 / p=$ $O(\log \log x)$, we have

$$
\phi(n) \gg \frac{n}{\log \log n}
$$

when n is large. In particular, there are many more relative primes than absolute primes $(\phi(n) \gg \pi(n) \sim n / \log n)$. We begin by bounding the size of the smallest x relatively prime to n.

Theorem 9.1 For any $n>1$, there is an integer x relatively prime to n with

$$
1<x \leq \frac{3 \log n}{\log 2}
$$

Note that the bound above is sharp for $n=2$.
Proof. For a given n, the optimal choice for x is the smallest prime q not dividing n. Similarly, the smallest value of n demanding a particular prime q is the product of all primes less than q. Thus the Theorem is equivalent to the assertion

$$
\begin{equation*}
\frac{p_{k+1}}{\log \left(p_{1} \cdot p_{2} \cdots p_{k}\right)} \leq \frac{3}{\log 2} \approx 4.328 \tag{9.1}
\end{equation*}
$$

for all $k>0$, where $p_{1}, p_{2}, p_{3}, \ldots=2,3,5 \ldots$ is the sequence of primes.
Following Hardy and Wright [HW, Ch. XXII], let $\vartheta(x)=\sum_{p \leq x} \log p$ and let $\psi(x)=\sum_{p^{m} \leq x} \log p$. It is well-known that $\vartheta(x) \sim \psi(x) \sim x$ and $p_{k+1} / p_{k} \sim 1$, which implies

$$
\frac{p_{k+1}}{\log \left(p_{1} \cdot p_{2} \cdots p_{k}\right)}=\frac{p_{k+1}}{\vartheta\left(p_{k}\right)} \sim \frac{p_{k+1}}{p_{k}} \sim 1
$$

as $p_{k} \rightarrow \infty$. Consequently (9.1) holds whenever p_{k} is sufficiently large.
To make this an effective estimate, we will show that

$$
\vartheta(x) \geq 19 x / 40
$$

for all $x \geq 10^{4}$. Indeed, by [HW, p.342], we have

$$
\psi(x) \geq \log \frac{(2 y)!}{(y!)^{2}}
$$

where $y=[x / 2]$. By induction, the right-hand side is $\geq y$ for $y \geq 4$, and thus $\psi(x) \geq[x / 2]$ for $x \geq 8$. On the other hand, we have

$$
\vartheta(x)=\psi(x)-\sum_{m=2}^{\log x / \log 2} \vartheta\left(x^{1 / m}\right)
$$

and $\vartheta(x) \leq 2 x \log 2$, by [HW, p. 341]. It is straightforward to check that

$$
2 \log 2 \sum_{m=2}^{\log x / \log 2} x^{1 / m}<x / 40
$$

for all $x \geq 10^{4}$; combining these bounds, we obtain

$$
\vartheta(x) \geq \psi(x)-x / 40 \geq 19 x / 40
$$

as claimed.
Now recall that $p_{k+1} \leq 2 p_{k}$ for all k (Bertrand's postulate, [HW, p.343]). Thus for $p_{k} \geq 10^{4}$ we have

$$
\frac{p_{k+1}}{\vartheta\left(p_{k}\right)} \leq \frac{2 p_{k}}{19 p_{k} / 40}=\frac{80}{19} \approx 4.21<\frac{3}{\log 2}
$$

The proof is completed by verifying that (9.1) also holds for the 1229 primes satisfying $p_{k}<10^{4}$.

Remark. The least $x>1$ relatively prime to n also satisfies the lower bound $x>(1-\epsilon) \log n$ infinitely often, since $\vartheta(x) \sim x$.
Gaps between relative primes. Jacobsthal's function $J(n)$ is defined to be the largest gap between consecutive integers relatively prime to n [Ja]; for example, $J(6)=5-1=4$. A convenient estimate for $J(n)$ is provided by [Kan, Satz 4]:

Theorem 9.2 (Kanold) For all $n \geq 1$, we have

$$
J(n) \leq 2^{\omega(n)}
$$

where $\omega(n)$ is the number of distinct primes dividing n.
This result easily implies $J(n) \leq C_{\epsilon} n^{\epsilon}$, as well as:
Corollary 9.3 If none of the first k primes $p_{1}<p_{2}<\ldots<p_{k}$ divide n, then we have

$$
J(n) \leq n^{\alpha}, \quad \alpha=\frac{\log (2)}{\log \left(p_{k+1}\right)}
$$

Proof. Each prime $p \mid n$ contributes a factor of at least $p^{\alpha} \geq 2$ to n^{α}, so $n^{\alpha} \geq 2^{\omega(n)} \geq J(n)$.

See [Er] and [St] for additional estimates on $J(n)$.
Relative primes in arithmetic progressions. Our second result bounds the smallest x relatively prime to n satisfying a given congruence condition.

To state this bound, let $a / / b$ denote the largest divisor of a which is relatively prime to b. The quotient $a / / b$ is obtained by removing from a all primes that divide b; for example, $20 / / 6=5$. We then have:

Theorem 9.4 For any $a, b, n \geq 1$ with $\operatorname{gcd}(a, b)=1$, there is a positive integer $x \leq b J(n / / b)$ such that

$$
x \equiv a \bmod b \quad \text { and } \quad \operatorname{gcd}(x, n)=1
$$

Proof. We may assume $1 \leq a \leq b$. Let us write $x=a+b y$, so the congruence $x \equiv a \bmod b$ is automatic. Then $\operatorname{gcd}(x, b)=1$, so $\operatorname{gcd}(x, n)=\operatorname{gcd}(x, m)$ where $m=n / / b$.

Since $\operatorname{gcd}(b, m)=1, b$ is invertible in $(\mathbb{Z} / m)^{*}$; that is, $b c \equiv 1 \bmod m$ for some c. By the definition of Jacobsthal's function we can find an integer y, $0 \leq y<J(m)$, such that $\operatorname{gcd}(a c+y, m)=1$. Then we have

$$
c x \equiv a c+b c y \equiv a e+y \bmod m
$$

which implies $\operatorname{gcd}(x, n)=\operatorname{gcd}(x, m)=\operatorname{gcd}(c x, m)=1$; and by construction, we have $1 \leq x \leq b(y+1) \leq b J(m)=b J(n / / b)$.

10 Combinatorial connectivity

We have seen that the space S_{D} is a combinatorial caricature of the Weierstrass curve W_{D}, with at least as many components as W_{D} itself. In this section we will establish:

Theorem 10.1 Assume $D \geq 5$ and $D \neq 9,49,73,121$ or 169 . Then S_{D} has exactly two components when $D \equiv 1 \bmod 8$, and otherwise just one.

Small \boldsymbol{D}. Recall from $\S 8$ that the space of reduced prototypes of discriminant D is parameterized by

$$
S_{D}=\left\{e \equiv D \bmod 2: e^{2}<D \text { and }(e+2)^{2}<D\right\}
$$

equipped with the equivalence relation generated by

$$
\begin{equation*}
e \sim e^{\prime}=-e-2 q \text { whenenever } e^{\prime} \in S_{D} \text { and } \operatorname{gcd}(b, q)=1 \tag{10.1}
\end{equation*}
$$

Here $q>0$ and $b=\left(D-e^{2}\right) / 4$ is determined by the condition $e^{2}+4 b=D$.
It is feasible to compute the number of components of S_{D} when D is reasonably small. For example, the number of components is one for $D=9$ and three for $D=49,73,121$ and 169 , and one can verify:

Lemma 10.2 Theorem 10.1 holds for all $D \leq 2000$.

Spin invariant. There is a simple congruence condition, equivalent to the spin invariant, that explains why S_{D} has (at least) two components when $D \equiv$ $1 \bmod 8$.

Theorem 10.3 If $e \sim f$ in S_{D} and $D \equiv 1 \bmod 8$, then $e \equiv f \bmod 4$.
Proof. The condition $D \equiv 1 \bmod 8$ implies $b=\left(D-e^{2}\right) / 4$ is even, and hence q relatively prime to b is odd. Since e is also odd, we have $e \equiv-e-2 q \bmod 4$.

Small primes. To determine the components of S_{D} for general D, we begin by showing that the relations coming from $q=1,3,5$ and 7 already connect large parts of S_{D}.

First note that by taking $q=1$ in (10.1), we have $e \sim-e-2$ for every $e \in S_{D}$. That is, every component of S_{D} is symmetric under reflection through $e=-1$. In particular, every component contains an element $e \leq-1$.

Next consider $q \geq 2$. Let $b=\left(D-e^{2}\right) / 4$ as before, and suppose

$$
F_{q}(e)=e+2(q-1)
$$

also belongs to S_{D}. Then we have

$$
e \sim F_{q}(e) \quad \text { whenever } \quad \operatorname{gcd}(b, q)=1
$$

because $e \sim-e-2 q \sim-(-e-2 q)-2=F_{q}(e)$.
In the case where $q=p$ is an odd prime, we have $\operatorname{gcd}(b, p)=\operatorname{gcd}\left(D-e^{2}\right)$, and therefore

$$
\begin{equation*}
e \sim F_{p}(e) \quad \text { whenever } \quad D \not \equiv e^{2} \bmod p . \tag{10.2}
\end{equation*}
$$

Since the equivalence relation is symmetric, we also have

$$
\begin{equation*}
e \sim F_{-p}(e)=e-2(p-1) \quad \text { whenever } \quad D \not \equiv(e+2)^{2} \bmod p \tag{10.3}
\end{equation*}
$$

We say $\pm p$ is admissible for (D, e) if the corresponding congruence inequality in (10.2) or (10.3) is satisfied. Clearly admissibility depends only on the value of $(D, e) \bmod p$.

Theorem 10.4 Suppose $e-12$ and $e+16$ belong to S_{D}. Then

- $e \sim e+4$, or
- (D, e) is congruent to $(1,-4)$ or $(1,-1)$ when reduced modulo $105=3 \cdot 5 \cdot 7$.

Proof. The Theorem is immediate when $D \equiv 2 \bmod 3$, or more generally whenever $D \not \equiv e^{2} \bmod 3$. Indeed, in this case F_{3} is admissible for (D, e), and therefore $e \sim F_{3}(e)=e+4$. This argument covers two-thirds of the 105^{2} possible values for $(D, e) \bmod 105$, or 7350 cases.

More generally, to prove $e \sim e+4$, it is sufficient to exhibit sequences

$$
\begin{aligned}
\left(p_{1}, \ldots, p_{k}\right) & \text { in } P=\{ \pm 3, \pm 5, \pm 7\} \text { and } \\
\left(e_{1}, \ldots e_{k+1}\right) & \text { in } \quad E \equiv e+\{-12,-8,-4,0,4,8,12,16\} \subset(\mathbb{Z} / 105)
\end{aligned}
$$

such that $e \equiv e_{1}, e+4 \equiv e_{k+1}, p_{i}$ is admissible for $\left(D, e_{i}\right)$ and $e_{i+1}=F_{p_{i}}\left(e_{i}\right)$. We refer to $\left(p_{1}, \ldots, p_{k}\right)$ as a strategy for (D, e).

For example, if $(D, e) \equiv(16,59) \bmod 105$, we can use the strategy $(-7,5,5)$ to move e along the sequence $(59,47,55,63)$ to reach $e+4 \equiv 63$. To check the admissibility of a given transition $F_{p_{i}}\left(e_{i}\right)=e_{i+1}$, such as $F_{-7}(59)=47$, one need only check that (D, e_{i}) satisfies the corresponding congruence inequality, in this case

$$
D \equiv 16 \equiv 2 \not \equiv\left(e_{i}+2\right)^{2} \equiv(59+2)^{2} \equiv 4 \bmod 7
$$

It is straightforward to verify that a strategy as above exists for every pair $(D, e) \bmod 105$ with the two exceptions stated in the Theorem. In fact, each of these $105^{2}-2=11023$ cases can be handled by one of the 12 strategies listed in Table 8.

Remarks. When $(D, e)=(1,-1) \bmod 105$ we have

$$
D \equiv e^{2} \equiv(e+2)^{2} \bmod p
$$

for $p=3,5$ and 7 , and therefore no $p \in P$ is admissible for (D, e). A similar difficulty would arise for any finite set of primes P.

$\left(p_{1}, \ldots, p_{k}\right)$	Cases	$\left(p_{1}, \ldots, p_{k}\right)$	Cases
(3)	7350	$(-5,3,5)$	9
$(5,-3)$	1960	$(5,5,-7)$	6
$(7,-5)$	1176	$(-7,5,5)$	6
$(-3,5)$	378	$(-3,7,-3)$	1
$(-5,7)$	126	$(-5,3,7,-3)$	1
$(5,3,-5)$	9	$(-3,7,3,-5)$	1

Table 8. Connection strategies and the number of cases they handle.

Edge effects. Next we account for e close to the ends of the range S_{D}. Let

$$
T_{D}=\left\{e \in S_{D}: e-12, e+16 \in S_{D}\right\}
$$

Then we have:
Theorem 10.5 For $D>900$, any $f \in S_{D}$ is equivalent to an $e \in T_{D}$.

Proof. We may assume $f \leq-1$ since $f \sim-f-2$. If $f-12 \in S_{D}$ we can simply take $e=f$; otherwise, we have

$$
f^{2}<D \leq(f-12)^{2}
$$

by the definition of S_{D}. It suffices now to show that $f \sim e$ with $f<e$ and $e+16 \in S_{D}$, since by repeatedly increasing f we can also obtain $e-12 \in S_{D}$, and thereby $e \in T_{D}$. In fact it suffices to obtain an e with

$$
f<e<e+18<\sqrt{D}
$$

since for $e>f$ we have $e+16 \in S_{D} \Longleftrightarrow e+18<\sqrt{D}$.
The inequality $30^{2}<D \leq(f-12)^{2}$ implies $f \leq-20$ and

$$
b=\left(D-f^{2}\right) / 4 \leq 6(6-f)
$$

Now if $\operatorname{gcd}(b, p)=1$ for some prime $p \leq 13$, we have

$$
f \sim e=F_{p}(f)=f+2(p-1)>f
$$

and at the same time

$$
e+18=18+f+2(p-1) \leq 18-20+24=22<\sqrt{D}
$$

as desired.
It remains to handle the case where b is divisible by all primes $p \leq 13$. In this case we have $D \geq 4 b \geq 10^{6}$. By Theorem 9.1, there is an integer q relatively prime to b with

$$
1<q<\frac{3 \log b}{\log 2} \leq 5 \log (D)
$$

and hence an $e \sim f$ with

$$
f<e=f+2(q-1) \leq 10 \log (D)
$$

Since $10 \log (D)+18<\sqrt{D}$ for all $D \geq 10^{6}$, we have $e+18<\sqrt{D}$, completing the proof.

Corollary 10.6 Theorem 10.1 holds for all $D \not \equiv 1 \bmod 105$.
Proof. By Lemma 10.2, we may assume $D \geq 900$; then by Theorem 10.5, every component of S_{D} meets T_{D}.

Consider the partition $T_{D}=T_{D}^{0} \sqcup T_{D}^{1}$, where

$$
T_{D}^{i}=\left\{e \in T_{D}: e \equiv D+2 i \bmod 4\right\}
$$

By Theorem 10.4 we have $e \sim e+4$ whenever e and $e+4$ are both in T_{D}. Therefore all elements of T_{D}^{0} are equivalent, as are all elements of T_{D}^{1}. This shows S_{D} has at most two components.

Since D is a quadratic discriminant, we have $D \equiv 0,1,4$ or $5 \bmod 8$. To complete the proof, we analyze each of these possibilities in turn.

If $D \equiv 0$ or $4 \bmod 8$, then we have $e=0 \sim-e-2=-2 \not \equiv e \bmod 4$. This shows $0 \in T_{D}^{0}$ is joined to $i-2 \in T_{D}^{1}$ and therefore S_{D} is connected.

If $D \equiv 5 \bmod 8$, then $b=\left(D-e^{2}\right) / 4$ is odd when $e=1$. Therefore $\operatorname{gcd}(b, q)=$ 1 when $q=2$, and therefore $1 \sim-1-2 q=-5 \not \equiv 1 \bmod 4$. Thus S_{D} is connected in this case as well.

Finally if $D \equiv 1 \bmod 8$, then S_{D} has at least two components by Theorem 10.3.

The exceptional case. To complete the proof, we will use Theorem 9.4 on relative primes in an arithmetic progression to give an argument that works even if $D \equiv 1 \bmod 105$.

Let

$$
U_{D}=\left\{e \in T_{D}: e \neq-1 \bmod 105\right\}
$$

and consider the partition $U_{D}=U_{D}^{0} \cup U_{D}^{1}$, where $U_{D}^{i}=U_{D} \cap T_{D}^{i}$.
Lemma 10.7 For $D>900$, the sets U_{D}^{0} and U_{D}^{1} are each contained in a single component of S_{D}.

Proof. By Theorem 10.4 we have $e \sim e+4$ whenever both lie in U_{D}. This almost shows that all elements of U_{D}^{i} are equivalent; however, a gap arises because we have excluded those $e \equiv-1 \bmod 5$. To bridge this gap, we simply note that if $e \equiv-5 \bmod 105$, then $e \sim e+8=F_{5}(3)$, since

$$
e^{2} \equiv 0 \not \equiv D \equiv 1 \bmod 5
$$

Thus all the elements of U_{D}^{i} are equivalent in S_{D}.

Lemma 10.8 For $D>$ 2000, any $e \in S_{D}$ is equivalent to an $f \in U_{D}$.
Proof. By Theorem 10.5, we can assume $e \in T_{D}$. We can also assume $e \leq-1$, since $e \sim-e-2$; and $e \equiv-1 \bmod 105$, since otherwise $e \in U_{D}$.

Suppose we can find an integer $q \geq 1$ such that

$$
\begin{equation*}
\operatorname{gcd}(b, q)=1, q \neq 1 \bmod 105 \text { and } 2 q+15<\sqrt{D} \tag{10.4}
\end{equation*}
$$

Let $f=F_{q}(e)=e+2(q-1)$. Then, since $e \leq-1$, we have

$$
f+18=e+2 q+16 \leq 2 q+15<\sqrt{D}
$$

and therefore $f \in T_{D}$. In fact $f \in U_{D}$, because $f-e=2(q-1) \not \equiv 0 \bmod 105$; and $e \sim f$, because $\operatorname{gcd}(b, q)=1$. Thus to complete the proof, it suffices to find q satisfying (10.4).

Since $D>2000$, we have $\sqrt{D}>44$ and hence the last two conditions of (10.4) are automatic for $q=2,3,5,7,11$ and 13 . Thus we are done unless b is divisible $30030=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$.

So assume $30030 \mid b$; then we have $\sqrt{D} \geq \sqrt{4 b}>346$. In this case the last two conditions of (10.4) are automatic for all primes $p \leq 165$. Again we are done unless b is divisible by all these primes, in which case we have $b \geq 10^{63}$.

Now pick any integer a with $1<a<105$. Then by Theorem 9.4, there is a positive integer $q \leq 210 J(b / / 210)$ with $\operatorname{gcd}(b, q)=1$ and $q \equiv a \neq 1 \bmod 105$. Since no prime smaller than 11 divides $b / / 210$, and $2^{3}<11$, Corollary 9.3 gives

$$
q \leq 210 J(b / / 210) \leq 210 b^{1 / 3}
$$

But $b>10^{63}$, so we have

$$
2 q+15 \leq 420 b^{1 / 3}+15 \ll b^{1 / 2}<D^{1 / 2}
$$

Thus q satisfies (10.4), and therefore $e \sim f \in U_{D}$.

Proof of Theorem 10.1. By Lemma 10.2 we can assume $D>2000$. Then the preceding Lemmas imply S_{D} has at most two components: one containing U_{D}^{0} and another containing U_{D}^{1}. When $D \equiv 1 \bmod 8$, there are exactly two components by Theorem 10.3; otherwise, U_{D}^{0} and U_{D}^{1} are connected to each other by the same argument used in the proof of Corollary 10.6.

11 Geometric connectivity

We can now complete the proof of our main result.
Theorem 11.1 The Weierstrass curve W_{D} is connected unless $D \equiv 1 \bmod 8$ and $D \neq 9$, in which case it has exactly two components.

Lemma 11.2 For $D=49,73,121$ and 169, the space of prototypes P_{D} has exactly two components, while for $D=9$ it has just one.

Proof. The space P_{9} consists of a single prototype, namely $(a, b, c, e)=$ $(0,2,1,-1)$, so it is connected. For the other values of D, P_{D} has at least two components because $D \equiv 1 \bmod 8$.

For $D=49$ it is straightforward to check that $S_{49}=\{-5,-3,-1,1,3\}$ has 3 components, namely $\{-5,3\},\{-3,1\}$ and $\{-1\}$. Consequently every $p \in P_{49}$ is connected to at least one of the reduced prototypes $\rho_{D}(-1), \rho_{D}(-3)$ or $\rho_{D}(-5)$.

But in fact $\rho_{D}(-1) \sim \rho_{D}(-5)$. To see this, recall from Corollary 7.4 that

$$
B_{q}(0, b, c, e)=\rho_{D}(-e-2 q c)
$$

whenever $\operatorname{gcd}(b, q c)=1$. Applying B_{q} to the prototype $p=(0,5,2,-3)$ in S_{49} with $q=1,2$, we find

$$
\rho_{D}(-1)=B_{1}(0,5,2,-3) \sim B_{2}(0,5,2,-3)=\rho_{D}(-3)
$$

Thus P_{49} has at most two components, and hence exactly two.
Similarly S_{73} has 3 components, represented by $e \in\{-1,1,3\}$, but

$$
\rho_{D}(3)=B_{1}(0,3,2,-7) \sim B_{2}(0,3,2,-7)=\rho_{D}(-1)
$$

so P_{73} itself has only two components. For S_{121} we have 3 components, represented by $e \in\{1,3,5\}$, but again P_{121} has just 2 components, because

$$
\rho_{D}(3)=B_{1}(0,9,2,-7) \sim B_{2}(0,9,2,-7)=\rho_{D}(-1)
$$

Finally the components of S_{169} are represented by $e \in\{1,3,5\}$, while

$$
\rho_{D}(5)=B_{1}(0,11,2,-9) \sim B_{2}(0,11,2,-9)=\rho_{D}(-1)
$$

so P_{169} has exactly 2 components as well.

Proof of Theorem 11.1. Let $n_{D}=2$ if $D>9$ is congruent to $1 \bmod 8$, and let $n_{D}=1$ otherwise. Let p_{D} and s_{D} denote the number of components of P_{D} and S_{D} respectively. Then for every $D \geq 5$ we have

$$
n_{D} \leq\left(\text { the number of components of } W_{D}\right) \leq p_{D} \leq s_{D}
$$

(The lower bound comes from Corollary 3.4 and Theorem 5.1, while the upper bounds come from Theorems 8.1 and 8.3.) By Theorem 10.1, $s_{D}=n_{D}$ except when $D=9,49,73,121,169$; but then $n_{D}=p_{D}$ by the Lemma above. Therefore n_{D} gives the number of components of W_{D} for every $D \geq 5$.

The proof also shows:
Corollary 11.3 The space of splitting prototypes P_{D} and the Weierstrass curve W_{D} have the same number of components for every D.

A Appendix: One-cylinder cusps

In this appendix we briefly describe the one-cylinder cusps of W_{D}, and how the two types of cusps are partitioned between W_{D}^{0} and W_{D}^{1} when $D \equiv 1 \bmod 8$. For more on the cusps of $W_{d^{2}}$, see [HL] and [EMS].
One-cylinder cusps. As for the case of two cylinders, it is useful to organize the one-cylinder cusps by prototypes.

Figure 9. One-cylinder prototype.

Let $\langle a, b, c\rangle$ denote a cyclically ordered set of integers. We say $\langle a, b, c\rangle$ is a one-cylinder prototype for discriminant D if:

$$
D=(a+b+c)^{2}, \quad a, b, c>0, \quad \text { and } \quad \operatorname{gcd}(a, b, c)=1
$$

We let R_{D} denote the set of all one-cylinder prototypes of discriminant D.
Theorem A. 1 Let $D=d^{2}>0$. Then the one-cylinder cusps of W_{D} are labeled by the one-cylinder prototypes $\langle a, b, c\rangle$ of discriminant D, with spin invariant

$$
\begin{equation*}
\epsilon \equiv 1+a b c \bmod 2 \tag{A.1}
\end{equation*}
$$

when $D \equiv 1 \bmod 8$.
Proof. By the results of $\S 4$, the one-cylinder cusps of W_{D} correspond to $\mathrm{GL}_{2}^{+}(\mathbb{R})$-orbits of pairs

$$
((X, \omega), s) \in \Omega W_{D} \times \mathbb{P}^{1}(\mathbb{R})
$$

such that the foliation \mathcal{F}_{s} of $(X,|\omega|)$ by geodesics with slope s is periodic with one cylinder C. Since $D=d^{2}$, every orbit has a representative where $s=0$ and (X, ω) is a primitive square-tiled surface. Then ∂C consists of 3 saddle connections, with integral lengths (a, b, c). Since $\operatorname{Per}(\omega)=\mathbb{Z}^{2}$, the cylinder C must have height one and circumference $d=a+b+c$, with $\operatorname{gcd}(a, b, c)=1$. Thus, after adjusting by the action of $N(\mathbb{Z})=\left\{\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right): n \in \mathbb{Z}\right\}$, we can put (X, ω) into the form $(P, d z) / \sim$, where P is the polygon shown in Figure 9. The ordering of the leaves of \mathcal{F}_{0} around the zero of ω (shown at the right) gives a natural cyclic ordering to the lengths (a, b, c), yielding a complete invariant for the corresponding cusp of W_{D}.

The number of integral Weierstrass points of (X, ω) is one iff $a b c \equiv 1 \bmod 2$, in which case $\epsilon=0$ by Theorem 6.1. Otherwise, there are additional integral Weierstrass points at the mid-points of the saddle connections of even length, so $\epsilon=1$.

Compare [HL, 5.1.1], [EMS, eq. (11)].

Corollary A. 2

1. The number of cusps of W_{D} is given by $\left|P_{D}\right|+\left|R_{D}\right|$.
2. When $D=d^{2}$, every component of W_{D} contains a one-cylinder cusp.
3. Every square-tiled surface has a one-cylinder direction.

Proof. Since every cusp of W_{D} has one or two cylinders (Theorem 4.3), the first assertion is immediate from Theorem 4.1 and the preceding result. The second follows from the classification of the components of W_{D} (Theorem 1.1), upon noting that the prototypes $\langle 1,1, d-2\rangle$ and $\langle 1,2, d-3\rangle$ represent one-cylinder cusps of W_{D}, with opposite spin when d is odd. The third assertion is equivalent to the second.

Counting cusps by spin. Next we compare the number of even and odd cusps.

Theorem A. 3 When $D \equiv 1 \bmod 8$ is not a square, W_{D}^{0} and W_{D}^{1} have the same number of cusps.

Proof. By the results of $\S 4, W_{D}$ has only two-cylinder cusps, each labeled by a splitting prototype. Let $(a, b, c, e) \in P_{D}$ be a prototype of discriminant D. Then $D=e^{2}+4 b c \equiv 1 \bmod 8$, so $b c$ is even.

We define a bijection $F: P_{D} \rightarrow P_{D}$ as follows. For $(b, c) \equiv(0,0) \bmod 2$, let

$$
F(a, b, c, e)=(a+1, b, c, e)
$$

where $a+1$ is taken modulo $\operatorname{gcd}(b, c)$. Otherwise, let

$$
F(a, b, c, e)= \begin{cases}(a, c, b, e) & \text { if } b+e<c, \text { and } \\ (a, b, c,-e) & \text { if } b+e>c\end{cases}
$$

(Note that the case $b+e=c$ does not occur, because it would imply $D=(b+c)^{2}$.)
By Theorem 5.3, the spin invariant of the prototype (a, b, c, e) is given by

$$
\epsilon=\frac{e-f}{2}+(c+1)(a+b+a b) \bmod 2
$$

where f is the conductor of \mathcal{O}_{D}. Thus F exchanges even and odd prototypes, so they must be equal in number.

Example. The reducible curve W_{17} has six cusps, paired off as follows:

$$
\begin{array}{cccc}
W_{17}^{0}: & (0,2,2,1) & (0,4,1,-1) & (0,2,1,-3) \\
W_{17}^{1}: & (1,2,2,1) & (0,4,1,1) & (0,1,2,-3) .
\end{array}
$$

Square discriminant. When $D=d^{2}$ is an odd square, each component W_{D}^{i} of W_{D} has both one- and two-cylinder cusps, labeled by the prototypes R_{D}^{i} and P_{D}^{i} with spin invariant i. We conclude with two formulas that allow $\left|P_{D}^{i}\right|$ and $\left|R_{D}^{i}\right|$ to be efficiently computed from $\left|P_{D}\right|$ and $\left|R_{D}\right|$.
Theorem A. 4 Let $D=d^{2}$ be an odd square. Then the number of even and odd cusps of W_{D} with two cylinders are related by

$$
\begin{equation*}
\left|P_{D}^{0}\right|-\left|P_{D}^{1}\right|=\sum_{b+c=d, 0<c<b} \phi(\operatorname{gcd}(b, c)) \tag{A.2}
\end{equation*}
$$

For one cylinder we have the relation

$$
\begin{equation*}
3\left|R_{D}^{0}\right|-\left|R_{D}^{1}\right|=\phi(d) / 2 \tag{A.3}
\end{equation*}
$$

provided $d>3$.
Proof. The two-cylinder case follows the same lines as the proof of Theorem A.3, except that now prototypes (a, b, c, e) with $e^{2}+4 b c=(b+c)^{2}=D$ can occur. However these prototypes always have the form $(a, b, c, c-b)$ with $c<b$, by the relation $c+e<b$. Thus the number of such prototypes is given by the sum in (A.2). Noting that $f=d$ is the conductor of \mathcal{O}_{D}, we find the splittings with $b+c=d$ all have spin 0 , because

$$
\frac{e-f}{2}+(c+1)(a+b+a b) \equiv \frac{c-b-f}{2}+b \equiv \frac{d-f}{2} \equiv 0 \bmod 2
$$

so they account exactly for the difference $\left|P_{D}^{0}\right|-\left|P_{D}^{1}\right|$.
To prove (A.3), for $k=0,1$ consider the set of ordered triples

$$
\begin{aligned}
A_{k}= & \{(a, b, c):(a, b, c) \equiv(1, k, k) \bmod 2, a+b+c=d \\
& a, b, c>0 \text { and } \operatorname{gcd}(a, b, c)=1\}
\end{aligned}
$$

By Theorem A.1, a prototype in R_{D}^{0} contains three odd integers, while a prototype in R_{D}^{1} contains just one. Thus $\left|A_{0}\right|=\left|R_{D}^{1}\right|$ and $\left|A_{1}\right|=3\left|R_{D}^{0}\right|$. Now let

$$
A_{2}=\{(a, 0, d-a): 0<a<d, a \text { is odd and } \operatorname{gcd}(a, d)=1\}
$$

Clearly $\left|A_{2}\right|=\phi(d) / 2$. Let F be the unique permutation of $A_{0} \cup A_{1} \cup A_{2}$ satisfying

$$
F(a, b, c)=\left(a, b^{\prime}, c^{\prime}\right) \text { with } b^{\prime} \equiv b+\operatorname{gcd}(a, d) \bmod (d-a)
$$

Since a and d are odd, so is $\operatorname{gcd}(a, d)$; therefore b^{\prime} and b have opposite parity. This implies $F\left(A_{1}\right)=A_{0} \cup A_{2}$, and therefore

$$
\left|A_{1}\right|=3\left|R_{D}^{0}\right|=\left|A_{0}\right|+\left|A_{2}\right|=\left|R_{D}^{1}\right|+\phi(d) / 2
$$

Examples. For $D=d^{2}$ with $d=5$, we have

$$
\begin{aligned}
R_{D}^{0} & =\{\langle 1,1,3\rangle\}, \quad R_{D}^{1}=\{\langle 1,2,2\rangle\} \\
P_{D}^{0} & =\{(0,3,2,-1),(0,6,1,1),(0,2,2,-3),(0,4,1,-3)\} \text { and } \\
P_{D}^{1} & =\{(0,6,1,-1),(1,2,2,-3)\}
\end{aligned}
$$

Thus W_{D}^{0} has $\left|R_{D}^{0}\right|+\left|P_{D}^{0}\right|=5$ cusps, while W_{D}^{1} has 3 . The numbers of cusps for other small values of d appear in Table 10.

d	3	5	7	9	11	13	15	17
$\left\|C\left(W_{d^{2}}^{0}\right)\right\|$	$1+1$	$1+4$	$2+8$	$3+13$	$5+21$	$7+30$	$8+34$	$12+48$
$\left\|C\left(W_{d^{2}}^{1}\right)\right\|$	$0+0$	$1+2$	$3+5$	$6+8$	$10+16$	$15+24$	$20+22$	$28+40$

Table 10. The number of (one-cylinder) + (two-cylinder) cusps of the components of the Weierstrass curve.

References

[At] M. F. Atiyah. Riemann surfaces and spin structures. Ann. scient. Éc. Norm. Sup. 4(1971), 47-62.
[BL] C. Birkenhake and H. Lange. Complex Abelian Varieties. SpringerVerlag, 1992.
[Ca] K. Calta. Veech surfaces and complete periodicity in genus 2. J. Amer. Math. Soc. 17(2004), 871-908.
[Er] P. Erdös. On the integers relatively prime to n and on a number-theoretic function considered by Jacobsthal. Math. Scand. 10(1962), 163-170.
[EMS] A. Eskin, H. Masur, and M. Schmoll. Billiards in rectangles with barriers. Duke Math. J. 118(2003), 427-463.
[EO] A. Eskin and A. Okounkov. Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials. Invent. math. 145(2001), 59-103.
[vG] G. van der Geer. Hilbert Modular Surfaces. Springer-Verlag, 1987.
[GK] B. H. Gross and K. Keating. On the intersection of modular correspondences. Invent. math. 112(1993), 225-245.
[GJ] E. Gutkin and C. Judge. Affine mappings of translation surfaces: geometry and arithmetic. Duke Math. J. 103(2000), 191-213.
[HW] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 1979.
[HZ] F. Hirzebruch and D. Zagier. Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. Invent. math. 36(1976), 57-113.
[HL] P. Hubert and S. Lelièvre. Square-tiled surfaces in $\mathcal{H}(2)$. Preprint, 2004.
[Ja] E. Jacobsthal. Über Sequenzen ganzer Zahlen, von denen keine zu n teilerfremd ist. I, II, III. Norke Vid. Selsk. Forh. Trondheim 33(1961), 117-124, 125-131, 132-139.
[Jo] D. Johnson. Spin structures and quadratic forms on surfaces. J. London Math. Soc. 22(1980), 365-373.
[Kan] H.-J. Kanold. Über eine zahlentheoretische Funktion von Jacobsthal. Math. Ann. 170(1967), 314-326.
[KS] R. Kenyon and J. Smillie. Billiards on rational-angled triangles. Comment. Math. Helv. 75(2000), 65-108.
[Kn] A. W. Knapp. Elliptic Curves. Princeton University Press, 1992.
[KZ] M. Kontsevich and A. Zorich. Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. math. 153(2003), 631-678.
[Lang] S. Lang. Elliptic Functions. Springer-Verlag, 1987.
[La] E. Lanneau. Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities. Comment. Math. Helv. 79 (2004), 471-501.
[Mc1] C. McMullen. Billiards and Teichmüller curves on Hilbert modular surfaces. J. Amer. Math. Soc. 16(2003), 857-885.
[Mc2] C. McMullen. Teichmüller geodesics of infinite complexity. Acta Math. 191(2003), 191-223.
[Mc3] C. McMullen. Teichmüller curves in genus two: Torsion divisors and ratios of sines. Invent. math. $\mathbf{1 6 5}(2006), 651-672$.
[Mc4] C. McMullen. Dynamics of $\mathrm{SL}_{2}(\mathbf{R})$ over moduli space in genus two. Annals of Math. 165(2007), 397-456.
[Pu] J.-C. Puchta. On triangular billiards. Comment. Math. Helv. 76(2001), 501-505.
[Ru] B. Runge. Endomorphism rings of abelian surfaces and projective models of their moduli spaces. Tôhoku Math. J. 51(1999), 283-303.
[Ser] J. P. Serre. A Course in Arithmetic. Springer-Verlag, 1973.
[St] H. Stevens. On Jacobsthal's $g(n)$-function. Math. Ann. 226(1977), 9597.
[V1] W. Veech. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Invent. math. $\mathbf{9 7}(1989), 553-583$.
[V2] W. Veech. The billiard in a regular polygon. Geom. Funct. Anal. 2(1992), 341-379.
[Vo] Ya. B. Vorobets. Plane structures and billiards in rational polygons: the Veech alternative. Russian Math. Surveys 51(1996), 779-817.
[Wa] C. C. Ward. Calculation of Fuchsian groups associated to billiards in a rational triangle. Ergod. Th. E夭 Dynam. Sys. 18(1998), 1019-1042.

Mathematics Department
Harvard University
1 Oxford St
Cambridge, MA 02138-2901

[^0]: *Research partially supported by the NSF.

