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1 Introduction

Let Mg denote the moduli space of Riemann surfaces of genus g, and ΩMg →
Mg the bundle of Abelian differentials. A point in ΩMg is specified by a pair
(X,ω), where X ∈ Mg and where ω ∈ Ω(X) is a nonzero, holomorphic 1-form
on X .

The bundle ΩMg admits a natural action of SL2(R), and the projection of
any orbit gives a holomorphic Teichmüller disk f : H → Mg. If the stabilizer
SL(X,ω) of a form of genus g is a lattice in SL2(R), then the disk generated by
(X,ω) descends to a Teichmüller curve

f : V = H/ SL(X,ω) → Mg,

whose image is isometrically embedded for the Teichmüller metric.
In this paper we discuss the infinite family of Teichmüller curves generated

by forms of genus two with double zeros. We show each such curve is uniquely
determined by two invariants: its discriminant D and, when D ≡ 1 mod8, its
spin invariant ǫ ∈ Z/2. The proof is based on elementary moves that relate the
cusps of V , and combinatorial number theory.

∗Research partially supported by the NSF.
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Conjecturally, this family accounts for all but one of the primitive Te-
ichmüller curves in genus two.

Hilbert modular surfaces. In genus two, any Teichmüller curve as above
lies on a unique Hilbert modular surface HD, where D > 0 is a real quadratic
discriminant [Mc1]. More precisely, we have a commutative diagram

V
f−−−−→ M2y

y

HD −−−−→ A2,

where HD = (H × H)/ SL2(OD) parameterizes the locus of Abelian surfaces
A ∈ A2 with real multiplication by the quadratic order OD

∼= Z[x]/(x2 +bx+c),
D = b2 − 4c. We refer to D as the discriminant of the Teichmüller curve
f : V → M2.

The Weierstrass curve WD is the locus of those Riemann surfaces X ∈ M2

such that

(i) Jac(X) admits real multiplication by OD, and

(ii) X carries an eigenform ω with a double zero at one of the six Weierstrass
points of X .

(Here ω ∈ Ω(X) is an eigenform if OD ·ω ⊂ C · ω.)
Every irreducible component of WD is a Teichmüller curve of discriminant

D. When D ≡ 1 mod8, one can also define a spin invariant ǫ(X,ω) ∈ Z/2,
which is constant along the components of WD. Our main result shows that
eigenforms with double zeros have no other discrete invariants.

Theorem 1.1 For any integer D ≥ 5 with D ≡ 0 or 1 mod4, either:

• The Weierstrass curve WD is irreducible, or

• We have D ≡ 1 mod 8 and D 6= 9, in which case WD = W 0
D ⊔W 1

D has
exactly two components, distinguished by their spin invariants.

(Note: WD = ∅ for D ≤ 4.)

Corollary 1.2 Every Teichmüller curve generated by a form (X,ω) ∈ ΩM2(2)
is determined up to isomorphism by its discriminant D and, if D ≡ 1 mod8, by
its spin invariant ǫ(X,ω) ∈ Z/2.

Here ΩM2(2) denotes the space of forms of genus two with double zeros.

Billiards. To relate the discussion to billiards, let P ⊂ C be a polygon with
angles in πQ. Via an unfolding construction, (P, dz) determines a holomorphic
form (X,ω) ∈ ΩMg, such that billiard trajectories in P go over to geodesics on
the singular flat surface (X, |ω|). If (X,ω) generates a Teichmüller curve, we
say P is a lattice polygon.

2



1

b

λ

λ

Figure 1. The billiard table L(b, e), with λ = (e+
√
e2 + 4b)/2.

Veech showed that the billiard flow in a lattice polygon has optimal dynam-
ical properties: for example, every trajectory is either periodic or uniformly
distributed [V1].

Now let L(b, e) be the polygon obtained by stacking a λ × λ square atop a
1× b rectangle, where λ = (e+

√
e2 + 4b)/2 and b, e ∈ Z (Figure 1). Let us say

L(b, e) is admissible if e = −1, 0 or 1, e+1 < b, and if e = 1 then b is even. (The
condition e+ 1 < b just insures λ < b.) It can be checked that L(b, e) generates
a Teichmüller curve with discriminant D = e2 + 4b and, when D ≡ 1 mod8,
with spin invariant ǫ = ±1 depending on the sign of e (cf. Theorem 5.3 below).
Since every possible (D, ǫ) occurs exactly once, we have:

Corollary 1.3 Every Teichmüller curve generated by a form of genus two with
a double zero is also generated by a unique admissible billiard table L(b, e).

For example, by applying the algorithm from [Mc1] to the tables L(4,±1),
one can obtain explicit presentations for the two components of W17 as quotients
of the upper halfplane (Figure 2).

Figure 2. Uniformizations of the curves W 0
17 and W 1

17.

Primitivity. A Teichmüller curve in Mg is primitive if it does not arise from a
curve in Mh, h < g, via a branched covering construction. We suspect that the
billiard tables above account for all but one of the primitive Teichmüller curves
in genus two.

Conjecture 1.4 The regular decagon gives the only primitive Teichmüller curve
V → M2 generated by a form with simple zeros.
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Added in proof: This Conjecture is established in [Mc3].

Topology of branched covers. The case D = d2 of Theorem 1.1 has the
following purely topological consequence.

Let Σg denote a closed oriented surface of genus g. Let us say two map-
pings f, g : Σ2 → Σ1 have the same type if there exist orientation-preserving
homeomorphisms h1, h2 such that the diagram

Σ2
h2−−−−→ Σ2

f

y g

y

Σ1
h1−−−−→ Σ1

commutes.
Every eigenform (X,ω) for Od2 is the pullback, by a degree d map to an

elliptic curve, of a form of genus one. Thus the components of Wd2 are labeled
by types of branched covers. More precisely, Theorem 1.1 implies:

Corollary 1.5 For d = 3, or any even d ≥ 4, there is only one type of degree
d covering

f : Σ2 → Σ1

branched over just one point and surjective on π1. For odd d ≥ 5, there are
exactly two types of such branched coverings.

(For d = 1 or 2 there are no such branched coverings at all.)

D 5 8 9 12 13 16 17 20 21 24 25 28

|C(WD)| 1 2 2+0 3 3 3 3+3 5 4 6 5+3 7

D 29 32 33 36 37 40 41 44 45 48 49 52

|C(WD)| 5 7 6+6 8 9 12 7+7 9 8 11 10+8 15

Table 3. The number of cusps of the Weierstrass curve, broken down as
|C(W 0

D)| + |C(W 1
D)| when D ≡ 1 mod8.

Cusps. In the course of studying the components of WD, we develop a com-
binatorial enumeration of its two-cylinder cusps (§4). To complete the picture,
in the Appendix we discuss the remaining cusps of WD and how they are parti-
tioned by spin. For example, we show that W 0

D and W 1
D have the same number

of cusps when D ≡ 1 mod8 is not a square. Table 3 lists the number of cusps
of each component of WD for D ≤ 52.

Square-tiled surfaces. Hubert and Lelièvre showed that Wd2 has at least
two components when d > 3 is odd, and exactly two when d = p is prime [HL].
They also showed the genus of Wp2 tends to infinity.
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The components of Wd2 are distinguished in [HL] by counting the number
of integral Weierstrass points on square-tiled surfaces. In §6 we show this count
can be viewed as a special case of the spin invariant. In the Appendix we also
prove that every square-tiled surface of genus two has a one-cylinder direction,
generalizing [HL, Theorem 5.1].

By counting square-tiled surfaces, Eskin, Masur and Schmoll show that the
orbifold Euler characteristic of the Weierstrass curve satisfies

χ(Wd2) = − 1

16
d2(d− 2)

∑

r|d

µ(r)

r2
,

where µ is the Möbius function [EMS, §4.2]. It would be interesting to obtain
a similar formula for χ(WD), valid for all D.

Spin, elementary moves, and components of WD. We conclude with a
sketch of the proof of Theorem 1.1.

1. Spin structures. The 22g spin structures on a surface X of genus g corre-
spond topologically to quadratic forms

q : H1(X,Z/2) → Z/2.

The parity of a spin structure agrees with Arf invariant of q, given by

Arf(q) =
∑

q(ai)q(bi) ∈ Z/2

with respect to a symplectic basis for H1(X,Z/2).

Any surface of genus two admits six odd spin structures, which correspond
naturally to its six Weierstrass points.

2. The spin invariant. Let ΩWD → WD denote the bundle of eigenforms
(X,ω) with double zeros. Then the Weierstrass point at which ω van-
ishes determines a spin structure on X , and hence a quadratic form
q : H1(X,Z/2) → Z/2.

Now suppose D ≡ 1 mod 8. Write D = Ef2 where E is square-free and
f > 0. To extract the spin invariant of (X,ω), choose a generator T for
OD, normalized so that

T ∗(ω) =
f +

√
D

2
ω.

Then T gives an endomorphism of H1(X,Z/2), whose image is a rank two
symplectic subspace, say with basis 〈a, b〉.
The spin invariant of (X,ω) is then defined by

ǫ(X,ω) = Arf(q| Im(T )) = q(a)q(b) ∈ Z/2.

The eigenforms with even and odd spin invariant form C∗-bundles over
subsurfaces W 0

D and W 1
D of WD. For D ≥ 17 both spins occur, and thus

WD has at least two components (§5).
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3. A model for WD. The spin invariant provides a lower bound on the num-
ber of components of WD. To obtain an upper bound, we analyze a
combinatorial model for WD given by

SD = {e ≡ Dmod2 : e2 < D and (e+ 2)2 < D},

equipped with the equivalence relation generated by

e ∼ e′ = −e− 2q whenenever e′ ∈ SD and gcd(b, q) = 1. (1.1)

Here q > 0 and b = (D−e2)/4 is determined by the condition e2+4b = D.
We refer to the equivalence classes of SD as its components.

4. Elementary moves. In §8 we show the number of components of SD is an
upper bound for the number of components of WD.

To prove this, we show each integer e ∈ SD labels a cusp of WD, and
the cusps so labeled meet every component WD. Using an elementary
butterfly move on connected sum decompositions of eigenforms (§7), we
then show that cusps labeled by equivalent elements of SD belong to the
same component of WD.

5. Relative primes. Relatively prime numbers play a central role in the struc-
ture of SD, due to the condition gcd(b, q) = 1 in (1.1) above.

To show SD is highly connected, in §9 we develop bounds for the smallest
x > 1 relatively prime to a given integer n, as well as for the smallest
relative prime in an arithmetic progression. These bounds are succinctly
expressed in terms of Jacobsthal’s function J(n), defined as the largest
gap between consecutive integers relatively prime to n.

6. Combinatorial connectivity. In §10 we show that, apart from five excep-
tional cases, the space SD has exactly two components when D ≡ 1 mod8,
and otherwise just one.

This agrees with the lower bound given by the spin invariant, and es-
tablishes our main result except for D = 9, 49, 73, 121 and 169. A short
argument treats these cases as well (§11).

7. Stabilization. Due to irregularities in the distribution of prime numbers,
our number-theoretic analysis of the connectivity of SD applies only in the
‘stable regime’, when D is sufficiently large (e.g. D ≥ 2000). The remain-
ing values of D are treated by inspection, revealing the five exceptional
cases above.

Notes and references. This paper is a sequel to [Mc1], as well as a comple-
ment to the classification of orbit closures and invariant measures for the action
of SL2(R) on ΩM2 given in [Mc4].

The curves W5 and W8 come from billiards in a regular pentagon and a
regular octagon, and were studied in [V1]. Kontsevich and Zorich used spin
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structures to determine the components of the strata ΩMg(p1, . . . , pk) of holo-
morphic 1-forms with zeros of prescribed multiplicity [KZ]. Corresponding re-
sults for quadratic differentials are announced in [La]. See [EMS] and [HL] for
additional results on the curves Wd2 , and [V1], [V2], [Vo], [Wa], [KS], [Pu],
[GJ], [EO], and [Ca] for more on Teichmüller curves. I would like to thank D.
Thurston for useful conversations.

2 Real multiplication

In this section we describe when a product of two elliptic curves, E1×E2, admits
real multiplication by OD. In §3 we will see that such products, interpreted as
Jacobians of stable curves, arise from cusps of WD.

The space of lattices. Let M1
∼= H/ SL2(Z) denote the moduli space of

elliptic curves. Let ΩM1 → M1 denote the bundle of pairs (E,ω), where
E ∈ M1 and ω ∈ Ω(E) is a nonzero holomorphic 1-form on E.

We can identify ΩM1 with the space of lattices Λ ⊂ C via the correspondence

Λ ↔ (C/Λ, dz) = (E,ω).

We can also view ΩM1 as the homogeneous space GL+
2 (R)/ SL2(Z); then C∗ ∼=

R+ · SO2(R) acts on the left with quotient M1.

Isogeny. Given E1, E2 ∈ M1, an isogeny p : E1 → E2 is a surjective holomor-
phic group homomorphism. Its degree is given by deg(p) = |Ker(p)|. The dual
isogeny p : E2 → E1 is defined by

p(z2) =
∑

p(z1)=z2

z1,

and satisfies p(p(z1)) = deg(p)z1. An isogeny is primitive if Ker(p) ∼= Z/ deg(p).
Any isogeny can be factored as p(z) = p0(ℓz) where p0 is primitive.

Typically q(z) = −p(z) is the only other isogeny between E1 and E2 with
deg(q) = deg(p); more are possible if p factors through an elliptic curve with
extra automorphisms.

The Hecke correspondence of level m is the curve Tm ⊂ M1 ×M1 defined
by:

Tm = {(E1, E2) : there exists an isogeny p : E1 → E2 of degree m}.

If we impose the additional requirement that p is primitive, we obtain an irre-
ducible curve Fm ⊂ M1 ×M1, and we have

Tm =
⋃

ℓ2|m

Fm/ℓ2 .

A point (E1, E2) ∈ Fm is determined by the pair (E1,Ker(p)), and thus the
normalization of Fm is given by

F̃m
∼= H/Γ0(m) = H/{g ∈ SL2(Z) : g ≡ ( ∗ ∗

0 ∗ ) modm}.
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The points of F̃m correspond to pairs (E1, E2) with a choice of a primitive degree
m isogeny p : E1 → E2, up to sign.

Real multiplication. A real quadratic discriminant is an integer D > 0
satisfying D ≡ 0 or 1 mod4. The corresponding real quadratic order is the ring
OD

∼= Z[x]/(x2 + bx+ c), b2 − 4c = D. We have

OD ⊗Q ∼=
{

Q × Q if D = d2 is a square,

Q(
√
D) otherwise.

Let A = C2/L be a principally polarized Abelian surface. The polarization is
given by a unimodular symplectic form x·y onH1(A,Z) ∼= L. Let End(A) denote
the endomorphism ring of A as a complex Lie group. A subring R ⊂ End(A)
is proper if (nT ∈ R, n 6= 0) =⇒ T ∈ R, and an element T ∈ End(A) is
self-adjoint if

(Tx) · y = x · (Ty)
for all x, y ∈ H1(A,Z).

We say A admits real multiplication by OD if there is a self-adjoint endo-
morphism T : A → A generating a proper subring Z[T ] ∼= OD in End(A). In
this case the space of 1-forms splits into eigenspaces

Ω(A) = S1 ⊕ S2

for the action of OD; the nonzero elements of S1 ∪ S2 are eigenforms.
The moduli space of Abelian surfaces equipped with real multiplication by

OD can be identified with the Hilbert modular surfaceHD = (H×H)/ SL2(OD).

Products of elliptic curves. Now consider the case of an Abelian surface
which is a product of elliptic curves, A = E1 × E2. For any such A we have a
natural isomorphism

Ω(A) = Ω(E1) ⊕ Ω(E2),

and a product polarization of coming from the isomorphism

H1(A,Z) ∼= H1(E1,Z) ⊕H1(E2,Z).

The moduli space of holomorphic 1-forms

(A,ω) = (E1 × E2, ω1 + ω2)

on products of elliptic curves (with both ωi 6= 0) is naturally identified with
ΩM1 ×ΩM1. The group GL+

2 (R) acts diagonally on the product. Within this
moduli space we wish to describe the locus

ΩQD = {(E1 × E2, ω) : ω is an eigenform for real multiplication by OD}.

Prototypes. Let us say a triple of integers (e, ℓ,m) is a prototype for real
multiplication, with discriminant D, if

D = e2 + 4ℓ2m, ℓ,m > 0, and gcd(e, ℓ) = 1.
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We begin by associating a prototype (e, ℓ,m) to each pair

(A,ω) = (E1 × E2, ω1 + ω2) ∈ ΩQD.

Let T ∈ End(A) generate the unique action of OD with ω as an eigenform.
Then in terms of the product structure A = E1 × E2, we can write

T (z1, z2) =

(
e · I p

p f · I

)(
z1

z2

)
. (2.1)

The fact that T is self-adjoint with respect to the polarization insures the on-
diagonal blocks are multiples of the identity, and the off-diagonals are dual
isogenies (cf. [Mc4, Theorem 8.3]).

There is a unique choice of generator T ∈ OD such that f = 0 and such
that T ∗ω = λω with λ > 0. By fixing this choice, p and e become invariants
of (E1 × E2, ω). Moreover p is a multiple of a primitive isogeny of degree m,
giving a natural factorization

deg(p) = ℓ2m, ℓ,m > 0.

Since Z[T ] is a proper subring of End(A), we have gcd(e, ℓ) = 1. The fact that
pp = deg(p) = ℓ2m implies

T 2 = eT + ℓ2m,

and thereforeD = e2+4ℓ2m. Thus (e, ℓ,m) is a prototype for real multiplication
by OD.

Theorem 2.1 The space of all eigenforms (E1 × E2, ω) for real multiplication
by OD decomposes into a finite union

ΩQD =
⋃

ΩQD(e, ℓ,m)

of closed GL+
2 (R) orbits, one for each prototype (e, ℓ,m). Each orbit projects to

a Hecke curve Fm ⊂ M1 ×M1, with generic fiber C∗.

Proof. The possible choices for (E1, E2) and p : E1 → E2 in (2.1) are parame-

terized by F̃m. Thus the space of eigenforms with a given prototype (e, ℓ,m) is
a connected set of the form ΩQD(e, ℓ,m) ∼= GL+

2 (R)/Γ0(m).

Corollary 2.2 The product E1 × E2 admits real multiplication by OD iff we
have (E1, E2) ∈ Fm and there exists an integral solution to the equation e2 +
4mℓ2 = D with ℓ > 0 and gcd(e, ℓ) = 1.

Examples. We conclude with an example of an eigenform for each prototype
(e, ℓ,m).
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Let λ > 0 be the unique positive root of the equation λ2 = eλ+ ℓ2m. Define
a pair of lattices in C ∼= R2 by

Λ1 = Z(λ, 0) ⊕ Z(0, λ), Λ2 = Z(ℓm, 0) ⊕ Z(0, ℓ).

Let (Ei, ωi) = (C/Λi, dz) be the corresponding forms of genus one, and let

(A,ω) = (E1 × E2, ω1 + ω2).

Then by construction, we have a pair of dual isogenies between E1 and E2 of
the form

p(z2) = λz2, p(z1) = (ℓ2m/λ)z1.

These isogenies have degree ℓ2m, and they are built from primitive isogenies
of degree m. Defining T by (2.1) (with f = 0), we find T ∗(ω) = λω; there-
fore (A,ω) is an eigenform with invariants (e, ℓ,m). We refer to (A,ω) as the
prototypical example of type (e, ℓ,m).

Corollary 2.3 Every eigenform (E1 ×E2, ω) is equivalent, under the action of
GL+

2 (R), to a unique prototypical example.

Notes. For more details on elliptic curves and isogeny, see e.g. [Ser, Ch.
VII], [Kn], [Lang] and [GK]. Abelian varieties with real multiplication and their
moduli are discussed in [vG], [Ru], [BL] and [Mc4, §4].

One can regard Corollary 2.2 as a description of the intersection HD ∩H1 of
two Humbert surfaces in A2: they meet along the divisor

∑
amFm, where am

is the number of integral points (e, ℓ) on the ellipse e2 + 4mℓ2 = D satisfying
gcd(e, ℓ) = 1 and ℓ > 0. This locus consists of Abelian surfaces admitting an
action (by endomorphisms) of a quaternion ring generated by O1 and OD.

It would be interesting to investigate more general intersections HD ∩HE in
the spirit of [HZ] and [GK].

3 Prototypical splittings

Every eigenform (X,ω) ∈ ΩWD splits, in infinitely many ways, as a connected
sum

(X,ω) = (E1, ω1)#
I
(E2, ω2)

of forms of genus one. In this section we determine the components of the
covering space

ΩW s
D → ΩWD

whose fibers encode all possible splittings of a given form.

Bundles over moduli space. We begin by recalling material from [Mc4].
Let ΩMg → Mg denote the bundle of holomorphic 1-forms (X,ω), ω 6= 0,

over the moduli space of Riemann surfaces of genus g. The periods of ω will be
denoted by

Per(ω) =

{∫

C

ω : C ∈ H1(X,Z)

}
⊂ C ∼= R2.
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There is a natural action of GL+
2 (R) on ΩMg, and we will denote the stabilizer

of a given form by SL(X,ω).
Within the space of forms of genus two, we let

• ΩM2(2) denote the forms with double zeros;

• ΩED, the eigenforms for real multiplication by OD; and

• ΩWD = ΩED ∩ ΩM2(2), the eigenforms with double zeros.

Each space above is also invariant under the natural action of GL+
2 (R).

The locus ΩWD is a C∗-bundle over the finite-volume (but possibly discon-
nected) hyperbolic surface

WD = C∗\ΩWD.

We refer to WD as the Weierstrass curve of discriminant D, because ΩED

parameterizes the eigenforms (X,ω) that vanish at a Weierstrass point of X .
For any (X,ω) ∈ ΩWD, the group

SL(X,ω) ⊂ SL2(R)

is a lattice with trace field Q(
√
D), and the corresponding component V of

WD is isomorphic to H/ SL(X,ω). The natural projection V → M2 gives
a Teichmüller curve, i.e. an isometrically immersed algebraic curve in moduli
space [Mc4, Cor. 5.11].

Connected sums. Let I = [0, v] = [0, 1] · v be the segment from 0 to v 6= 0
in C, and let (Ei, ωi) = (C/Λi, dz) ∈ ΩM1 be a pair of forms of genus one.
Suppose I maps to an embedded arc under each projection C → Ei. Then
by slitting along these arcs and gluing corresponding edges, we can form the
connected sum

(X,ω) = (E1, ω1)#
I
(E2, ω2) ∈ ΩM2.

The connected sum is a form of genus two, with a pair of simple zeros coming
from the endpoints of I.

Figure 4. A connected sum resulting in a double zero.

Figure eights. To produce forms with double zeros, we extend the connected
sum operation in a natural way to include the case where

[0, v] ∩ Λ1 = {0, v} and [0, v] ∩ Λ2 = {0}
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or vice-versa. In this case I maps to a loop in E1 and remains embedded in
E2. The connected sum then results in a double zero for ω, lying on a figure
eight L ⊂ X coming from the slits on E1 and E2 (see Figure 4). That is, we
can describe X as the disjoint union

X = L ∪ (E2 − I) ∪ (E1 − I).

Theorem 3.1 Let (X,ω) = (E1, ω1)#
I
(E2, ω2). Then:

(i) ω is an eigenform for real multiplication by OD on Jac(X) ⇐⇒
(ii) ω1 + ω2 is an eigenform for real multiplication by OD on E1 × E2.

Proof. The property of being an eigenform depends only on the absolute
periods of ω [Mc4, Cor 5.6], so it is preserved as I varies. In the limit as I → 0
the connected sum yields the form ω1 + ω2 on the stable curve E1 ∨ E2 with
Jacobian E1 × E2.

Splittings. Every form of genus two can be presented as a connected sum

(X,ω) = (E1, ω1)#
I
(E2, ω2) (3.1)

in infinitely many ways [Mc4, Theorem 1.7], each of which we regard as a split-
ting of (X,ω). To give a criterion for splitting, let η : X → X denote the
hyperelliptic involution and Z(ω) ⊂ X the zeros of ω. Then by [Mc4, Thm. 7.3]
we have:

Theorem 3.2 Let L0 ⊃ Z(ω) be a saddle connection such that L0 6= L1 =
η(L0). Then (X,ω) splits along L = L0 ∪ L1 as a connected sum of tori.

(Here a saddle connection is a geodesic segment for the metric |ω|, joining a pair
of zeros but with no zeros in its interior.)

The space of splittings. For (X,ω) ∈ ΩWD, we adopt the convention that I
maps to a loop in E1, while it embeds in E2; then the splitting (3.1) is uniquely
determined by I.

Let ΩW s
D denote the splitting space, consisting of triples (X,ω, I) such that

(X,ω) ∈ ΩWD splits along I as in (3.1). There is a natural action of GL+
2 (R)

on ΩW s
D, and an equivariant projection

ΩW s
D → ΩM1 × ΩM1, (3.2)

which records the summands (Ei, ωi) in (3.1). By Theorem 3.1, this projection
sends ΩW s

D by a covering map to the locus of eigenforms ΩQD.

Prototypes. Let us say a quadruple of integers (a, b, c, e) is a splitting proto-
type, of discriminant D, if it satisfies the conditions

D = e2 + 4bc, 0 ≤ a < gcd(b, c), c+ e < b,

0 < b, 0 < c, and gcd(a, b, c, e) = 1.

12



λ

(a,c)

(b,0)

λ

Figure 5. Prototypical splitting of type (a, b, c, e). Parallel edges are identified as
shown to obtain a surface X = E1#

I
E2 of genus two.

We denote the set of all such prototypes by PD. For instance, we have:

P17 =

{
(0, 2, 2,−1), (0, 4, 1,−1), (0, 1, 2,−3),

(1, 2, 2,−1), (0, 4, 1, 1), (0, 2, 1,−3)

}
.

Prototypical splittings. The prototypical splitting of type (a, b, c, e) is given
by (3.1) with I = [0, λ] and (Ei, ωi) = (C/Λi, dz), where

Λ1 = Z(λ, 0) ⊕ Z(0, λ), Λ2 = Z(b, 0) ⊕ Z(a, c),

and λ = (e +
√
D)/2 is the positive root of the equation λ2 = eλ + bc. Note

that I projects to a loop in E1 since λ is a period of ω1.
The resulting connected sum can be expressed in geometric terms as

(X,ω) = (P, dz)/ ∼,

where P ⊂ C is a polygon built from the period parallelograms for Λ1 and Λ2

as shown in Figure 5. The equivalence relation identifies parallel edges of P .
The vertices of P are all equivalent, and correspond to the unique zero of ω on
X .

The condition c+e < b in the definition of a prototype is equivalent to λ < b,
which insures that I projects an embedded arc in E2.

Orbits. The stabilizer in GL+
2 (R) of the splitting above is the parabolic sub-

group
N(nZ) = {( 1 t

0 1 ) : t ∈ nZ}, n = b/ gcd(b, c).

Indeed, the stabilizer of I = [0, λ] is N(R); the stabilizer of (I,Λ1) is N(Z); the
stabilizer of (I,Λ2) is N((b/c)Z); and the intersection of all three is N(nZ).

Thus the orbit of the prototypical splitting of type (a, b, c, e) is given by

ΩW s
D(a, b, c, e) ∼= GL+

2 (R)/N(nZ) ⊂ ΩW s
D,

a C∗-bundle over the punctured disk W s
D(a, b, c, e) ∼= H/N(nZ) ∼= ∆∗.

13



Theorem 3.3 The splitting space ΩW s
D is a finite union of closed, disjoint

GL+
2 (R) orbits, one containing each prototypical splitting.

Proof. Let (X,ω, I) be an element of the splitting space, corresponding to
connected summands (Ei, ωi) = (C/Λi, ωi), i = 1, 2. Then

(A,ω) = (E1 × E2, ω1 + ω2)

is an eigenform for real multiplication by OD, say with prototype (e, ℓ,m).
Let λ = (e +

√
D)/2). By Theorem 2.1, we can normalize by the action of

GL+
2 (R) so that

I = [0, λ], Λ1 = λZ2, Λ2 ⊂ Z2 and [Z2 : Λ2] = d

where d = ℓ2m. This normalization is unique up to the action of N(Z). In these
coordinates we can write

Λ2 = Z(b, 0) ⊕ Z(a, c)

with b, c > 0. The basis element (b, 0) is canonical: it is the positive generator of
Λ2 ∩ I ·R. The second basis element, however, is determined only up to adding
a multiple of the first: (a + nb, c) would work as well. Moreover (a, c) is not
fixed by N(Z); its orbit is (a + nc, c), n ∈ Z. Thus there is a normalized basis
of Λ2 such that 0 ≤ a < gcd(b, c).

By construction we have D = e2 +4d = e2 +4bc and 0 < b, c. By properness
of the action of OD, we have gcd(a, b, c, e) = 1. Since I embeds in E2, we have
λ < b and therefore c + e < b. Thus the result of these normalizations is the
unique prototypical splitting in the orbit of (X,ω, I).

Corollary 3.4 The Weierstrass curve WD is nonempty iff D ≥ 5.

Proof. For any discriminant D ≥ 5 there is always at least one splitting
prototype, namely (a, b, c, e) = (0, (D− e)/4, 1, e), where e = 0 or 1 is chosen so
e ≡ Dmod 4. For D = 1, 4 there are none.

Relation of prototypes. It is easy to see that the projection (3.2) sends
ΩW s

D(a, b, c, e) to ΩQD(e, ℓ,m) with ℓ = gcd(a, b, c) and ℓ2m = bc. Due to the
ordering of E1 and E2, some components of ΩQD may fail to be in the image
of ΩW s

D; for example, ΩQ5(1, 1, 1) is omitted.

4 Cusps

In this section we will establish:

Theorem 4.1 There are natural bijections between:
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1. The set of two-cylinder cusps x ∈ C(WD);

2. The set of components of the splitting space W s
D; and

3. The set PD of prototypes (a, b, c, e) of discriminant D.

Cusps. Let V = H/Γ be a hyperbolic surface. A cusp of Γ is a point x ∈ ∂H

fixed by a parabolic element γ ∈ Γ. The orbit of x under Γ is a cusp of V .
The cusps of V correspond bijectively to the finite-volume ends of V , and

will be denoted C(V ). If V =
⋃
Vi has more than one component, we define

C(V ) =
⋃
C(Vi). When V has finite volume, its cusps can be adjoined to obtain

a closed surface V = V ∪ C(V ).

Each cusp x determines a connected covering space Ṽ (x) → V , isomorphic

to a punctured disk, with π1(Ṽ (x)) ∼= Z generated by a small loop around x. A

point p̃ ∈ Ṽ (x) corresponds to a point p ∈ V with a chosen homotopy class of
path from p to x.

Cylinders. Let (X,ω) ∈ ΩMg be a holomorphic 1-form of genus g ≥ 2. Then
for each s ∈ P1(R), we have a foliation Fs of (X, |ω|) by geodesics of slope s.
The foliation Fs is tangent to Ker(ρ), where ρ is the closed 1-form Re(x+ iy)ω,
s = x/y.

The foliation Fs is periodic if every leaf is closed. In this case we define the
spine of Fs to be the finite graph S ⊂ X consisting of leaves through the zeros
of ω. The components of X − S form a finite set of open cylinders C1, . . . , Cn,
swept out by circular leaves of Fs.

A central result from [V1, 2.4,2.11] is:

Theorem 4.2 (Veech dichotomy) Suppose SL(X,ω) is a lattice. Then for
any slope s, either

• the foliation Fs is uniquely ergodic, or

• Fs is periodic with n ≥ 1 cylinders, and 1/s is a parabolic fixed-point of
SL(X,ω).

Thus the cusps of V = H/ SL(X,ω) can be classified according to the number
of cylinders of the corresponding periodic foliation Fs.

Genus two. Recall that SL(X,ω) is a lattice for any form in ΩWD, so the
Veech dichotomy applies.

Theorem 4.3 Let s be a periodic slope for (X,ω) ∈ ΩWD. Then either:

• Fs has one cylinder, and D is a square; or

• Fs has two cylinders, and (X,ω) splits as a connected sum of tori foliated
by leaves of Fs.

Conversely, every splitting of (X,ω) comes from a periodic foliation Fs with two
cylinders.
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Proof. Let s be a periodic slope, let S ⊂ X denote the spine of Fs, and let
X − S = C1 ∪ · · · ∪ Cn be the complementary cylinders.

Let η : X → X denote the hyperelliptic involution. Then η fixes the 6
Weierstrass points of X , one of which is the double zero z0 of ω. We have
η(Ci) = Ci for every i, and thus each cylinder contains 2 Weierstrass points.
On the other hand, S is a bouquet of 3 circles joined at z0, so

⋃
Ci contains at

most 4 Weierstrass points, and thus n = 1 or 2.
If n = 2, then S contains exactly one Weierstrass point p other than z0.

Therefore S = L0 ∪ L1 ∪ K is a union of 3 loops meeting at z0, with p ∈ K,
η(K) = K and η(Li) = L1−i). It follows from Theorem 3.2 that (X,ω) splits
along L0 ∪ L1 as a connected sum of tori.

The case n = 1 cannot arise when
√
D is irrational, by [Mc2, Thm. 9.2].

Finally, let (X,ω) = (E1, ω1)#
I
(E2, ω2) be a splitting where I has slope s.

Since I represents a closed loop on E1, the foliation Fs|E1 is periodic; by isogeny,
Fs|E2 is also periodic, so Fs gives a two-cylinder decomposition of X .

Cusps and prototypes. Since every (X,ω) has at least one splitting, we have:

Corollary 4.4 Every component of WD has a two-cylinder cusp.

Proof of Theorem 4.1. A splitting (X,ω, I) ∈ ΩW s
D, where I has slope s,

picks out a parabolic point 1/s for SL(X,ω) and hence a path from [(X,ω)] ∈
WD to a two-cylinder cusp. Thus the splitting space can be described as:

W s
D =

⋃
W̃D(x),

where the union is over the two-cylinder cusps x ∈ C(WD). On the other hand,
we also have

W s
D =

⋃
W s

D(a, b, c, e),

where the union is over the splitting prototypes of discriminant D. By matching
components, we obtain a canonical labeling of the cusps x by components of
W s

D, which are in turn labeled by prototypes.

Corollary 4.5 When D is not a square, WD has only two-cylinder cusps. In
particular, |C(WD)| = |PD|.

The one-cylinder cusps of Wd2 are studied in the Appendix.

5 Spin

In this section we introduce the spin invariant ǫ : ΩWD → Z/2, and use it to
prove:

Theorem 5.1 The curve WD has at least two components whenever D ≡
1 mod8 and D > 9.
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Spin structures. We begin with a brief discussion of spin structures on sur-
faces; for more details, see [At], [Jo] and [KZ].

Let V be a symplectic vector space of dimension 2g over the field F2
∼= Z/2.

A quadratic form on V is a function q : V → Z/2 satisfying

q(x+ y) = q(x) + q(y) + x · y, (5.1)

where x · y is the symplectic form on V . The difference q1 − q0 of any two
quadratic forms is a linear form; thus the number of quadratic forms on V is
22g. The Arf invariant of q is given by

Arf(q) =

g∑

1

q(ai)q(bi) ∈ Z/2,

where (ai, bi) is a symplectic basis for H1(X,Z); it is independent of the choice
of basis. We say q is even or odd depending on the parity of Arf(q). There are
2g more even forms than odd forms.

Now let X ∈ Mg be a compact Riemann surface. A spin structure L →
X is the choice of a square-root of the canonical line bundle K → X , up to
isomorphism over X .

The spin structures onX correspond naturally to quadratic forms onH1(X,Z/2).
The quadratic form qL associated to L → X can be defined as follows. Let
C : R/Z → X be a smooth embedded loop, representing a class in H1(X,Z/2).
Let ω : C → K be a smooth 1-form such that ω(C′(t)) = 1 for all t. Then
qL(C) = 1 if and only if there is a section η : C → L such that η2 = ω.

A spin structure L is said to be even or odd depending on the value of
Arf(qL). The parity of L can also be described using the holomorphic structure
of X : it is equal to dimH0(X,L)mod2.

Spin from 1-forms. Any holomorphic 1-form ω 6= 0 on X whose zeros have
even order determines a spin structure, by taking L = O(D) where 2D = (ω) is
the divisor of ω.

In this case qL can be computed as follows. Let C : R/Z → X be a smooth
embedded loop avoiding the zeros of ω. The 1-form ω determines a Gauss map
G : S1 → S1 by

G =
ω(C′(t))

|ω(C′(t))| ,

and we define deg(C, ω) = deg(G); then

qL(C) = 1 + deg(C, ω)mod 2. (5.2)

Note that the value of deg(C, ω) changes by an even number if we slide C over
a zero of ω.

When X has genus g = 2, each Weierstrass point p ∈ X determines a
spin structure on X , namely L = O(p). The six Weierstrass points correspond
bijectively to the six odd spin structures on X .
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Eigenforms. Now let (X,ω) be a form in ΩWD, D ≡ 1 mod 8. Since ω has a
double zero, it determines a canonical odd spin structure on X .

This spin structure is one ingredient in the definition of the spin invariant
ǫ(X,ω). The other ingredient comes from the action of real multiplication.

Theorem 5.2 Let (X,ω) ∈ ΩWD be an eigenform for real multiplication by
OD = Z[T ], where D ≡ 1 mod8. Then

V = ImT ⊂ H1(X,Z/2)

is a symplectic subspace isomorphic to (Z/2)2.

Proof. In OD we have T 2 +aT + b = 0 where D = a2 +4b. Since D ≡ 1 mod8,
a is odd and b is even; thus T 2 + T = 0 mod2.

Recall that the action of OD on H1(X,Z) is self-adjoint. Thus the action of
T on H1(X,Z/2) is also self-adjoint. Since T (T + 1) = 0 mod 2, the homology
decomposes as a direct sum of symplectic eigenspaces

H1(X,Z/2) = V0 ⊕ V1,

where Vλ = Ker(T − λI).
Since OD is a proper subring of End(Jac(X)), neither eigenspace can be

trivial. For example, if V1 is trivial, then V0 is the whole space, which implies T
is even and thus (1/2)T ∈ End(Jac(X)), contradicting properness. Thus both
V0 and V = V1 are nontrivial symplectic subspaces of H1(X,Z/2), so both have
rank 2.

The virtual elliptic curve. The subspace V above has a simple geometric
interpretation when D = d2, d odd. In this case (X,ω) is an elliptic differential;
that is, the periods of ω form a lattice Λ ⊂ C, and the associated elliptic curve
E = C/Λ is a factor of Jac(X). By integrating ω along paths based at its unique
zero, we obtain a canonical degree d holomorphic map

p : X → E.

Passing to cohomology, we obtain a map

p∗ : H1(E,Z/2) → H1(X,Z/2),

whose image is Poincaré dual to Im(T ) for a suitable generator T ∈ OD.
When D ≡ 1 mod8 is not a square, we lack the full geometry of E, but

nevertheless the projection X → E persists on the level of mod 2 homology.

The conductor. The conductor f of OD is the index of OD in the maximal
order of K = OD ⊗Q.

When D is odd, we have D = Ef2 with E square-free. A convenient choice
of generator for OD ⊂ R is then given by

Tf = (f +
√
D)/2 = f(1 +

√
E)/2,
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since this is a multiple of a generator for the maximal order OE .

The spin invariant. We can now complete the definition of the spin invariant.
Let (X,ω) be an eigenform in ΩWD with D ≡ 1 mod 8. Let L→ X be the spin
structure determined by ω, with quadratic form

qL : H1(X,Z/2) → Z/2.

Let f be the conductor of OD, and let OD = Z[Tf ] where

T ∗
f (ω) =

f +
√
D

2
ω.

Then the spin invariant is defined by

ǫ(X,ω) = Arf(qL| ImTf).

When D = d2 is an odd square, the conditions above do not quite uniquely
determine Tf ∈ OD, since 2d − Tf satisfies the same conditions. The spin
invariant is still well-defined, however, because Tf = 2d− Tf mod2.

The spin ideal. Since T 2 = T mod 2 for any generator T of OD, we have

1 + Arf(qL| ImT ) = Arf(qL|KerT ) = Arf(qL| Im(T + 1)). (5.3)

In particular, the map σ : OD → Z/2 given by

σ(U) = Arf(qL| ImU)

is a ring homomorphism. A more functorial version of the spin invariant is
provided by the spin ideal

I(X,ω) = Ker(σ) ⊂ OD .

The condition D ≡ 1 mod8 is equivalent to the condition that 2OD factors as
a product of distinct prime ideals P1P2 in OD, and I(X,ω) coincides with one
of these primes.

The invariant ǫ(X,ω) = σ(Tf ) is simply the image in OD /I(X,ω) of a
convenient generator of OD; it also determines the spin ideal.

Even and odd eigenforms. For D ≡ 1 mod 8, we define the spaces of even
and odd eigenforms by

ΩW i
D = {(X,ω) ∈ ΩWD : ǫ(X,ω) = i}, i ∈ Z/2.

These spaces are GL+
2 (R)-invariant C∗-bundles over the even and odd subvari-

eties W 0
D,W

1
D of the Weierstrass curve WD.

Spin and prototypes. We say a cusp x of WD has spin invariant ǫ if x
belongs to W ǫ

D. Similarly, a splitting prototype (a, b, c, e) has spin invariant ǫ if
the connected set ΩW s

D(a, b, c, e) projects into ΩW ǫ
D. The parity of a prototype

is the same as the parity of the cusp it labels.
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Theorem 5.3 The spin invariant of a splitting prototype (a, b, c, e) of discrim-
inant D ≡ 1 mod8 is given by

ǫ =
e− f

2
+ (c+ 1)(a+ b+ ab)mod 2,

where f is the conductor of OD.

Proof. From the definitions the spin invariant of (a, b, c, e) is given by ǫ(X,ω),
where

(X,ω) = (E1, ω1)#
I
(E2, ω2)

is the prototypical splitting of type (a, b, c, e). Using the identifications

H1(X,Z) = H1(E1,Z) ⊕H1(E2,Z) = Λ1 ⊕ Λ2,

Λi = Per(ωi), we have a symplectic basis (ai, bi) for H1(X,Z) given by

Λ1 = Z(λ, 0) ⊕ Z(0, λ) = Za1 ⊕ Zb1 and

Λ2 = Z(b, 0) ⊕ Z(a, c) = Za2 ⊕ Zb2,

where λ = (e+
√
D)/2.

Let q : H1(X,Z/2) → Z/2 be the quadratic form associated to the spin
structure determined by ω. It is easy to see that the homology class a1 is
represented by a loop C : R/Z → X , avoiding the zero of ω and satisfying

ω(C′(t)) =

∫

a1

ω = λ.

This loop can be taken as a closed geodesic on (E1 − I, |ω1|), or equivalently as
a horizontal line through the middle of the λ×λ square in Figure 5 of §3. Since
the direction of C is constant, its Gauss map has degree zero and thus

q(a1) = 1 + deg(ω,C) = 1

by equation (5.2). Similarly q(a2) = q(b2) = q(b1 + b2) = 1, and thus q(b1) = 0
by (5.1).

Now let OD = Z[Te], where T ∗
e (ω) = λω. Then

∫
Te(C)

ω = λ
∫

C
ω for any

cycle C ∈ H1(X,Z). Using the periods given above, we find the corresponding
endomorphism of H1(X,Z/2) is given with respect to the basis (a1, b1, a2, b2)
by

Te =




e 0 b a

0 e 0 c

c −a 0 0

0 b 0 0




mod 2.
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Since D ≡ 1 mod8, we have e ≡ 1 mod2, and thus a symplectic basis for
V = ImTe is given by the first two columns (A1, B1) above. Using the values
of q already obtained and the rule (5.1), we find

q(A1) = q(a1 + cb1) = 1 + c,

q(B1) = q(b1 + aa2 + bb2) = a+ b+ ab.

Therefore
Arf(q| ImTe) = q(A1)q(B1) = (1 + c)(a+ b+ ab);

since Te = Tf + (e− f)/2, this implies

ǫ(X,ω) = Arf(q| ImTf) =
(e− f)

2
+ (1 + c)(a+ b+ ab)

by (5.3).

Proof of Theorem 5.1. For any D ≡ 1 mod 8 with D > 9, we have a pair of
splitting prototypes

(a, b, c, e) = (0, (D − 1)/4, 1,±1)

of discriminant D with opposite spin invariants. Thus ΩWD contains both even
and odd eigenforms, and therefore WD has at least two components.

6 Square-tiled surfaces

In this section we show that for D = d2, the spin invariant carries the same in-
formation as the number of integral Weierstrass points, an invariant introduced
by Hubert and Lelièvre in [HL].

A square-tiled surface is a form (X,ω) ∈ ΩM2(2) such that Per(ω) ⊂ Z2 ⊂
R2 = C. For such a surface, integration of ω gives a holomorphic map

p : X → E = C/Z2,

which can be normalized so it is branched only over z = 0. The d = deg(p)
preimages of the square [0, 1] × [0, 1] provide a tiling of X . We say (X,ω) is
primitive if Per(ω) = Z2; in this case, (X,ω) belongs to ΩWd2 . Conversely,
every GL+

2 (R)-orbit in ΩWd2 contains finitely many square-tiled surfaces.
A Weierstrass point x ∈ X is integral if it lies at the vertex of a tile; in other

words, if p(x) = 0.

Theorem 6.1 Let (X,ω) ∈ ΩWd2 be a primitive square-tiled surface, with d
odd. Then the number of integral Weierstrass points on X is given by

N =

{
1 if ǫ(X,ω) = 0, and

3 if ǫ(X,ω) = 1.
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Proof. The degree d projection p : X → E determines a natural symplectic
splitting

H1(X,Z/2) = S0 ⊕ S1,

where S0 = Ker(p∗) and S1
∼= H1(E,Z/2).

Let q : H1(X,Z/2) → Z/2 denote the odd quadratic form coming from the
spin structure associated to ω. Recall that the six Weierstrass points of X cor-
respond naturally to the six odd quadratic forms on H1(X,Z/2). A Weierstrass
point is integral iff the correspond form satisfies q′|S1 = q|S1, in which case we
have

Arf(q′|S0) = 1 + Arf(q′|S1) = 1 + Arf(q|S1)

since q′ is odd. Conversely, the number of integral Weierstrass points agrees
with the number of quadratic forms q′|S0 satisfying the parity condition above.

To bring the spin invariant into play, let us write Od2 = Z[Td] where T ∗
d (ω) =

dω. Then S1 = ImTd. Since d = f is also the conduction of Od2 , we have

Arf(q|S1) = Arf(q| ImTf) = ǫ(X,ω).

Thus q′|S0 has the same parity as 1+ ǫ(X,ω). Since S0 carries three even forms
and one odd form, the Theorem follows.

Remark. The simple formulation of the preceding result is the reason we have
used the conductor of OD in the definition of ǫ(X,ω).

Example: D = 9. The L-shaped surface (X,ω) ∈ ΩW9 with d = 3 square
tiles has a unique integral Weierstrass point; thus N = 1. For D = 9 there is a
unique splitting prototype, namely (a, b, c, e) = (0, 2, 1,−1), and the conductor
of OD is f = 3. Thus by Theorem 5.3 we have ǫ(X,ω) = (−1− 3)/2 mod2 = 0,
in agreement with the Theorem above.

7 Butterfly moves

In this section we introduce an elementary move on splittings that yields a
criterion for two cusps of WD to belong to the same component.

Pairs of splittings. Let (X,ω) ∈ ΩM2(2) be a form of genus two with a
double zero, equipped with a splitting

(X,ω) = (E1, ω1)#
I
(E2, ω2), (7.1)

where (Ei, ωi) = (C/Λi, dz) and I = [0, v]. Recall that I maps to an embedded
arc under the projection π : C → E2, by our conventional ordering of the
summands. The hyperelliptic involution η of X , when restricted to E2 − I, has
the form

η(z) = (v/2) − z. (7.2)
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Let J = [0, w] ⊂ C be a segment such that π(J) ⊂ E2 is a simple loop. (This
means π|J identifies the endpoints of J but is otherwise injective.) Suppose in
addition that

π(J) ∩ π(I) = {0} ⊂ E2.

Then π(J) represents a saddle connection L0 on X , satisfying L0 6= L1 = η(L0)
by (7.2). Thus by Theorem 3.2 we have a second splitting

(X,ω) = (F1, η1)#
J
(F2, η2) (7.3)

where, following our convention, J projects to a closed loop on F1.
We say the splittings (X,ω, I) and (X,ω, J) are related by a butterfly move,

because I and J give a pair of linked figure eights on the surface X (Figure 6).

I

J

Figure 6. Butterfly move.

The geometric splitting (7.1) determines an algebraic splitting

H1(X,Z) = H1(E1,Z) ⊕H1(E2,Z),

while the oriented arcs I and J determine homology classes [I] ∈ H1(E1,Z) and
[J ] ∈ H1(E2,Z). The next result describes how this algebraic splitting changes
under a butterfly move.

Theorem 7.1 Let (ai, bi) be symplectic bases for H1(Ei,Z), i = 1, 2, with [I] =
a1 and [J ] = b2. Then we have

H1(F1,Z) = Z(a2 − a1) ⊕ Zb2 and

H1(F2,Z) = Za1 ⊕ Z(b1 + b2).

(By a symplectic basis we mean the intersection numbers satisfy ai · bi = 1.)

Proof. The parallel loops J and η(J) cut E2 − I into two pieces. One is an
I × J rectangle R, and the other an open cylinder identified with F1 − J . The
remainder of X is also an open cylinder, identified with E1−I; that is, we have:

X = (E1 − I) ∪R ∪ (F1 − J).

In this symmetric description, the two different splittings are obtained by al-
lotting R to one side or the other. That is, F2 − J is obtained by gluing R to
E1 − I, while E2 − I is obtained gluing R to F1 − J .
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Figure 7. The surface X splits in two different ways:
as E1#E2 (left) and F1#F2 (right). The tori E2 and F2 are shaded.

The interchange of splittings is shown in Figure 7. Here (X,ω) is presented
as the quotient (P, dz)/ ∼ of an L-shaped polygon in C with parallel sides iden-
tified. The corner rectangle of P corresponds to R, and the two parallelograms,
to E1 and F1.

As seen at the left, the edges of R represent the homology classes a1 = [I]
and b2 = [J ], and the edges of the lower parallelogram give the homology basis
(a1, b1) for H1(E1,Z). The edges of the shaded region formed by R and the
parallelogram to its right give the homology basis (a2, b2) for H1(E2,Z).

After performing a butterfly move, we obtain the splitting of X displayed
at the right. Here R and E1 have been combined to form F2 (shaded), and the
remaining parallelogram at the right represents F1. As shown, (a2 − a1, b2) is
then a symplectic basis for H1(F1,Z), and (a1, b1 + b2) is a symplectic basis for
H1(F2,Z).

Next we examine how different prototypes are related by butterfly moves.

Admissibility. Recall PD denotes the finite set of splitting prototypes of dis-
criminant D. Given p = (a, b, c, e) in PD, let

(X,ω) = (E1, ω1)#
I
(E2, ω2)

be the corresponding prototypical splitting (§3). Using the identificationsH1(Ei,Z) =
Per(ωi) = Λi, we have symplectic bases

Λ1 = Z(λ, 0) ⊕ Z(0, λ) = ZA1 ⊕ ZB1 and

Λ2 = Z(b, 0) ⊕ Z(a, c) = ZA2 ⊕ ZB2

for the homology of E1 and E2. We also have I = [0, λ], where λ = (e+
√
D)/2 >

0. The projection of I to E1 represents the class

[I] = A1 ∈ H1(E1,Z).
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Now given an integer q > 0, let Jq = [0, (a, c) + q(b, 0)] ⊂ C; then Jq maps
to a loop representing the class

[Jq] = A2 + qB2 ∈ H1(E2,Z).

Similarly, we define J∞ = [0, (b, 0)]; then [J∞] = B2. In both cases, q records
the homological slope of Jq.

We say q is admissible for p = (a, b, c, e) if, under the projection π : C → E2,
we have π(Jq)∩π(I) = {0}. It is easy to see that q = 1 and q = ∞ are admissible
for every prototype p.

Theorem 7.2 The following conditions are equivalent:

1. The integer q > 0 is admissible for (a, b, c, e) ∈ PD.

2. |I| = λ = (e+
√
D)/2 is strictly less than b/q.

3. We have (e+ 2qc)2 < D.

Proof. The loop π(Jq) cuts L = R/Z(b, 0) ⊂ E2 into intervals of length b/q,
and I is a subarc of L abutting Jq. Thus the first two conditions are equivalent.

To see the last equivalence, note that e+ qc <
√
D is equivalent to

4qcλ < (
√
D − e)(

√
D + e) = 4bc,

and thus to λ < b/q; and −
√
D < e+ qc is automatic, because e2 < D.

Butterfly maps. Let PD(q) denote the set of prototypes for which q is admis-
sible.

When q is admissible for p = (a, b, c, e), it defines a second splitting (X,ω, Jq)
related to (X,ω, I) by a butterfly move. We have (X,ω, Jq) ∈ ΩW s

D(p′), for a
unique prototype p′, and we define the butterfly map

Bq : PD(q) → PD

by Bq(p) = p′.

Theorem 7.3 For finite values of q, the butterfly map

Bq(a, b, c, e) = (a′, b′, c′, e′)

satisfies c′ = gcd(qc, b+ qa) and e′ = −e− 2qc.

Note: for our applications we will not need to keep track of the value of a′, and
b′ is determined by the condition D = (e′)2 + 4b′c′.

Proof of Theorem 7.3. Let (a1, b1) = (A1, B1) and (a2, b2) = (−B2, A2+qB2)
be symplectic bases for H1(Ei,Z), i = 1, 2, satisfying [I] = a1 and [Jq] = b2.
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Then Theorem 7.1 provides a new splitting along Jq. The summands (Fi, ηi) =
(C/Λ′

i) of the new splitting satisfy Λ′
i = Mi(Z

2), where

M1 =

(
b+ qa λ+ a

qc c

)
and M2 =

(
λ b+ qa

0 λ+ qc

)

correspond to the symplectic bases (b2, a1 − a2) and (a1, b1 + b2) for H1(F1,Z)
and H1(F2,Z) respectively.

Following the proof of Theorem 3.3, we can now locate the unique prototyp-
ical splitting in the GL+

2 (R)-orbit of (X,ω, Jq). To this end, let e′ = −e− 2qc,

let λ′ = (e′ +
√
D)/2, and let g = λ′M−1

1 ∈ GL+
2 (R). Note that λ′ > 0 by the

admissibility of q. Then we have

g(Jq) = [0, λ′], g(Λ′
1) = λ′Z2, and g(Λ′

2) = N(Z2),

where

N = gM2 =

(
c −a− e− qc

−qc b + qa

)
·

Clearly the projection of N(Z2) ⊂ R2 to the y-axis is the subgroup c′Z ⊂ R,
where c′ = gcd(qc, b+ qa). Therefore we have

N(Z2) = Z(a′, c′) ⊕ Z(b′, 0)

for suitable integers a′, b′ > 0 with a′ reduced mod b′. Moreover, we have

(e′)2 + 4b′c′ = (e+ 2qc)2 + 4 det(N) = e2 + 4bc = D,

gcd(a′, b′, c′, e′) = gcd(e′, Nij) = gcd(a, b, c, e) = 1,

and c′ + e′ < b′

because λ′ < b′.
Replacing g with ( 1 n

0 1 ) · g for suitable n, we can further normalize so that
0 ≤ a′ < gcd(b′, c′). Then (a′, b′, c′, e′) is a prototype of discriminant D, and
g ·(X,ω, Jq) is the corresponding prototypical splitting. In particular, (X,ω, Jq)
belongs to ΩW s

D(a′, b′, c′, e′) with c′ = gcd(qc, b+ qa) and e′ = −e− 2qc.

Corollary 7.4 If gcd(b, qc) = 1, then

Bq(0, b, c, e) = (0, b− qce− q2c2, 1,−e− 2qc).

Proof. Let Bq(0, b, c, e) = (a′, b′, c′, e′). Then e′ = −e− 2c and c′ = 1 by the
preceding result; the condition (e′)2 + 4b′c′ = e2 + 4bc determines b′; and a′ = 0
since it is reduced mod gcd(b′, c′) = 1.

A similar calculation establishes:

Theorem 7.5 The butterfly map B∞(a, b, c, e) = (a′, b′, c′, e′) satisfies c′ =
gcd(a, c) and e′ = −e− 2c.
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8 From cusps to combinatorics

In this section we reduce the study of the geometric connectivity of WD to a
combinatorial problem, which we will solve in the next two sections.

Connecting prototypes. Let PD be the set of splitting prototypes of discrim-
inant D. Let p ∼ p′ denote the equivalence relation on PD generated by

p ∼ Bq(p) whenever q ∈ {1, 2, 3, . . . ,∞} is admissible for p. (8.1)

We say p and p′ are connected if they are equivalent, and we regard each equiv-
alence class as a component of PD. (This terminology refers to the topology on
PD whose open sets are unions of equivalence classes.)

Theorem 8.1 The number of components of PD is an upper bound for the
number of components of the Weierstrass curve WD.

Proof. Recall there is a natural bijection

f : PD → C(WD),

identifying the set of prototypes with the two-cylinder cusps of WD (Corollary
4.4).

We claim that if p is connected to p′ in PD, then f(p) and f(p′) belong to the
same component of WD. Since the equivalence relation on PD is generated by
(8.1), it suffices to establish the claim when p′ = Bq(p). But in this case there is
a form (X,ω) admitting splittings (X,ω, I) ∈ ΩW s

D(p) and (X,ω, Jq) ∈ W s
D(q).

This implies W s
D(p) and W s

D(p′) cover the same component of WD, and hence
f(p) and f(p′) also belong to the same component.

By Corollary 4.4, every component of WD has a two-cylinder cusp, and thus
every component of WD contains the image of a component of PD.

Reduced prototypes. Let us say a prototype p = (a, b, c, e) ∈ PD is reduced
if c = 1; equivalently, if it has the form p = (0, b, 1, e), where e2 + 4b = D.

Theorem 8.2 Every component of PD contains a reduced prototype.

Proof. Let (a, b, c, e) = p be a prototype that minimizes the value of c among
all p′ ∼ p. We will show p is reduced.

We begin by showing a = 0 and c|b. To see this, recall that q = 1 and
q = ∞ are admissible for all p. By Theorem 7.5, p ∼ B∞(p) = (a′, b′, c′, e′) with
c′ = gcd(a, c). Since c′ ≥ c > a ≥ 0, we have a = 0.

Similarly, let
p′ = (a′, b′, c′, e′) = B1(a, b, c, e) ∼ p.

By Theorem 7.3, c′ = gcd(b, c) ≤ c; but c is minimal, so c = c′ and b|c. Since
c′ = c, the same reasoning shows a′ = 0 and c|b′. By Theorem 7.3 again, we
have e′ = −e− 2c. We also know

(e′)2 + 4b′c′ = e2 + 4bc = D,
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and therefore b′ = b − c − e. Since c|b and c|b′, we have c|e. But then c =
gcd(a, b, c, e) = 1 by the definition of a splitting prototype, and therefore the
prototype p is reduced.

Combinatorial connectivity. To parameterize the reduced prototypes, let

SD = {e ∈ Z : e ≡ Dmod 2 and e2, (e+ 2)2 < D},

and define ρD : SD → PD by

ρD(e) = (0, (D − e2)/4, 1, e).

Then ρD maps SD bijectively to the set of reduced prototypes in PD. For
example, we have

S16 = {−3,−1, 1} and ρD(S16) = {(0, 3, 2,−1), (0, 6, 1,−1), (0, 6, 1, 1)}.

Let e ∼ e′ be the equivalence relation on SD generated by

e ∼ e′ = −e− 2q whenenever e′ ∈ SD and gcd(b, q) = 1, (8.2)

where q > 0 and b = (D−e2)/4 is determined by the condition e2+4b = D. This
relation describes the action of butterfly moves on reduced prototypes since, by
Corollary 7.4, we have

Bq(ρD(e)) = Bq(0, b, 1, e) = (0, b− qe− q2, 1,−e− 2q) = ρD(−e− 2q)

whenever q is admissible for e. In particular, the relation e ∼ e′ implies ρD(e) ∼
ρD(e′). Together with Theorem 8.2, this implies

Theorem 8.3 The number of components of SD is an upper bound for the
number of components of PD.

Note that we do not need the action of B∞, since B∞(p) = B1(p) when p is
reduced.

Examples.

D = 4. Here SD = ∅, so W4 is empty. (A surface of genus one admits no
degree two cover branched over exactly one point.)

D = 5, 9. Here SD = {−1}, so WD is connected.

D = 8, 12. Here SD = {−2, 0}; taking q = 1 in (8.2), we see SD and WD are
connected in this case as well.

D = 13, 17. Here SD = {−3,−1, 1}. Taking q = 1 in (8.2), we see −3 ∼ 1, so
SD has at most two components. When D = 13 we also have −3 ∼ 1 (by taking
q = 2), so W13 is connected; but W17 has exactly two components, because of
the spin invariant (Theorem 5.1).
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9 Relative primes

This section presents estimates for the smallest x > 1 relatively prime to n, and
the smallest relative prime in an arithmetic progression. These results will be
applied in the next section, to determine the number of components of SD.

The smallest relative prime. Let (Z/n)∗ ⊂ Z/n denote the multiplicative
group of integers xmodn with gcd(x, n) = 1. Its order is given by the Euler
function

φ(n) = n
∏

p|n

(
1 − 1

p

)
,

where the product is taken over all primes dividing n. Since
∑

p≤x 1/p =
O(log log x), we have

φ(n) ≫ n

log log n

when n is large. In particular, there are many more relative primes than absolute
primes (φ(n) ≫ π(n) ∼ n/ logn). We begin by bounding the size of the smallest
x relatively prime to n.

Theorem 9.1 For any n > 1, there is an integer x relatively prime to n with

1 < x ≤ 3 logn

log 2
·

Note that the bound above is sharp for n = 2.

Proof. For a given n, the optimal choice for x is the smallest prime q not
dividing n. Similarly, the smallest value of n demanding a particular prime q
is the product of all primes less than q. Thus the Theorem is equivalent to the
assertion

pk+1

log(p1 · p2 · · · pk)
≤ 3

log 2
≈ 4.328 (9.1)

for all k > 0, where p1, p2, p3, . . . = 2, 3, 5 . . . is the sequence of primes.
Following Hardy and Wright [HW, Ch. XXII], let ϑ(x) =

∑
p≤x log p and let

ψ(x) =
∑

pm≤x log p. It is well-known that ϑ(x) ∼ ψ(x) ∼ x and pk+1/pk ∼ 1,
which implies

pk+1

log(p1 · p2 · · · pk)
=

pk+1

ϑ(pk)
∼ pk+1

pk
∼ 1

as pk → ∞. Consequently (9.1) holds whenever pk is sufficiently large.
To make this an effective estimate, we will show that

ϑ(x) ≥ 19x/40

for all x ≥ 104. Indeed, by [HW, p.342], we have

ψ(x) ≥ log
(2y)!

(y!)2

29



where y = [x/2]. By induction, the right-hand side is ≥ y for y ≥ 4, and thus
ψ(x) ≥ [x/2] for x ≥ 8. On the other hand, we have

ϑ(x) = ψ(x) −
log x/ log 2∑

m=2

ϑ(x1/m)

and ϑ(x) ≤ 2x log 2, by [HW, p. 341]. It is straightforward to check that

2 log 2

log x/ log 2∑

m=2

x1/m < x/40

for all x ≥ 104; combining these bounds, we obtain

ϑ(x) ≥ ψ(x) − x/40 ≥ 19x/40

as claimed.
Now recall that pk+1 ≤ 2pk for all k (Bertrand’s postulate, [HW, p.343]).

Thus for pk ≥ 104 we have

pk+1

ϑ(pk)
≤ 2pk

19pk/40
=

80

19
≈ 4.21 <

3

log 2
·

The proof is completed by verifying that (9.1) also holds for the 1229 primes
satisfying pk < 104.

Remark. The least x > 1 relatively prime to n also satisfies the lower bound
x > (1 − ǫ) logn infinitely often, since ϑ(x) ∼ x.

Gaps between relative primes. Jacobsthal’s function J(n) is defined to
be the largest gap between consecutive integers relatively prime to n [Ja]; for
example, J(6) = 5−1 = 4. A convenient estimate for J(n) is provided by [Kan,
Satz 4]:

Theorem 9.2 (Kanold) For all n ≥ 1, we have

J(n) ≤ 2ω(n),

where ω(n) is the number of distinct primes dividing n.

This result easily implies J(n) ≤ Cǫn
ǫ, as well as:

Corollary 9.3 If none of the first k primes p1 < p2 < . . . < pk divide n, then
we have

J(n) ≤ nα, α =
log(2)

log(pk+1)
·

Proof. Each prime p|n contributes a factor of at least pα ≥ 2 to nα, so
nα ≥ 2ω(n) ≥ J(n).
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See [Er] and [St] for additional estimates on J(n).

Relative primes in arithmetic progressions. Our second result bounds
the smallest x relatively prime to n satisfying a given congruence condition.

To state this bound, let a//b denote the largest divisor of a which is relatively
prime to b. The quotient a//b is obtained by removing from a all primes that
divide b; for example, 20//6 = 5. We then have:

Theorem 9.4 For any a, b, n ≥ 1 with gcd(a, b) = 1, there is a positive integer
x ≤ bJ(n//b) such that

x ≡ amod b and gcd(x, n) = 1.

Proof. We may assume 1 ≤ a ≤ b. Let us write x = a+ by, so the congruence
x ≡ amod b is automatic. Then gcd(x, b) = 1, so gcd(x, n) = gcd(x,m) where
m = n//b.

Since gcd(b,m) = 1, b is invertible in (Z/m)∗; that is, bc ≡ 1 modm for
some c. By the definition of Jacobsthal’s function we can find an integer y,
0 ≤ y < J(m), such that gcd(ac+ y,m) = 1. Then we have

cx ≡ ac+ bcy ≡ ae+ ymodm,

which implies gcd(x, n) = gcd(x,m) = gcd(cx,m) = 1; and by construction, we
have 1 ≤ x ≤ b(y + 1) ≤ bJ(m) = bJ(n//b).

10 Combinatorial connectivity

We have seen that the space SD is a combinatorial caricature of the Weierstrass
curve WD, with at least as many components as WD itself. In this section we
will establish:

Theorem 10.1 Assume D ≥ 5 and D 6= 9, 49, 73, 121 or 169. Then SD has
exactly two components when D ≡ 1 mod 8, and otherwise just one.

Small D. Recall from §8 that the space of reduced prototypes of discriminant
D is parameterized by

SD = {e ≡ Dmod 2 : e2 < D and (e+ 2)2 < D},

equipped with the equivalence relation generated by

e ∼ e′ = −e− 2q whenenever e′ ∈ SD and gcd(b, q) = 1. (10.1)

Here q > 0 and b = (D − e2)/4 is determined by the condition e2 + 4b = D.
It is feasible to compute the number of components of SD when D is rea-

sonably small. For example, the number of components is one for D = 9 and
three for D = 49, 73, 121 and 169, and one can verify:
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Lemma 10.2 Theorem 10.1 holds for all D ≤ 2000.

Spin invariant. There is a simple congruence condition, equivalent to the
spin invariant, that explains why SD has (at least) two components when D ≡
1 mod8.

Theorem 10.3 If e ∼ f in SD and D ≡ 1 mod8, then e ≡ f mod 4.

Proof. The condition D ≡ 1 mod8 implies b = (D− e2)/4 is even, and hence q
relatively prime to b is odd. Since e is also odd, we have e ≡ −e− 2qmod 4.

Small primes. To determine the components of SD for general D, we begin by
showing that the relations coming from q = 1, 3, 5 and 7 already connect large
parts of SD.

First note that by taking q = 1 in (10.1), we have e ∼ −e − 2 for every
e ∈ SD. That is, every component of SD is symmetric under reflection through
e = −1. In particular, every component contains an element e ≤ −1.

Next consider q ≥ 2. Let b = (D − e2)/4 as before, and suppose

Fq(e) = e+ 2(q − 1)

also belongs to SD. Then we have

e ∼ Fq(e) whenever gcd(b, q) = 1,

because e ∼ −e− 2q ∼ −(−e− 2q) − 2 = Fq(e).
In the case where q = p is an odd prime, we have gcd(b, p) = gcd(D − e2),

and therefore
e ∼ Fp(e) whenever D 6≡ e2 mod p. (10.2)

Since the equivalence relation is symmetric, we also have

e ∼ F−p(e) = e− 2(p− 1) whenever D 6≡ (e+ 2)2 mod p. (10.3)

We say ±p is admissible for (D, e) if the corresponding congruence inequality in
(10.2) or (10.3) is satisfied. Clearly admissibility depends only on the value of
(D, e)mod p.

Theorem 10.4 Suppose e− 12 and e+ 16 belong to SD. Then

• e ∼ e+ 4, or

• (D, e) is congruent to (1,−4) or (1,−1) when reduced modulo 105 = 3·5·7.

Proof. The Theorem is immediate when D ≡ 2 mod3, or more generally
whenever D 6≡ e2 mod 3. Indeed, in this case F3 is admissible for (D, e), and
therefore e ∼ F3(e) = e+4. This argument covers two-thirds of the 1052 possible
values for (D, e)mod 105, or 7350 cases.
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More generally, to prove e ∼ e+ 4, it is sufficient to exhibit sequences

(p1, . . . , pk) in P = {±3,±5,±7} and

(e1, . . . ek+1) in E ≡ e+ {−12,−8,−4, 0, 4, 8, 12, 16} ⊂ (Z/105)

such that e ≡ e1, e+ 4 ≡ ek+1, pi is admissible for (D, ei) and ei+1 = Fpi
(ei).

We refer to (p1, . . . , pk) as a strategy for (D, e).
For example, if (D, e) ≡ (16, 59)mod105, we can use the strategy (−7, 5, 5)

to move e along the sequence (59, 47, 55, 63) to reach e+ 4 ≡ 63. To check the
admissibility of a given transition Fpi

(ei) = ei+1, such as F−7(59) = 47, one
need only check that (D, ei) satisfies the corresponding congruence inequality,
in this case

D ≡ 16 ≡ 2 6≡ (ei + 2)2 ≡ (59 + 2)2 ≡ 4 mod 7.

It is straightforward to verify that a strategy as above exists for every pair
(D, e)mod 105 with the two exceptions stated in the Theorem. In fact, each of
these 1052 − 2 = 11023 cases can be handled by one of the 12 strategies listed
in Table 8.

Remarks. When (D, e) = (1,−1)mod105 we have

D ≡ e2 ≡ (e+ 2)2 mod p

for p = 3, 5 and 7, and therefore no p ∈ P is admissible for (D, e). A similar
difficulty would arise for any finite set of primes P .

(p1, . . . , pk) Cases (p1, . . . , pk) Cases

(3) 7350 (−5, 3, 5) 9

(5,−3) 1960 (5, 5,−7) 6

(7,−5) 1176 (−7, 5, 5) 6

(−3, 5) 378 (−3, 7,−3) 1

(−5, 7) 126 (−5, 3, 7,−3) 1

(5, 3,−5) 9 (−3, 7, 3,−5) 1

Table 8. Connection strategies and the number of cases they handle.

Edge effects. Next we account for e close to the ends of the range SD. Let

TD = {e ∈ SD : e− 12, e+ 16 ∈ SD}.

Then we have:

Theorem 10.5 For D > 900, any f ∈ SD is equivalent to an e ∈ TD.
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Proof. We may assume f ≤ −1 since f ∼ −f − 2. If f − 12 ∈ SD we can
simply take e = f ; otherwise, we have

f2 < D ≤ (f − 12)2

by the definition of SD. It suffices now to show that f ∼ e with f < e and
e+ 16 ∈ SD, since by repeatedly increasing f we can also obtain e− 12 ∈ SD,
and thereby e ∈ TD. In fact it suffices to obtain an e with

f < e < e+ 18 <
√
D,

since for e > f we have e+ 16 ∈ SD ⇐⇒ e+ 18 <
√
D.

The inequality 302 < D ≤ (f − 12)2 implies f ≤ −20 and

b = (D − f2)/4 ≤ 6(6 − f).

Now if gcd(b, p) = 1 for some prime p ≤ 13, we have

f ∼ e = Fp(f) = f + 2(p− 1) > f,

and at the same time

e+ 18 = 18 + f + 2(p− 1) ≤ 18 − 20 + 24 = 22 <
√
D,

as desired.
It remains to handle the case where b is divisible by all primes p ≤ 13. In

this case we have D ≥ 4b ≥ 106. By Theorem 9.1, there is an integer q relatively
prime to b with

1 < q <
3 log b

log 2
≤ 5 log(D),

and hence an e ∼ f with

f < e = f + 2(q − 1) ≤ 10 log(D).

Since 10 log(D) + 18 <
√
D for all D ≥ 106, we have e+ 18 <

√
D, completing

the proof.

Corollary 10.6 Theorem 10.1 holds for all D 6≡ 1 mod 105.

Proof. By Lemma 10.2, we may assume D ≥ 900; then by Theorem 10.5, every
component of SD meets TD.

Consider the partition TD = T 0
D ⊔ T 1

D, where

T i
D = {e ∈ TD : e ≡ D + 2imod4}.

By Theorem 10.4 we have e ∼ e + 4 whenever e and e + 4 are both in TD.
Therefore all elements of T 0

D are equivalent, as are all elements of T 1
D. This

shows SD has at most two components.
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Since D is a quadratic discriminant, we have D ≡ 0, 1, 4 or 5 mod 8. To
complete the proof, we analyze each of these possibilities in turn.

If D ≡ 0 or 4 mod8, then we have e = 0 ∼ −e − 2 = −2 6≡ emod4. This
shows 0 ∈ T 0

D is joined to i− 2 ∈ T 1
D and therefore SD is connected.

If D ≡ 5 mod8, then b = (D−e2)/4 is odd when e = 1. Therefore gcd(b, q) =
1 when q = 2, and therefore 1 ∼ −1−2q = −5 6≡ 1 mod4. Thus SD is connected
in this case as well.

Finally if D ≡ 1 mod8, then SD has at least two components by Theorem
10.3.

The exceptional case. To complete the proof, we will use Theorem 9.4 on
relative primes in an arithmetic progression to give an argument that works
even if D ≡ 1 mod105.

Let
UD = {e ∈ TD : e 6= −1 mod105},

and consider the partition UD = U0
D ∪ U1

D, where U i
D = UD ∩ T i

D.

Lemma 10.7 For D > 900, the sets U0
D and U1

D are each contained in a single
component of SD.

Proof. By Theorem 10.4 we have e ∼ e + 4 whenever both lie in UD. This
almost shows that all elements of U i

D are equivalent; however, a gap arises
because we have excluded those e ≡ −1 mod5. To bridge this gap, we simply
note that if e ≡ −5 mod105, then e ∼ e+ 8 = F5(3), since

e2 ≡ 0 6≡ D ≡ 1 mod5.

Thus all the elements of U i
D are equivalent in SD.

Lemma 10.8 For D > 2000, any e ∈ SD is equivalent to an f ∈ UD.

Proof. By Theorem 10.5, we can assume e ∈ TD. We can also assume e ≤ −1,
since e ∼ −e− 2; and e ≡ −1 mod105, since otherwise e ∈ UD.

Suppose we can find an integer q ≥ 1 such that

gcd(b, q) = 1, q 6= 1 mod105 and 2q + 15 <
√
D. (10.4)

Let f = Fq(e) = e+ 2(q − 1). Then, since e ≤ −1, we have

f + 18 = e+ 2q + 16 ≤ 2q + 15 <
√
D

and therefore f ∈ TD. In fact f ∈ UD, because f − e = 2(q − 1) 6≡ 0 mod105;
and e ∼ f , because gcd(b, q) = 1. Thus to complete the proof, it suffices to find
q satisfying (10.4).
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Since D > 2000, we have
√
D > 44 and hence the last two conditions of

(10.4) are automatic for q = 2, 3, 5, 7, 11 and 13. Thus we are done unless b is
divisible 30030 = 2 · 3 · 5 · 7 · 11 · 13.

So assume 30030|b; then we have
√
D ≥

√
4b > 346. In this case the last two

conditions of (10.4) are automatic for all primes p ≤ 165. Again we are done
unless b is divisible by all these primes, in which case we have b ≥ 1063.

Now pick any integer a with 1 < a < 105. Then by Theorem 9.4, there is
a positive integer q ≤ 210J(b//210) with gcd(b, q) = 1 and q ≡ a 6= 1 mod105.
Since no prime smaller than 11 divides b//210, and 23 < 11, Corollary 9.3 gives

q ≤ 210J(b//210) ≤ 210b1/3.

But b > 1063, so we have

2q + 15 ≤ 420b1/3 + 15 ≪ b1/2 < D1/2.

Thus q satisfies (10.4), and therefore e ∼ f ∈ UD.

Proof of Theorem 10.1. By Lemma 10.2 we can assume D > 2000. Then
the preceding Lemmas imply SD has at most two components: one containing
U0

D and another containing U1
D. When D ≡ 1 mod8, there are exactly two

components by Theorem 10.3; otherwise, U0
D and U1

D are connected to each
other by the same argument used in the proof of Corollary 10.6.

11 Geometric connectivity

We can now complete the proof of our main result.

Theorem 11.1 The Weierstrass curve WD is connected unless D ≡ 1 mod8
and D 6= 9, in which case it has exactly two components.

Lemma 11.2 For D = 49, 73, 121 and 169, the space of prototypes PD has
exactly two components, while for D = 9 it has just one.

Proof. The space P9 consists of a single prototype, namely (a, b, c, e) =
(0, 2, 1,−1), so it is connected. For the other values of D, PD has at least
two components because D ≡ 1 mod8.

For D = 49 it is straightforward to check that S49 = {−5,−3,−1, 1, 3} has 3
components, namely {−5, 3}, {−3, 1} and {−1}. Consequently every p ∈ P49 is
connected to at least one of the reduced prototypes ρD(−1), ρD(−3) or ρD(−5).

But in fact ρD(−1) ∼ ρD(−5). To see this, recall from Corollary 7.4 that

Bq(0, b, c, e) = ρD(−e− 2qc)

whenever gcd(b, qc) = 1. Applying Bq to the prototype p = (0, 5, 2,−3) in S49

with q = 1, 2, we find

ρD(−1) = B1(0, 5, 2,−3) ∼ B2(0, 5, 2,−3) = ρD(−3).
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Thus P49 has at most two components, and hence exactly two.
Similarly S73 has 3 components, represented by e ∈ {−1, 1, 3}, but

ρD(3) = B1(0, 3, 2,−7) ∼ B2(0, 3, 2,−7) = ρD(−1),

so P73 itself has only two components. For S121 we have 3 components, repre-
sented by e ∈ {1, 3, 5}, but again P121 has just 2 components, because

ρD(3) = B1(0, 9, 2,−7) ∼ B2(0, 9, 2,−7) = ρD(−1).

Finally the components of S169 are represented by e ∈ {1, 3, 5}, while

ρD(5) = B1(0, 11, 2,−9) ∼ B2(0, 11, 2,−9) = ρD(−1),

so P169 has exactly 2 components as well.

Proof of Theorem 11.1. Let nD = 2 if D > 9 is congruent to 1 mod 8, and
let nD = 1 otherwise. Let pD and sD denote the number of components of PD

and SD respectively. Then for every D ≥ 5 we have

nD ≤ (the number of components of WD) ≤ pD ≤ sD.

(The lower bound comes from Corollary 3.4 and Theorem 5.1, while the upper
bounds come from Theorems 8.1 and 8.3.) By Theorem 10.1, sD = nD except
when D = 9, 49, 73, 121, 169; but then nD = pD by the Lemma above. Therefore
nD gives the number of components of WD for every D ≥ 5.

The proof also shows:

Corollary 11.3 The space of splitting prototypes PD and the Weierstrass curve
WD have the same number of components for every D.
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A Appendix: One-cylinder cusps

In this appendix we briefly describe the one-cylinder cusps of WD, and how the
two types of cusps are partitioned between W 0

D and W 1
D when D ≡ 1 mod8.

For more on the cusps of Wd2 , see [HL] and [EMS].

One-cylinder cusps. As for the case of two cylinders, it is useful to organize
the one-cylinder cusps by prototypes.

c b

a1

a

cba

c b

Figure 9. One-cylinder prototype.

Let 〈a, b, c〉 denote a cyclically ordered set of integers. We say 〈a, b, c〉 is a
one-cylinder prototype for discriminant D if:

D = (a+ b+ c)2, a, b, c > 0, and gcd(a, b, c) = 1.

We let RD denote the set of all one-cylinder prototypes of discriminant D.

Theorem A.1 Let D = d2 > 0. Then the one-cylinder cusps of WD are labeled
by the one-cylinder prototypes 〈a, b, c〉 of discriminant D, with spin invariant

ǫ ≡ 1 + abc mod 2 (A.1)

when D ≡ 1 mod8.

Proof. By the results of §4, the one-cylinder cusps of WD correspond to
GL+

2 (R)-orbits of pairs

((X,ω), s) ∈ ΩWD × P1(R),

such that the foliation Fs of (X, |ω|) by geodesics with slope s is periodic with
one cylinder C. Since D = d2, every orbit has a representative where s = 0
and (X,ω) is a primitive square-tiled surface. Then ∂C consists of 3 saddle
connections, with integral lengths (a, b, c). Since Per(ω) = Z2, the cylinder C
must have height one and circumference d = a + b + c, with gcd(a, b, c) = 1.
Thus, after adjusting by the action of N(Z) = {( 1 n

0 1 ) : n ∈ Z}, we can put
(X,ω) into the form (P, dz)/ ∼, where P is the polygon shown in Figure 9. The
ordering of the leaves of F0 around the zero of ω (shown at the right) gives a
natural cyclic ordering to the lengths (a, b, c), yielding a complete invariant for
the corresponding cusp of WD.

The number of integral Weierstrass points of (X,ω) is one iff abc ≡ 1 mod2,
in which case ǫ = 0 by Theorem 6.1. Otherwise, there are additional integral
Weierstrass points at the mid-points of the saddle connections of even length,
so ǫ = 1.
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Compare [HL, 5.1.1], [EMS, eq. (11)].

Corollary A.2

1. The number of cusps of WD is given by |PD| + |RD|.

2. When D = d2, every component of WD contains a one-cylinder cusp.

3. Every square-tiled surface has a one-cylinder direction.

Proof. Since every cusp of WD has one or two cylinders (Theorem 4.3), the first
assertion is immediate from Theorem 4.1 and the preceding result. The second
follows from the classification of the components of WD (Theorem 1.1), upon
noting that the prototypes 〈1, 1, d − 2〉 and 〈1, 2, d − 3〉 represent one-cylinder
cusps of WD, with opposite spin when d is odd. The third assertion is equivalent
to the second.

Counting cusps by spin. Next we compare the number of even and odd
cusps.

Theorem A.3 When D ≡ 1 mod8 is not a square, W 0
D and W 1

D have the same
number of cusps.

Proof. By the results of §4, WD has only two-cylinder cusps, each labeled by
a splitting prototype. Let (a, b, c, e) ∈ PD be a prototype of discriminant D.
Then D = e2 + 4bc ≡ 1 mod 8, so bc is even.

We define a bijection F : PD → PD as follows. For (b, c) ≡ (0, 0)mod2, let

F (a, b, c, e) = (a+ 1, b, c, e)

where a+ 1 is taken modulo gcd(b, c). Otherwise, let

F (a, b, c, e) =

{
(a, c, b, e) if b+ e < c, and

(a, b, c,−e) if b+ e > c.

(Note that the case b+e = c does not occur, because it would implyD = (b+c)2.)
By Theorem 5.3, the spin invariant of the prototype (a, b, c, e) is given by

ǫ =
e− f

2
+ (c+ 1)(a+ b+ ab)mod 2,

where f is the conductor of OD. Thus F exchanges even and odd prototypes,
so they must be equal in number.
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Example. The reducible curve W17 has six cusps, paired off as follows:

W 0
17 : (0, 2, 2, 1) (0, 4, 1,−1) (0, 2, 1,−3)

W 1
17 : (1, 2, 2, 1) (0, 4, 1, 1) (0, 1, 2,−3).

Square discriminant. When D = d2 is an odd square, each component W i
D

of WD has both one- and two-cylinder cusps, labeled by the prototypes Ri
D and

P i
D with spin invariant i. We conclude with two formulas that allow |P i

D| and
|Ri

D| to be efficiently computed from |PD| and |RD|.
Theorem A.4 Let D = d2 be an odd square. Then the number of even and
odd cusps of WD with two cylinders are related by

|P 0
D| − |P 1

D| =
∑

b+c=d,0<c<b

φ(gcd(b, c)). (A.2)

For one cylinder we have the relation

3|R0
D| − |R1

D| = φ(d)/2, (A.3)

provided d > 3.

Proof. The two-cylinder case follows the same lines as the proof of Theorem
A.3, except that now prototypes (a, b, c, e) with e2 + 4bc = (b + c)2 = D can
occur. However these prototypes always have the form (a, b, c, c− b) with c < b,
by the relation c + e < b. Thus the number of such prototypes is given by the
sum in (A.2). Noting that f = d is the conductor of OD, we find the splittings
with b+ c = d all have spin 0, because

e− f

2
+ (c+ 1)(a+ b+ ab) ≡ c− b− f

2
+ b ≡ d− f

2
≡ 0 mod2,

so they account exactly for the difference |P 0
D| − |P 1

D|.
To prove (A.3), for k = 0, 1 consider the set of ordered triples

Ak = {(a, b, c) : (a, b, c) ≡ (1, k, k)mod 2, a+ b+ c = d,

a, b, c > 0 and gcd(a, b, c) = 1}.
By Theorem A.1, a prototype in R0

D contains three odd integers, while a pro-
totype in R1

D contains just one. Thus |A0| = |R1
D| and |A1| = 3|R0

D|. Now
let

A2 = {(a, 0, d− a) : 0 < a < d, a is odd and gcd(a, d) = 1}.
Clearly |A2| = φ(d)/2. Let F be the unique permutation of A0 ∪ A1 ∪ A2

satisfying

F (a, b, c) = (a, b′, c′) with b′ ≡ b+ gcd(a, d)mod(d− a).

Since a and d are odd, so is gcd(a, d); therefore b′ and b have opposite parity.
This implies F (A1) = A0 ∪A2, and therefore

|A1| = 3|R0
D| = |A0| + |A2| = |R1

D| + φ(d)/2.
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Examples. For D = d2 with d = 5, we have

R0
D = {〈1, 1, 3〉}, R1

D = {〈1, 2, 2〉},
P 0

D = {(0, 3, 2,−1), (0, 6, 1, 1), (0, 2, 2,−3), (0, 4, 1,−3)} and

P 1
D = {(0, 6, 1,−1), (1, 2, 2,−3)}.

Thus W 0
D has |R0

D| + |P 0
D| = 5 cusps, while W 1

D has 3. The numbers of cusps
for other small values of d appear in Table 10.

d 3 5 7 9 11 13 15 17

|C(W 0
d2 )| 1+1 1+4 2+8 3+13 5+21 7+30 8+34 12+48

|C(W 1
d2 )| 0+0 1+2 3+5 6+8 10+16 15+24 20+22 28+40

Table 10. The number of (one-cylinder)+(two-cylinder) cusps of the components
of the Weierstrass curve.
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