
https://doi.org/10.1007/s12559-019-09706-3

TeKET : a Tree-Based Unsupervised Keyphrase Extraction Technique

Gollam Rabby1,2 · Saiful Azad1,3 ·Mufti Mahmud4 · Kamal Z. Zamli1,3 ·MohammedMostafizur Rahman5

Received: 5 June 2019 / Accepted: 28 November 2019

© The Author(s) 2020

Abstract

Automatic keyphrase extraction techniques aim to extract quality keyphrases for higher level summarization of a document.

Majority of the existing techniques are mainly domain-specific, which require application domain knowledge and employ

higher order statistical methods, and computationally expensive and require large train data, which is rare for many

applications. Overcoming these issues, this paper proposes a new unsupervised keyphrase extraction technique. The

proposed unsupervised keyphrase extraction technique, named TeKET or Tree-based Keyphrase Extraction Technique, is

a domain-independent technique that employs limited statistical knowledge and requires no train data. This technique

also introduces a new variant of a binary tree, called KeyPhrase Extraction (KePhEx) tree, to extract final keyphrases

from candidate keyphrases. In addition, a measure, called Cohesiveness Index or CI, is derived which denotes a given

node’s degree of cohesiveness with respect to the root. The CI is used in flexibly extracting final keyphrases from the

KePhEx tree and is co-utilized in the ranking process. The effectiveness of the proposed technique and its domain and

language independence are experimentally evaluated using available benchmark corpora, namely SemEval-2010 (a scientific

articles dataset), Theses100 (a thesis dataset), and a German Research Article dataset, respectively. The acquired results

are compared with other relevant unsupervised techniques belonging to both statistical and graph-based techniques. The

obtained results demonstrate the improved performance of the proposed technique over other compared techniques in terms

of precision, recall, and F1 scores.

Keywords Candidate keyphrase · Unsupervised machine learning · Automatic keyphrase extraction · Document

processing · Recommender system · Binary tree

Introduction

Automatic keyphrase extraction techniques endeavor to

extract quality keyphrases automatically from documents.

� Saiful Azad

saifulazad@ump.edu.my

� Mufti Mahmud

mufti.mahmud@ntu.ac.uk; muftimahmud@gmail.com

1 Faculty of Computing, University Malaysia Pahang, 26300

Gambang, Kuantan, Malaysia

2 Present address: Department of Information and Knowledge

Engineering, University of Economics, W. Churchill Sq. 4,

130 67 Prague 3, Czech Republic

3 IBM CoE, UMP, Gambang, Kuantan, Malaysia

4 Department of Computing & Technology, Nottingham Trent

University, Clifton Lane, Nottingham, NG 11 8NS, UK

5 Department of Mathematics, American International

University – Bangladesh, Dhaka, Bangladesh

Generally, these keyphrases provide a high-level summa-

rization of the considered document. Therefore, they are

utilized in many digital information processing applica-

tions, such as information retrieval [2, 78], digital con-

tent management [9, 68], natural language processing [28,

53], contextual advertisement [61, 77], recommender sys-

tem [49, 54], and so on; which are portrayed in Fig. 1.

Herein, the concept of information retrieval has been devel-

oped to extract desired information from a large collection

of textual data. It has been implemented in many practical

applications, such as search engines [66], media search [73],

digital libraries [39], geographic information retrieval [24],

legal information retrieval [12], and many more. It is inane

explaining the necessity of these systems, since what data

can we retrieve without these systems!

Again, keyphrases play an important role in content man-

agement [57]. They are utilized for document indexing [55]

to describe or classify the semantic similarity among various

documents (a.k.a., document clustering [59, 76] or docu-

ment classification [41, 74]), and thereby, can be utilized as

recommender systems to improve the browsing experience

/ Published online: 5 March 2020

Cognitive Computation (2020) 12:811–833

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-019-09706-3&domain=pdf
http://orcid.org/0000-0002-2037-8348
mailto: saifulazad@ump.edu.my
mailto: mufti.mahmud@ntu.ac.uk
mailto: muftimahmud@gmail.com

Keyphrase Extraction

Applications

Information

Retrieval
Recommender

System

Contextual

Advertisement

Natural

Language

Processing

Digital

Content

Management

Fig. 1 Prominent applications of keyphrase extraction

of digital libraries. Furthermore, document classification and

similar concepts are widely used in machine learning (ML),

data mining, database discovery, and so on. Some notable

applications using these techniques are newsgroup filter-

ing, target marketing, document organization, health status

tracking, and so on [1, 14, 20, 35, 37, 42]. In addition, for

any contextual advertising to display advertisements based

on user identity and browsing history, keyphrase extraction

is a core technique.

To support these aforementioned applications, several

keyphrase extraction techniques have been proposed [15–

17, 22, 26, 29, 39, 40, 58, 63, 67, 79]. Among them,

domain-specific approaches [21] require knowledge of

the application domain, and linguistic approaches [65]

require expertise of the language, thus are inapplicable in

problems from other domains and/or languages. Among the

ML-based techniques [25, 36], supervised ML techniques

demand a considerable amount of rare train data to

extract quality keyphrases. Again, statistical unsupervised

techniques [3, 11, 17] are computationally expensive due

to their large amount of complex operations, and graph-

based unsupervised techniques [6, 7, 19, 60, 70] perform

poorly due to their incapability in identifying cohesiveness

among various words that form a keyphrase [25]. In light

of the aforementioned discussion, the automatic keyphrase

extraction remains an important research area to explore.

Hence, this paper proposes a new automatic keyphrase

extraction technique with the following notable contributions:

– A domain- and language-independent unsupervised

keyphrase extraction technique, named tree-based

keyphrase extraction technique (TeKET) that employs

limited statistical knowledge and requires no train data.

– A variant of the binary tree, called Keyphrase Extrac-

tion (KePhEx) tree, which extracts final keyphrases

from candidate keyphrases.

– A new keyphrase ranking approach employing Cohe-

siveness Index (CI or μ) value and Term Frequency (TF)

as calculating factors.

– Determine effective values for various parameters,

which have a direct influence on the performance of the

proposed technique in different application domains.

The other sections of this paper are organized as follows.

The “Related Works” section lists various prominent

keyphrase extraction techniques with their advantages

and limitations, and thus, demonstrates the necessity of

proposing a new technique. Afterwards, the “Preliminaries”

section describes the preliminaries, which includes problem

formulation and conceptual framework of the proposed

technique. The proposed technique is elaborated in detail in

the “Methods” section. The “Experimental Setup” section

elaborates on the setup of the experiments, which includes

corpus details, evaluation metrics, and implementation

details. All the acquired results are plotted and analyzed in

the “Results and Discussion” section and are concluded in

the “Conclusions” section.

RelatedWorks

Since our proposed technique is an unsupervised keyphrase

extraction technique, therefore, this section only discusses

similar approaches. Again, as seen in Fig. 2, most of

the unsupervised keyphrase extraction techniques could be

broadly classified into two groups, namely graph-based and

statistical techniques. Prominent approaches of both these

groups are scrutinized below.

Graph-Based Techniques

Here, the core idea is to build a graph from an

input document and to rank its nodes according to

their importance [8]. For instance, KeyGraph [45] is a

similar technique which is content sensitive and domain-

independent and utilizes co-occurrence of various terms for

indexing vertices of the graph. However, it fails to detect

the relationships among the low-frequency items inside

clusters and also ignores direct relationships between the

clusters [71]. On the other hand, PageRank [46] is based on

the concept of random walks and is related to eigenvector

centrality that tends to favor nodes with many important

connections regardless of cohesiveness considerations. This

technique is well suited for raking pages on the web and

social networks, but not suitable for keyphrase extraction

due to lack of consideration of cohesiveness [44, 72].

An extension of PageRank is PositionRank [19], which

incorporates all the positions of a word along with its

frequency to score the word, and thus, decides the rank

812 Cogn Comput (2020) 12:811–833

document

Candidate

Keyphrase

Generator

Candidate

Keyphrase

Feature

Extraction

Backgroud

Collection

1. Keyphrase1

2. Keyphrase2

3. Keyphrase3

…

ClassifierFeatures

Train Data

1. Keyphrase 1

2. Keyphrase2

3. Keyphrase3

…

Ranking

Mechanism

Backgroud

Collection

1. Keyphrase1

2. Keyphrase2

3. Keyphrase3

…

Ranking

Mechanism

Supervised Techniques

Unsupervised Techniques (Graph)

Unsupervised Techniques (Statistical)

Fig. 2 Functional details of various machine learning–based technique for keyphrase extraction

of that particular word. This way, it outperforms all the

techniques that consider only the first position information

in the ranking. However, due to ignoring topical coverage

and diversity which is not naturally handled by this kind

of graphs [25], this technique suffers from considerably

limited performance.

TextRank [44] is one of the most well-known graph-

based approaches for keyphrase extraction. Here, the scien-

tific documents are modeled as undirected or directed and

weighted co-occurrence networks using a co-occurrence

window of variable sizes [44]. It experiences several lim-

itations, such as its incapability to capture cohesiveness.

Again, retaining only the main core is suboptimal since

sometimes it is impractical to discover all the gold stan-

dard keyphrases within a unique subgraph, whereas many

valuable keyphases may place in the lower levels of the hier-

archy [64]. Moreover, selecting or discarding a large group

of words at a time reduces the flexibility of the extraction

process and negatively impacts the performance. An exten-

sion of TextRank is SingleRank [70], which weights an

edge equal to the number of times the two corresponding

words co-occur. Unlike its predecessor, it does not extract

keyphrases by assembling ranked words, instead, only noun

phrases are extracted from a document. However, some-

times it assigns higher scores to long but non-significant

keyphrases which entices the ranking procedure.

Another enhancement of TextRank is TopicRank [7].

Here, the vertices of a graph are topics, not words.

It extracts the noun phrases that represent the main

topics of a document and clustered them into topics. A

notable advantage of this technique is that it considers

topical coverage and diversity. However, it equally weighs

all candidates belonging to a single topic, which is

impractical. In addition, it suffers from the error propagation

problem which may occur during topics formation. To

resolve the error propagation problem of TopicRank, the

MultipartiteRank technique [6] utilizes a multipartite graph.

Here, a complete directed multipartite graph is built that

is connected only if they belong to different topics. Since

this technique makes good use of relation reinforcement

between topics and candidates, it performs better than other

graph-based techniques. However, due to clustering error

(where candidate keyphrases could be wrongly assigned

to a similar topic), it struggles in selecting the most

representative candidates.

Statistical Techniques

Although graph-based techniques show acceptable perfor-

mance on many occasions, they are considerably difficult

to implement in comparison with statistical unsupervised

keyphrase extraction techniques. Three such prominent

techniques are scrutinized below. The most prominent and

state-of-the-art statistical technique is Term Frequency -

Inverse Document Frequency (TF-IDF) [56], which reflects

the importance of a keyphrase to a document in a cor-

pus. Among the two terms, TF provides aboutness and

IDF provides informativeness. In other words, the IDF

discriminates between informative and non-informative

keyphrases across the documents, whereas the TF discrim-

inates between popular and non-popular keyphrases in a

document. This technique is computationally expensive as

813Cogn Comput (2020) 12:811–833

IDF is calculated across different documents [48]. Again,

many studies report that this technique is biased towards

single terms over compound terms [18].

To resolve the problem of favoring single terms, KP-

Miner [18] is proposed. It utilizes some heuristics based on

TF and positions to identify potential keyphrases which are

weighted with TF-IDF score [30]. Although it outperforms

TF-IDF, it experiences several limitations such as a drop

in global ranking performance with increasing length or

number of documents [43]. In addition, it is computationally

expensive due to its dependence on TF-IDF.

Another lightweight technique is YAKE [10], which

resolves the IDF problem. It takes five features into con-

sideration, namely casing, word position, word frequency,

word relatedness to context, and word in the different sen-

tences to calculate the weight of a keyphrase. Again, due to

generating candidate keyphrases employing N-grams tech-

nique, its computational complexity increases linearly with

respect to N-grams [75]. Again, due to the same reason, a

large number of keyprhases are generated, which entices the

ranking procedure.

From the above discussions, it is evident that graph-based

techniques and statistical techniques have several adverse

characteristics, which restrict them from achieving better

performance. To overcome the identified shortcomings, this

paper proposes a tree-based technique to extract quality

keyphrases from documents.

Preliminaries

This section formulates the problems of keyphrase extrac-

tions followed by explaining the conceptual framework

that are taken into account while developing the proposed

technique.

Problem Formulation

Consider a document, δ, which has been passed to

a keyphrase extraction technique to extract the final

keyphrases, ϕ. For this, at first candidate keyphrases, χ

are extracted from δ, which will be processed later to

extract ϕ. Any candidate keyphrase χi in χ (i.e., χi ∈ χ)

is composed of n number of ordered sequence of words,

{w1, w2, ..., wm, ..., wn−1, wn}, where n is a positive integer

number, i.e., n ∈ Z+. Since any keyphrase is a coherently

connected sequence of words that appear contiguously, χi

could be represented as an ordered set and its segments also

could be represented as ordered subsets. Again, when n = 1,

χi contains only one word, otherwise multiple words. Note

that χi cannot be empty, and therefore, |χi | = n �= 0.

For extracting a final keyphrase, ϕj (where ϕj ∈ ϕ) from

a χi , the latter is necessary to be processed. For this, the

following probable cases need to be considered:

Case 1 : χi is ϕj , i.e., χi = ϕj or χi ⊆ ϕj and ϕj ⊆ χi .

Case 2 : ϕj is a part of χi , i.e., ϕj ⊂ χi .

Case 3 : Again, χi is a part of ϕj , i.e., χi ⊂ ϕj .

Case 4 : χi is not a final keyphrase.

Although four probable cases are identified, it is difficult to

determine an exact case for a certain candidate keyphrase.

To identify that, in the subsequent section, we discuss some

hypotheses and observations.

Conceptual Framework

The concept of extracting final keyphrases from candi-

date keyphrases relies on the following hypotheses and

observations:

Hypothesis 1 : For any χi , case 1 and case 4 can be

determined by its popularity. In other words,

this decision can be taken based on the

frequency of χi in a document and applying

a binary decision strategy.

Hypothesis 2 : For case 2, since a part of χi—denoted as

χ ′
i—is a final keyphrase (i.e., χ ′

i = ϕj), the

popularity and the cohesiveness of χ ′
i must

be higher than that of χi . In this case, χi

need to be appropriately reduced to χ ′
i .

Hypothesis 3 : For case 3, since χi is a part of ϕj , χi need

to be expanded to χ ′
i such that χ ′

i = ϕj .

Again in this case, the popularity and the

cohesiveness of χ ′
i must be higher than that

of χi .

Hypothesis 1 is quite straightforward. A simple binary

decision strategy could be applied to determine this. For

instance, assuming that the frequency of χi is α in δ.

Now, it is compared with λ, which is a constant value,

and also known as least seen allowable frequency (lsaf)

factor [17]. It separates non-popular keyphrases from

popular keyphrases, which are unlikely to become final

keyphrases. For instance, when α < λ, it is most likely

not a final keyphrase; otherwise, it is likely to be a

final keyphrase. Note that the value of λ varies from one

language to another and also is subjected to the length of a

document [17]. Hence, an experiment has been conducted

to find a suitable lsaf value (see the “Parameter Value

Selection” section). Again, for hypothesis 2 and hypothesis

3, the proposed rooted binary tree expands or shrinks

based on the candidate keyphrases and keeps track of the

814 Cogn Comput (2020) 12:811–833

cohesiveness of various words in a keyphrase with respect to

the root. In the end, the final keyphrases are extracted from

the tree as detailed in the subsequent section.

Methods

The entire process of keyphrase extraction using our

proposed technique can be parted into three main phases:

(i) candidate keyphrase selection or pre-processing, (ii)

candidate keyphrase processing or simply processing,

and (iii) ranking and selecting final keyphrases or post-

processing (see Fig. 3).

Candidate Keyphrase Selection

The proposed technique employs the Part-Of-Speech (POS)

Tagging (POST) approach to extract candidate keyphrases

from δ. Since keyphrases are generally noun phrases [13],

the proposed technique limits the extraction to only noun

phrases [13]. For this, the following POS pattern is utilized,

which has been demonstrated in [52] as one of the most

suitable patterns for extracting candidate keyphrases.

(< NN .∗ > + < JJ .∗ >?)|(< JJ .∗ >? < NN .∗ > +)

Note that it is a regular expression that is written in

a simplified format using NLTK’s RegexpParser, where

nouns are tagged with NN and adjectives are tagged with

JJ . More details could be found in [23].

Once the candidate keyphrases are extracted, they are

passed through a cleaning process to filter out those

keyphrases that are less likely to be final keyphrases. For

that, following conditions are applied: (i) any candidate

keyphrase that contains non-alphabetic characters, (ii) any

candidate keyphrase that contains single alphabetic word(s),

and (iii) if the frequency of any candidate keyphrase fails

Candidate Keyphrase Selection

Tree-based Keyphrase Extraction Technique (TeKET)

document
Candidate
Keyphrase
Generator

Candidate
Keyphrase

Ranking and Selecting Final Keyphrases

Ranking
Mechanism

C
a

n
d

id
a

te
 K

e
y
p

h
ra

s
e

 P
ro

c
e
s
s
in

g

KePhEx
Tree

Candidate
Keyphrase

1
2

1. Keyphrase
2. Keyphrase
3. Keyphrase3

…

Fig. 3 Functional details of the proposed technique

to satisfy lsaf factor (see the “Conceptual Framework”

section). The first two conditions filter out candidate

keyphrases that make no sense to the human reader in

general; and the latter one filters out all non-popular

candidate keyphrases from the list.

Candidate Keyphrase Processing Using KeyPhrase
Extraction (KePhEx) Tree

In conventional unsupervised keyphrase extraction tech-

niques, candidate keyprhases are not processed; instead,

they are sent to the ranking phase immediately after the

selection. On the contrary, an intermediate phase between

candidate keyphase selection and ranking could release

the burden of ranking unnecessary keyphrases, and thus,

lead to finding more appropriate keyphrases. The proposed

KePhEx tree takes all the formerly mentioned hypotheses

(see the “Preliminaries” section) into account for extracting

final keyphrases. The KePhEx tree expands (hypothesis 3) or

shrinks (hypothesis 2) or remains in the same state (hypoth-

esis 1) based on the candidate keyphrases. The advan-

tages of employing KePhEx tree in keyphrase extraction

are threefold: (i) extracts quality keyphases from candidate

keyphrases, (ii) provides flexibility during keyphrase extrac-

tion, and (iii) contributes in ranking by providing a value

that represents cohesiveness of a word in a keyphrase with

respect to a root.

Among different classes of tree data structure, the

KePhEx tree falls under a binary tree. Again, although there

exist several variants of a binary tree, it is different from

others since the position of every node in the tree and

its level are fixed. Again, all the predecessors of a node

at the upper-levels (including root) are also fixed unlike

other variants. It is so because a good keyphrase must

be a coherently connected sequence of words that appear

continuously in the text. Every node in a KePhEx tree holds

a 2-tuple data along with other information, namely a word

and its CI or μ value. The CI provides two advantages: (i)

assists in finding the cohesiveness of various words with

respect to the root of the tree, which is employed as a factor

in ranking keyphrases and (ii) provides flexibility during

keyphrase extraction as the value of μ increases or decreases

based on the existence of that word in candidate keyphrases.

Root Selection

It is important to select a qualified root since a poorly

selected root may lead to a poor keyphrase. In this

technique, only nouns are designated as roots, which are

selected from the candidate keyphase list, χ , and are saved

815Cogn Comput (2020) 12:811–833

in another list, η. As noun phrases are the most likely

candidate for final keyphrases, selecting them (i.e., nouns)

as roots increases the chances of extracting quality final

keyphrases.

After selecting the roots, the trees are formed taking

these roots into consideration. The entire process from

tree formation to final keyphrase extraction is segmented

into three main steps, namely (i) tree formation, (ii) tree

processing, and (iii) keyphrase extraction.

Tree Formation

For forming a KePhEx tree, a root, γ , is selected from

η. Afterwards, the proposed system selects candidate

keyphrases that contains γ . Let us denote them as similar

candidate keyphrases, which could be defined as follows:

Definition 1 Similar candidate keyphrases, σ , are those

candidate keyphrases that contain γ in them—irrespective

of its position, and σ ⊆ χ .

A partial sample of σ for γ = servic could be: σ =

{scalabl grid servic discoveri base, grid servic, servic

discoveri mechan, scalabl web servic permiss, distribut grid

servic discoveri architectur, servic discoveri architectur,

grid discoveri servic, servic discoveri, grid inform servic,

servic discoveri grid comput, servic technolog, servic

discoveri function, grid servic call registri, web servic

version, discoveri servic, servic properti, thi servic, index

servic, servic discoveri, web servic commun, . . .}. Among

them, the first encountered similar candidate keyphrase,

σ1 (e.g., scalabl grid servic discoveri base), is employed

in forming the KePhEx tree and the rest are utilized in

processing the tree (see the “Tree Processing” section).

Here, the process of tree formation starts by selecting the

position of γ in σ1; but the tree starts forming once the γ is

assigned as the root of the tree and μ value is initialized to

1. For any other word (wi), its position, w
p
i , is determined

at first to decide in which subtree it would be placed. If

position of γ , γ p, is more than w
p
i (i.e., γ p > w

p
i), it would

be placed in the left subtree, otherwise (i.e., γ p < w
p
i), the

right subtree. Again, the depth of wi , wd
i , in a phrase with

respect to γ is also necessary to calculate for determining

the level of the tree where wi would be added, which could

be defined as follows:

Definition 2 Depth of wi , w
d
i , in a keyphrase is the distance

of that word from γ irrespective of its direction, which is

calculated as, wd
i = |γ p − w

p
i |.

Note that wd
i in a candidate keyphrase of wi and the level

of wi in the KePhEx tree, wl
i , are identical, and hence, they

are used interchangeably in this paper. Once the subtree

of wi is determined using w
p
i , wd

i is calculated. The next

condition to be satisfied is that all the predecessors must be

in their respective places. This can be tracked by traversing

the tree from level 0 to l − 1 and by comparing the word

in each level with that of in σ1 at that depth. Once these

constraints are satisfied, wi is qualified for adding in the tree

at level l. For that, a node is created by incorporating wi in

it and initializing μ to 1.

Once all the words at the left side of γ are added in the

left subtree, then the words at the right side of γ are added

in the right subtree following the same procedure. The tree

formation ends when all the words of σ1 are added in the

tree. This entire process is illustrated in Algorithm 1.

A sample tree is depicted in Fig. 4, which is formed using

σ1 = scalabl grid servic discoveri base and γ =servic. The

tree formation starts by adding servic in the tree as root and

initializing μ of the node to 1. Afterwards, all the words

at the left side (i.e., grid and scalabl) are added in the left

subtree in their respective levels, where levels are calculated

based on their respective depths in σ1. For instance, since

gridd = 1, grid is added at level 1 in left subtree, whereas,

since scalabld = 2, scalabl is added at level 2 in left

subtree. Again, when grid is added in the tree, it is tracked

that its predecessor servic is in the tree. Similarly, when

scalabl is added in the tree, it is tracked that grid and servic

are its predecessors, respectively. Once all the words at the

left side of servic are added in the tree, the words at the right

side (i.e., discoveri and base) are added in the right subtree

employing a similar procedure as the left subtree.

Tree Processing

After forming the tree employing σ1, the rest of the similar

candidate keyphrases, σ ′, where σ ′ = {σ2, σ3, ..., σn} are

utilized to process the tree. For that, the cases that are

mentioned in the “Preliminaries” section are taken into

account, i.e., no tree processing is needed for case 1; the tree

must be trimmed properly to remove unnecessary parts for

case 2; and it must be expanded to put on necessary parts

from all the similar candidate keyphrases in σ ′ for case 3.

This process is described in Algorithm 1.

servic, 1

grid, 1 discoveri, 1

scalabl, 1 base, 1

Fig. 4 A newly created tree using the candidate keyphrase, scalabl

grid servic discoveri base, where γ = servic

816 Cogn Comput (2020) 12:811–833

817Cogn Comput (2020) 12:811–833

Let us fetch a similar candidate keyphrase, σ ′
i , from σ ′,

and utilizes it for processing the KePhEx tree. At first, γ p

in σ ′
i need to be determined. Like tree formation, the tree

processing also starts from γ followed by the words at the

left side of γ and then, right side. Afterwards, any word

(wi ∈ σ ′
i) at position w

p
i is qualified to be added to the

left subtree if w
p
i < γ p; otherwise, when w

p
i > γ p, it is

qualified to be added to the right subtree. Again, the depth

(wd
i) is calculated to determine at which level wi is qualified

to be added in the tree and all the predecessors (from 0 to

l −1) are checked with the ones in σ ′
i before their inclusion.

At level l, where wi is qualified for possible inclusion,

three events can occur: (i) there is no node, (ii) there is only

one node, and (iii) there are two nodes. In the case of the

first event, a node is created for wi by initializing μ to 1,

and then, is added it as a left child for the left subtree or as a

right child for the right subtree. For the second event, if the

word in the node is the same as wi , then no node is added.

Otherwise, a node is created like before and it is added as a

new child at the present level in the subtree. Lastly, if both

children already exist at that level, the new node with wi

replaces the node whose word has the lowest TF. The reason

is that any word with higher TF is highly likely to form a

quality final keyphrase. For that, if the lower TF node is a

leaf node, the new node will replace it. Otherwise, if it is a

root of a subtree, then the subtree is deleted from the tree

and the new node is added in that position. This process

is deemed complete when all the words of σ ′
i have been

considered.

Update µ Values The process of updating μ values starts

as soon as the nodes of σ ′
i have been added to the tree as

demonstrated in Algorithm 2. It starts by determining γ p in

σ ′
i . If γ p is 0, i.e., γ is the leftmost word of σ ′

i , μ values of

all the nodes in the left subtree are decreased. Similarly, if

γ p is |σ ′
i |−1, i.e., γ is the rightmost word of σ ′

i , μ values of

all the nodes in the right subtree are decreased. Afterwards,

the μ value of the root is increased and the tree is traversed

and compared starting from the left subtree followed by the

right subtree using iterative procedures.

At a given level l for any wi , three events may occur: (i)

wi is absent in l, (ii) wi is present as a left child, and (iii) wi

is present as a right child. For the first event, μ values of all

the nodes in the left and right subtree are decreased. In the

second case, μ value of the left child is increased, whereas

they are decreased for the nodes in the right subtree, and

then, move to the next level. In the case of the last event,

μ value of the right child is increased, whereas they are

decreased for the nodes in the left subtree, and then, move to

the next level. This procedure continues until all the words

are taken into account.

An example of tree processing and updating μ values

are demonstrated in Fig. 5, where tree in Fig. 4 is utilized

as the initial tree. Again, the tree is formed using σ1 in

σ , and the rest (i.e., σ ′) are utilized to process the tree.

As in Fig. 5a, since σ ′
1 is grid servic, and both the words

already exist in the tree in sequence, the tree remains in

the same state as before. However, μ values of the nodes

that contain grid and servic are increased, and all others are

decreased. In Fig. 5b, among the three words, only mechan

does not exist in the right subtree at level 2; therefore, it is

added as the left child. Afterwards, μ values are increased

based on σ ′
2. Similarly, the tree keeps amending with every

encountered σ ′
i and μ values are also updated accordingly.

This process keeps continuing until all the keyphrases in

σ ′ are processed. Although this example demonstrates only

expansion or no change of tree state, the shrinkage occurs in

the keyphrase extraction phase.

servic, 2

grid, 2 discoveri, 0

scalabl, 0 base, 0

(a) σ1 = grid servic

servic, 3

grid, 1 discoveri, 1

scalabl, -1 base, -1mechan, 1

σ2 = servic discoveri mechan

servic, 4

grid, 0 discoveri, 0

scalabl, -2 base, -2mechan, 0

(c) σ3 = scalabl web servic permiss

servic, 5

grid, 1 discoveri, 1

scalabl, -3 architectur, 1mechan, -1distribut, 1

(d) σ4 = distribut grid servic discoveri architectur

servic, 45

grid, 4 discoveri, 7

scalabl, -23 architectur, 3mechan, -11distribut, -18

(e)σn = grid servic discoveri

(b)

Fig. 5 Several tree processing steps are shown for various similar candidate keyphrases, where γ = servic

818 Cogn Comput (2020) 12:811–833

819Cogn Comput (2020) 12:811–833

Keyphrase Extraction

This process is initiated by pruning the weak nodes from

the tree. Here, weak nodes are selected based on their

cohesiveness with respect to γ with an assumption that they

may not be the parts of final keyphrases. For that, a constant

integer value, named minimum allowable μ (mamu), is

utilized. A node whose μ value is lower than the mamu

is pruned from the tree. For instance, in Fig. 5e, it could

be observed that several nodes in the tree contain lower μ

values, i.e., their cohesiveness with respect to γ is weak,

and hence, most likely, they would not be a part of the final

keyphrase. Now, mamu value determined which nodes to

keep in the tree and which to prune from the tree. Such

a tree is depicted in Fig. 6, where mamu is considered

as 2.

Hence, if that node is a root of a subtree than that entire

subtree is also erased from the tree with the assumption

that a weak root would form a weak subtree. Again, a

mamu value must be selected with considerable attention

because a smaller mamu value results in many and/or long

keyphrases, whereas a large mamu value results in lower

and/or abbreviated keyphrases. Therefore, it is essential to

find a suitable mamu value for improved performance of the

system. Hence, this paper conducts an experiment to find a

suitable mamu value (see the “Parameter Value Selection”

section). Again, this mamu value also provides flexibility

during keyphrase extraction.

Afterwards, all paths from the root to the leaves are

extracted to discover final keyphrases. Since this procedure

is dissimilar to any conventional tree traversal technique

(namely preorder, inorder, and postorder), they are not

directly applicable in this case. Hence, inorder tree traversal

technique is enhanced to perform the task, which is

explained in Algorithm 3. This algorithm extracts all

the paths from root to leaf and separates them in left

paths (paths from left subtree) and right paths (paths

from right subtree), which are later processed to generate

final keyphrases individually (one final keyphrase from

one path) or collectively (by joining a path from the left

820 Cogn Comput (2020) 12:811–833

servic, 45

grid, 4 discoveri, 7

architectur, 3

Fig. 6 The resultant tree for mamu = 2 for the KePhEx tree in Fig. 5

subtree and a path from the right subtree) as demonstrated

in Algorithm 4.

Now, in the case of left paths, since they are extracted

from root to leaf, they are unlikely to be the final

keyphrases as they are aligned in reverse direction, and

hence, misses the coherent relationship. Therefore, all

left paths are reversed before extracting final keyphrases.

Afterwards, all the words are acquired from each path

and a keyphrase is formed. Then, its presence (entirely)

is checked in χ as a candidate keyphrase or a part of

candidate keyphrase. A similar technique is followed to

extract keyphrases from right paths with an exception is that

the paths are not reversed since they are already satisfying

the coherent relationship conditions. After acquiring all

the final keyphrases from the left and right paths, they

are concatenated to generate more long and meaningful

keyphrases. Again, these keyphrases will qualify as final

keyphrases if they are entirely found in χ as candidate

keyphrases or part of candidate keyphrases.

Flexibility During Keyphrase Extraction The proposed tech-

nique offers flexibility in keyphrase extraction via employ-

ing the mamu values. As an example, Table 1 is generated

using the tree in Fig. 6. As expected, for different mamu

values, different final keyphrases are generated. These

keyphrases also differ in length and quantity. For instance,

the longest keyphrase generated by mamu values from 1 to 3

is 4, whereas it is 3 for mamu value 4, 2 for mamu values

Table 1 Final keyphrases from the resultant tree in Fig. 6

SN mamu (+ve value) Final keyphrase

1 1 to 3 grid servic

2 1 to 3 servic discoveri architectur

3 1 to 3 grid servic discoveri architectur

4 4 grid servic

5 4 servic discoveri

6 4 grid servic discoveri

7 5 to 7 servic discoveri

8 8 to 45 servic

9 ≥ 46 —

from 5 to 7 and so on. On the other hand, for mamu val-

ues from 1 to 4, 3 final keyphrases are extracted, whereas

it is only 1 for mamu values from 5 to 45 and 0 afterwards.

From here, we can conclude that a greedy approach may

choose a lower mamu value and hence, would get consider-

ably many and/or lengthy keyphrases; but the quality would

be a little bit compromised. On the other hand, a conserva-

tive approach may choose a large mamu value which will in

turn provide considerably lower and/or mostly abbreviated

keyphrases. Hence, to receive a desired level of perfor-

mance, mamu value must be set properly. To realize this,

an experimental evaluation is performed in the “Results and

Discussion” section and the results are analyzed with detail

evidences.

After extracting all the final keyphrases from the tree

for a γ , the next γ is chosen from the list η and the same

procedure is repeated again. It continues until all the nouns

in η are considered as γ . After finish extracting all the final

keyphrases, they are passed for ranking and selecting.

Ranking and Selecting Final Keyphrases

Generally, automatic keyphrase extraction techniques

extract a good number of final keyphrases. However, various

applications including recommender system and document

indexing techniques utilize only a certain number of top

keyphrases. Therefore, an automatic keyphrase extraction

technique must offer the most relevant top-N keyphrases

to these applications. Hence, keyphrase extraction is also

accounted for as a ranking problem.

In the proposed ranking technique, the μ value is

employed along with the TF as follows to calculate weight,

ω of a keyphrase p:

ωp =

N∑

k=1

tfk ×

N∑

k=1

μk (1)

Here, N is the number of words in p. The first factor

in Eq. 1, i.e., TF, is utilized to identify the popularity of

that particular keyphrase in a document with an assumption

that the non-popular keyphrases are unlikely to become a

final keyphrase. For that, TF of all the words in p are

summed together. It is noteworthy to mention that instead of

averaging each factor, summation is performed to eliminate

the bias towards the single terms. Again, the second factor

is for realizing the cohesiveness of every word in that

keyphrase to γ , which can be found by summing the μ

values of all the words in p.

After calculating the ω values for all keyphrases, they are

sorted to arrange them in rank. Since the quantity of final

keyphrases is limited, any sorting algorithm is suitable. In

the proposed system, the quick sort [27] algorithm is applied

to perform the task rapidly. After ranking, these keyphrases

821Cogn Comput (2020) 12:811–833

are ready to be rendered. Now, when a user or an application

seeks for any N keyphrases, the system will provide top-N

keyprhases from the rank 1 to N , respectively.

Experimental Setup

Since the proposed technique is an unsupervised machine

learning based technique, its performance is compared

with other relevant unsupervised techniques. For this,

both statistical (TF-IDF and YAKE) and graph-based

(singleRank (SR), positionRank (PR), topicRank (TR), and

multipartiteRank (MR)) keyphrase extraction techniques are

considered. All of these techniques are evaluated under

a uniform experimental setup taking multiple available

benchmark corpora into consideration, which are elaborated

in the subsequent section.

Corpora Details

The primary corpus that has been employed for testing the

proposed technique along with other similar techniques is

the SemEval-2010 [33]. This dataset is composed of a train

and a test dataset along with other datasets that are col-

lected from the ACM Digital Library. Since our proposed

technique and all the compared techniques are unsupervised

techniques, train and test datasets are not utilized as per

their literal meaning. Therefore, they are denoted as set 1

and set 2, respectively in this paper, which will also elim-

inate any further confusions. This corpus has been chosen

since it ensures the variability in terms of topics. Here, all

the papers are clustered in four groups following four 1998

ACM classifications: C2.4—Distributed Systems, H3.3—

Information Search and Retrieval, I2.11—Distributed Arti-

ficial Intelligence— Multiagent Systems, and J4—Social

and Behavioral Sciences—Economics. The distribution of

documents in the corpus is mentioned in Table 2.

All the documents in the corpus are in plain text and

the average length of these documents is about 2000

words. Although the XML version of this dataset exists,

we prefer text dataset since the former one is heavy,

verbose, and rare. For comparison, gold standard keyphrases

have been employed that come along with the dataset

Table 2 Number of documents per topic in the four ACM document

classifications

Dataset Total Document topic

C H I J

Set 1 144 34 39 35 36

Set 2 100 25 25 25 25

and composed of author-assigned keyphrases and reader-

assigned keyphrases. Table 3 exhibits the distribution of

author- and reader-assigned keyphrases in the corpus.

Again, for testing the domain independence of the

proposed technique, Theses100 benchmark dataset [69] is

employed. This dataset is composed of 100 master and

Ph.D. theses from the University of Waikato, New Zeland.

All the documents are in plain text, and the average length

of these documents is about 7000 words. For comparison,

gold standard keyphrases have been taken into account that

come along with the dataset.

Furthermore, a German Research Article dataset has

been created to test the language independence of the

proposed technique due to the absence of such benchmark

dataset, which is later uploaded in for further reference.

All the articles in this dataset are collected from various

open score research article database [51]. All the documents

in this corpus are in plain text and the average length of

these documents is about 2000 words. For comparing the

performance of various keyphrase extraction techniques,

author-assigned keyphrases are considered as gold standard

keyphrases.

EvaluationMetrics

Three prominent and relevant metrics, namely, precision

(̺), recall (ς), and F1-score (φ) have been used for

comparing the proposed technique’s performance with other

considered techniques. Here, ̺ is the ratio of correctly

predicted positive values with respect to the total predicted

values. It can be calculated using the following formula:

̺ =
κcorrect

κextract
(2)

where, κcorrect is the number of correctly matched

keyphrases with gold standard keyphrases and κextract is the

number of extracted keyphrases from a document, i.e., value

of N in case of extracting top-N keyphrases.

On the other hand, ς is the ratio of correctly predicted

positive values with respect to the actual positive values and

can be calculated as follows:

ς =
κcorrect

κstandard

(3)

where, κstandard is the number of keyprhases in gold standard

keyphrase list for that particular document.

Table 3 Keyphrase distribution of gold standard in different datasets

Dataset Author assigned Reader assigned Combined

Set 1 559 1824 2223

Set 2 387 1217 1482

822 Cogn Comput (2020) 12:811–833

Again, φ is the weighted average of ̺ and ς , which can

be calculated using the following formula:

φ =
2 × ̺ × ς

̺ + ς
(4)

This metric is much more sophisticated than conventional

accuracy metric since it takes both false positives and false

negatives into consideration.

Implementation Details

The proposed technique is implemented using Python3

employing several necessary packages, such as PorterStem-

mer [31, 32, 47], Sent tokenize, Word tokenize of Natural

Language Tool Kit [4, 62], Regular Expression [13, 38], and

so on. Note that all the words are stemmed initially before

passing them to the processing phase employing porter-

Stemmer. Again, for gold standard keyphrases, no such

processing is required since they are already stemmed.

For other compared techniques, Python Keyphrase

Extraction (PKE) toolkit [5]—which is an open-source

python-based keyphrase extraction toolkit—is utilized.

Here, we would like to mention that for all the experiments,

whatsoever, a uniform experimental environment is offered

to ensure a level playing ground for all the techniques. For

the compared techniques, top-N keyprhases are acquired

from the PKE using respective Application Programming

Interfaces (APIs). Afterwards, these acquired keyphrases

are compared with the gold standard keyphrases, and then,

metrics are calculated accordingly. All experimental codes

and corpus are currently available in [50] for access upon

request.

Results and Discussion

This section includes the results that are acquired from

the experiments along with their detail analyses. It starts

with selecting suitable parameter values which have direct

influence on the performance of the proposed technique. For

other compared techniques, standard parameter values are

selected as suggested in [5].

Parameter Value Selection

Among various parameters of the proposed technique, two

parameters have definite impacts on the performance, which

are lsaf (discussed in the “Conceptual Framework” section)

and mamu (discussed in the “Keyphrase Extraction”

section). Here, the former parameter is utilized to filter out

all non-popular candidate keyphrases from the list and the

latter plays an important role in extracting keyphrases from

the resultant tree. As mentioned earlier, a lower mamu value

would result in many but low-quality keyphrases, whereas

a high mamu value would result in few but abbreviated

keyphrases. Therefore, it is necessary to determine, which

mamu value would give the superlative performance.

For determining the suitable lsaf value, an experiment

has been performed varying it from 0 to 5 for two arbitrarily

selected mamu values. The experiments are performed on

set 2 dataset to acquire top-N keyphrases, where N = 5,

10, and 15, which are then utilized to calculate precision,

recall, and F1-score. The acquired results are demonstrated

in Table 4. The highest performance shown for F1 value

is 15.6 for top-15 keyphrases by lsaf values 3 and 4,

whereas the lowest performance shown is 10.5 for the top-5

keyphrases by lsaf value 1. It is because a lower value of

Table 4 Performance of proposed technique for various lsaf values for two arbitrarily selected μ values on set 2 dataset

lsaf μ Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

1 0 20.3 7.1 10.5 16.2 11.5 13.3 13.5 14.1 13.7

1 2 20.5 7.2 10.6 16.8 11.9 13.8 14.0 14.6 14.2

2 0 21.3 7.6 11.2 17.2 12.3 14.2 14.3 15.2 14.6

2 2 21.9 7.8 11.5 17.0 12.1 14.1 14.4 15.3 14.7

3 0 21.3 7.6 11.1 17.7 12.6 14.6 14.9 15.8 15.3

3 2 21.3 7.6 11.1 17.8 12.6 14.6 15.3 16.1 15.6

4 0 21.6 7.7 11.28 17.9 12.71 14.74 15.2 16.1 15.5

4 2 21.6 7.7 11.28 17.9 12.71 14.75 15.3 16.2 15.6

5 0 21.6 7.7 11.28 17.9 12.71 14.74 15.1 16 15.4

5 2 21.6 7.7 11.28 17.9 12.71 14.75 15.2 16.1 15.5

823Cogn Comput (2020) 12:811–833

lsaf incorporates non-popular keyphrases during ranking,

and thus, entice ranking approach. From the results, it is

evident that with increasing lsaf value, F1 value increases

for any mamu value until lsaf = 3; afterwards, it becomes

almost steady. Hence, 3 could be considered as the threshold

value of lsaf and is utilized in other experiments.

Again, to select a suitable mamu value, we also conduct

another set of experiments varying mamu values from 0 to

5, fixing lsaf to 3, and taking set 1 and set 2 datasets of

the corpus into consideration. For both datasets, results are

acquired for top-N keyphrases, where N = 5, 10, and 15.

All the acquired results are stated in Tables 5 and 6 for set 1

and set 2 datasets, respectively. They are also plotted using

contour graphs in Figs. 7 and 8 for more depictions.

As could be observed from the tables as well as from

the figures is that performance differences in several mamu

values are not as evident as lsaf values since we have

already filtered out non-popular keyphrases by selecting

lsaf = 3. The highest F1 achieved is 15.6 for set 2

dataset and 13.2 from set 1 dataset, and both cases, it is

achieved by mamu = 2. Again, for most of the cases

with increasing mamu values, performance increases to a

certain point, and afterwards, it decreases. In our case,

mamu = 2 is the threshold for both the datasets. The reason

is that it maintains the trade-off between the keyphrase

length and quantity. On the other hand, smaller mamu values

produce considerably many and/or lengthy keyphrases; but

the quality is a little bit compromised, whereas higher mamu

values attain considerably lower and/or mostly abbreviate

keyphrases. In the latter case, since lengthy keyphrases are

ignored, the performance is also a little bit compromised.

Hence, mamu = 2 is locked for the rest of the experiments.

Results Analyses

Here, we would like to note that the performance of all

the technique would have improved if 15% of the reader-

assigned keyphrases that are absent would have appeared

in the text, and if 19% of the author-assigned keyphrases

that are absent would have appeared in the text. Hence, all

Fig. 7 Performance of the proposed technique for various μ values on

set 1 dataset

the results in this paper are based on 85% and 81% for the

reader- and author-assigned keyphrases, respectively.

For all the techniques, three experiments are performed

for each dataset with a target of extracting top-N

keyphrases, where N = 15 is preferred in many

literatures [33, 34], and hence, is our choice. Again,

once we have top-15 keyphrases, we can derive the top

5 and top-10 keyphrases from there. These experiments

are performed for (i) reader-assigned keyphrases, (ii)

author-assigned keyphrases, and (iii) combined keyphrases

(combines reader- and author-assigned keyphrases). The

acquired results for set 2 dataset are shown in Tables 7, 8,

and 9 for reader-assigned, author-assigned, and combined

keyphrases, respectively.

From the tables, it could be observed that generally,

statistical-based techniques performed better than graph-

based techniques. It is because graph-based techniques are

not good in capturing the cohesiveness of words in a

keyphrase, experience clustering errors, suffer from error

propagation problem and so on, which are mentioned the

“Related Works” section.

Table 5 Performance of proposed technique for various μ values on set 1 dataset

μ Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

0 17.6 6.0 8.8 14.8 9.9 11.7 13.3 13.6 13.2

1 17.6 6.0 8.8 14.7 9.9 11.6 13.1 13.5 13.1

2 17.9 6.1 9.0 14.5 9.8 11.5 13.2 13.6 13.2

3 17.6 5.9 8.8 14.4 9.7 11.4 13.0 13.3 13.0

4 17.6 5.9 8.8 14.5 9.8 11.5 13.1 13.4 13.0

5 17.4 5.9 8.7 14.4 9.7 11.5 13.1 13.5 13.1

824 Cogn Comput (2020) 12:811–833

Fig. 8 Performance of the proposed technique for various μ values on

set 2 dataset

On the other hand, statistical-based techniques are simple

to implement and utilize basic features, like term frequency,

inverse document frequency, word positions, and word

relatedness to a context to extract the most descriptive

terms in a document. Despite that, they demonstrate

better performance over the graph-based techniques because

statistical characteristics of the aforementioned basic

features repeat over and over in most of the documents for

the top keyphrases.

Again, among all the graph-based techniques, SR

performs the worst in terms of all the considered metrics.

The highest F1 achieves by this technique is only 1.9

for top-15 in the case of reader-assigned gold standard

keyphrases, whereas the lowest is 0.3 for top-5 keyphrases

in the case of author-assigned gold standard keyphrases.

It is because SR assigns higher scores to long but non-

significant keyphrases. In detail, SR assigns the weights

of the edges based on the number of co-occurrences.

Afterwards, keyphrases are extracted in the form of

noun phrases and then ranked based on the sum of the

significance of the words they contain. Therefore, non-

significant long keyphrases receive higher scores than

abbreviated keyphrases.

With respect to SR, PR outperforms the former in terms

of all the metrics and for all top-N keyphrases. This happens

because it incorporates the position information of a word

and its occurrences to score words. It receives an average F1

score of 3.57 for reader-assigned keyphrases, 1.9 for author-

assigned keyphrases, and 3.63 for combined keyphrases

for all the top-N cases that we considered in this paper.

However, it fails to ensure topical coverage and diversity

that are not naturally handled by this kind of graphs.

On the other hand, due to taking the topical coverage

into account, TR overpowers PR technique for any

metric or any parameter, which was absent in the latter

technique. Here, topic relations are accounted to find the

Fig. 9 F1 scores of various unsupervised keyphrase extraction

techniques for top-5 keyphrases employed on set 2 dataset

semantic relatedness between the candidate keyphrases

they instantiate. It demonstrates an average performance

improvement of 93.55% over PR for reader-assigned

keyphrases, 216.82% for author-assigned keyphrases, and

119.24% for combined keyphrases. Again, F1 value of

top-5 keyphrases contributes more in these performance

differences—around 140% for reader-assigned, 385% for

author-assigned, and 200% for combined keyphrases.

Although it maximizes the topical coverage, it suffers

from several limitations. For instance, all candidates under

a single topic are considered equally, and therefore,

post-ranking heuristics are necessary to select the most

representative keyphrases from each topic. Again, if any

error occurs while forming topics, it will propagate

throughout the model and thus negatively impacts its

performance.

Since MR resolves the issue of error propagation,

it performs superiorly over TR, and thus over SR and

PR. To resolve this issue, MR utilizes the multipartite

graph, hence the name, which connects sets of topic

related candidates tightly. The average F1 receives for

reader-assigned keyphrases is 8; whereas, it is for author-

assigned keyphrases is 5.47, and combined keyphrases

is 7.33. However, it struggles with selecting the most

representative candidates due to clustering errors, where

candidate keyphrases could be wrongly assigned to the same

topic.

Among the statistical-based approaches, TF-IDF per-

forms comparably to MR for all the metrics and attributes.

For instance, it receives an average F1 of 7 for reader-

assigned keyphrases, 6.8 for author-assigned keyphrases,

and 8.57 for combined keyphrases. In TF-IDF, IDF pro-

vides informativeness and TF provides aboutness. Here, TF

discriminates the non-popular keyphrases from the popu-

lar keyphrases in a document, whereas IDF discriminates

between informative and non-informative keyphrases across

the documents. A keyphrase receives high IDF when it is

825Cogn Comput (2020) 12:811–833

Fig. 10 F1 scores of various unsupervised keyphrase extraction

techniques for top-10 keyphrases employed on set 2 dataset

rare along the collections. However, it favors single terms or

bias towards single terms over compound terms, and hence,

demonstrates considerably lower performance over YAKE

on set 2 dataset.

In the case of YAKE, it takes five features into account,

namely casing, word position, word frequency, word relat-

edness to context, and word in the different sentences, to

rank keyphrases. Since many quality keyphrases pursue

these statistical features unconsciously, it shows better per-

formance over TF-IDF technique. It receives an average

performance enhancement of 47.53% for reader-assigned

keyphrases, 38.95% for author-assigned keyphrases, and

34.83% for combined keyphrases. However, since candi-

date keyprhases are generated using N-grams technique,

where N is 1-, 2-, and 3-grams, a considerably large num-

ber of keyphrases are generated, which entices ranking

procedure.

In terms of any metric and any attribute, TeKET

outperforms the other techniques that are considered in

this evaluation significantly. For instance, it outperforms

YAKE by 21.51% for F1 measure on an average in case

of reader-assigned keyphrases, 5.61% in case of author-

assigned keyphrases, and 20.49% in case of combined

Fig. 11 F1 scores of various unsupervised keyphrase extraction

techniques for top-15 keyphrases employed on set 2 dataset

keyphrases. Again, our proposed technique receives the

highest F1 value among all the techniques, i.e., 15.6, for top-

15 keyphrases in case of combined gold standard keyphrase

list. One of the reasons for its excellent performance is

that it extracts final keyphrases from candidate keyphrases

using the KePhEx tree, and hence, considers most likely

keyphrases during ranking. In addition, it utilizes two

factors (TF and μ) in ranking, where the preceding factor

is utilized to discriminate non-popular keyphrases from

popular keyphrases and the latter factor is utilized to find the

cohesiveness of various words in a keyphrase with respect

to the root. Again, in the calculation, summation is preferred

over average to facilitate longer keyphrases.

In Figs. 9, 10, and 11, F1 scores of various techniques for

top-5, 10, and 15 keyphrases are shown in the case of reader-

assigned, author-assigned, and combined gold standard

keyphrases. Like the table, SR demonstrates the substandard

performance. Although, PR outperforms SR, but it falls

short in front of TR for a considerably larger margin. Again,

MR and TF-IDF demonstrate comparable performance

in case of all three top-N values. Although, YAKE

performs better over other considered keyphrase extraction

techniques, but our proposed technique overpowers all

Table 6 Performance of proposed technique for various μ values on set 2 dataset

μ Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

0 21.3 7.6 11.1 17.7 12.6 14.6 14.9 15.8 15.3

1 21.3 7.6 11.1 17.8 12.6 14.6 15.3 16.2 15.6

2 21.3 7.6 11.1 17.8 12.6 14.6 15.3 16.1 15.6

3 21.5 7.7 11.2 17.7 12.5 14.5 15.1 15.9 15.4

4 21.7 7.8 11.4 17.9 12.7 14.7 15.0 15.9 15.3

5 21.3 7.6 11.2 17.8 12.6 14.6 14.7 15.6 15.0

826 Cogn Comput (2020) 12:811–833

Table 7 Performance of different unsupervised machine learning–based keyphrase extraction techniques for reader-assigned keyphrases on set 2

dataset

Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-based TopicRank 9.4 4.0 5.5 7.8 6.6 7.1 6.6 8.4 7.3

PositionRank 3.8 1.6 2.3 4.4 3.8 4.0 3.9 5.1 4.4

SingleRank 1.9 0.8 1.2 1.8 1.5 1.6 1.7 2.2 1.9

MultipartiteRank 11.3 4.8 6.7 9.2 7.8 8.4 8.0 10.3 8.9

Statistical-based TF-IDF 11.1 4.7 6.6 7.4 6.4 6.8 6.9 8.9 7.5

YAKE 12.7 5.5 7.7 12.0 10.4 11.1 10.9 14.1 12.2

Tree-based (proposed) TeKET 16.5 7.2 10.0 14.5 12.6 13.4 12.5 16.1 13.9

Table 8 Performance of different unsupervised machine learning–based keyphrase extraction techniques for author-assigned keyphrases on set 2

dataset

Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-based TopicRank 6 7.2 6.3 3.9 9.5 5.4 3.1 11.2 4.7

PositionRank 1.2 1.8 1.3 1.5 3.9 2.0 1.5 6.8 2.4

SingleRank 0.4 0.4 0.3 0.3 0.7 0.4 0.2 1.2 0.41

MultipartiteRank 6.4 8.1 6.9 4.4 11.0 6.1 3.7 13.7 5.7

Statistical-based TF-IDF 6.4 7.9 6.8 4.9 11.9 6.8 4.3 16.4 6.7

YAKE 7.8 10.3 8.6 6.8 18.6 9.8 6.2 2.4 9.8

Tree-based (proposed) TeKET 8.8 11.6 9.7 7.3 19.8 10.4 6.1 24.2 9.6

Table 9 Performance of different unsupervised machine learning–based keyphrase extraction techniques for combined keyphrases on set 2 dataset

Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-based TopicRank 12.3 4.2 6.3 9.4 6.5 7.6 8 8.3 8.1

PositionRank 4.2 1.4 2.1 5.1 3.6 4.1 4.6 4.9 4.7

SingleRank 2.2 0.7 1.1 1.9 1.2 1.5 1.8 1.8 1.8

MultipartiteRank 13.9 4.8 7.1 11.1 7.8 9.1 9.5 10.1 9.7

Statistical-based TF-IDF 14.3 5.1 7.5 10.3 7.4 8.6 9.4 10.1 9.6

YAKE 16.9 6.0 8.83 14.9 10.6 12.3 13.5 14.3 13.8

Tree-based (proposed) TeKET 21.3 7.6 11.1 17.8 12.6 14.6 15.3 16.1 15.6

827Cogn Comput (2020) 12:811–833

Table 10 Performance of different unsupervised machine learning–based keyphrase extraction techniques for reader assigned keyphrases on set 1

dataset

Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-based TopicRank 8.0 3.1 4.5 6.3 5.0 5.5 5.4 6.5 5.8

PositionRank 3.6 1.4 2.0 3.2 2.6 2.9 2.9 3.6 3.2

SingleRank 1.5 0.58 0.84 0.97 0.77 0.85 1.2 1.4 1.3

MultipartiteRank 8.8 3.5 5.0 7.5 6.0 6.6 6.3 7.7 6.8

Statistical-based TF-IDF 7.5 3.1 4.4 5.9 4.9 5.3 4.7 5.8 5.2

YAKE 7.4 3.0 4.2 7.0 5.6 6.1 6.7 8.1 7.2

Tree-based (proposed) TeKET 14.0 5.7 8.0 11.0 9.0 9.8 10.1 12.7 11.1

Table 11 Performance of different unsupervised machine learning–based keyphrase extraction techniques for author assigned keyphrases on set 1

dataset

Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-based TopicRank 3.4 4.7 3.9 2.7 7.6 3.8 2.2 9.4 3.5

PositionRank 1.8 2.4 2.0 1.7 5.0 2.5 1.3 5.8 2.2

SingleRank 0.4 0.6 0.4 0.6 1.8 0.9 0.6 2.6 1.0

MultipartiteRank 4.4 6.2 5.0 3.4 9.8 5.0 3.0 12.7 4.7

Statistical-based TF-IDF 4.2 5.9 4.6 3.1 8.0 4.3 2.6 10.0 4.0

YAKE 5.4 7.2 6.0 4.8 12.8 6.8 4.5 17.9 7.1

Tree-based (proposed) TeKET 8.4 11.3 9.4 6.7 18.1 9.6 6.1 24.4 9.6

Table 12 Performance of different unsupervised machine learning–based keyphrase extraction techniques for combined keyphrases on set 1

dataset

Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-based TopicRank 9.5 3.0 4.5 7.5 4.8 5.8 6.5 6.3 6.3

PositionRank 4.8 1.5 2.3 4.4 2.9 3.4 3.8 3.8 3.8

SingleRank 1.6 0.5 0.7 1.3 0.9 1.0 1.7 1.6 1.6

MultipartiteRank 11.2 3.6 5.4 9.3 6.1 7.3 8.1 7.9 7.9

Statistical-based TF-IDF 10.1 3.4 5.0 8.1 5.4 6.4 6.4 6.4 6.3

YAKE 10.8 3.5 5.3 10.0 6.6 7.9 9.3 9.2 9.1

Tree-based (proposed) TeKET 17.9 6.1 9.0 14.5 9.8 11.5 13.2 13.6 13.2

828 Cogn Comput (2020) 12:811–833

Fig. 12 F1-Scores of various unsupervised keyphrase extraction

techniques for top-5 keyphrases employed on set 1 dataset

others. The reasons of their performance differences are

same as before.

The acquired results for set 1 data are plotted in

Tables 10, 11, and 12 for reader-assigned, author-assigned,

and combined keyphrases respectively. Likewise for set 2,

all the results are acquired for three metrics and compared

with top-N keyphrases, where N = 5, 10, and 15. The

average F1 scored by the SR technique for all cases is 1.05,

which is the lowest among all. On the other hand, it is 2.7,

4.84, and 6.03 for PR, TR, and MR, respectively. Due to

utilizing multipartite graph, it extracts more gold standard

keyphrases than others. Again, the average F1 scores for

TF-IDF and YAKE are 5.06 and 6.63, respectively. Unlike

set 2 data, TF-IDF performs worse than MR for set 1 data;

however, the latter almost catches YAKE in terms of F1

score. Conversely, our proposed technique overpowers all

the considered techniques with an average F1 score of 10.13

for the reasons that are stated before.

The F1 scores of various gold standard keyphrase classes

(reader, author, and combined) for set 1 data are shown

Fig. 13 F1 scores of various unsupervised keyphrase extraction

techniques for top-10 keyphrases employed on set 1 dataset

Fig. 14 F1 scores of various unsupervised keyphrase extraction

techniques for top-15 keyphrases employed on set 1 dataset

in Figs. 12, 13, and 14 for top-5, 10, and 15 keyphrases,

respectively. Like the previous cases, performances of SR,

PR, and TR remain in the same increasing order. However,

F1 scores of MR, TF-IDF, and YAKE are comparable

for all top-N keyphrases, unlike test data where YAKE

outperforms the other two. In any case, our proposed

technique overpowers the rest of the compared techniques.

TeKET Is Domain Independent

To demonstrate the domain independence property of the

proposed technique, we have conducted an experiment on

the Theses100 dataset (see the “Corpora Details” section

for a detailed description) following a similar experimental

environment discussed in the “Evaluation Metrics” section.

The justification for selecting such a dataset is to highlight

that the proposed technique also works satisfactorily with a

large amount of words. The average length of the documents

in Theses100 dataset is ∼ 7, 000 words with respect to

∼ 2, 000 words in research articles. The obtained results of

the experiments are reported in Table 13.

It can be seen from the obtained results that the

performance of almost all the comparable techniques

deteriorates in terms of the considered metrics. One of the

reasons for this low performance is that, when a document

contains many words (as in a thesis), keyphrase extraction

technique produces a large number of keyphrases. This, in

turn, makes it very challenging to select top-N keyphrases

from there for the ranking procedure.

Now, while comparing the performance of TeKET to

other relevant techniques considered in this paper, TEKET

outperforms the other techniques significantly in any metric

and attribute. For example, TeKET outperforms its closest

competitor, YAKE, by 5.2% on F1 measure for all top-

N keyphrases. The reason behind this is that TeKET

employs an intermediate phase to extract final keyphrases

from the candidate keyphrases through the KePhEx tree,

829Cogn Comput (2020) 12:811–833

Table 13 Performance of different unsupervised machine learning–based keyphrase extraction techniques on Thesis100 dataset

Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-based TopicRank 5.8 4.1 4.7 3.9 5.6 4.5 2.8 6.1 3.8

PositionRank 0.6 0.3 0.4 0.5 0.6 0.5 0.5 1.0 0.7

SingleRank 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.3 0.2

MultipartiteRank 6.2 4.6 5.2 4.2 6.1 4.9 3.0 6.6 4.0

Statistical-based TF-IDF 1.4 1.3 1.2 0.9 1.6 1.1 0.7 2.0 1.0

YAKE 7.4 5.2 6.0 4.9 7.3 5.8 3.8 8.2 5.1

Tree-based (proposed) TeKET 9.9 7.6 8.3 7.0 10.5 8.1 5.5 12.6 7.3

and therefore, ranks only most probable keyphrases. On

the other hand, in the case of YAKE, several inferior

keyphrases exhibit similar statistical behavior like top

keyphrases, and therefore, perform poorly. Again, although

being a statistical-based approach, TF-IDF fails to exhibit

comparative performance to YAKE. It is because the former

one employs only two factors, namely TF and IDF, whereas,

the latter consider multiple relevant features including

casing, word position, frequency, and relatedness to context

for ranking the keyphrases.

In general, all the graph-based techniques exhibit inferior

performance than YAKE and TeKET since they have a

number of shortcomings including not being good in

capturing the cohesiveness of words, subject to clustering

errors, experiences error propagation problem, etc. Among

them, MR performs the best in terms of all the considered

metrics. The highest F1 achieved by MR is only 5.2 for top-5

keyphrases and the lowest is 4.0 for top-15 keyphrases. It is

mainly due to resolving the error propagation problem that

exists in TR. Now, TR is the closest competitor to MR with

the highest F1 score of 4.7 for top-5 keyphrases. Among the

rest, the performance of PR and SR is negligible.

TeKET Is Language Independent

To demonstrate the language independence of the proposed

technique, a German Research Article dataset [51] has

been employed (see the “Corpora Details” section for

details). Necessary adaptations have been made to all

relevant techniques including the proposed one to ensure the

experiment’s successful run. The obtained results have been

reported in Table 14.

We can see in the reported results that the performance of

PR, SR, and TF-IDF are negligible (i.e., almost zero). In the

case of SR, since it has a tendency of assigning higher scores

to long but non-significant keyphrases, it fails to find gold

standard keyphrases from the top ranked ones. On the other

hand, in the case of PR, due to its inaccurate weight assign-

ments to various keyphrases belonging to a single topic,

it also fails to score better. Again, in the case of TF-IDF,

Table 14 Performance of different unsupervised machine learning–based keyphrase extraction techniques on German Research Article dataset

Approach Technique Top 5 Top 10 Top 15

P R F1 P R F1 P R F1

Graph-based TopicRank 6.0 6.5 6.2 5.0 9.5 6.4 3.9 11.5 5.8

PositionRank 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SingleRank 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MultipartiteRank 8.0 9.0 8.5 6.0 12.0 7.8 6.0 18.0 8.9

Statistical-based TF-IDF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

YAKE 8.0 9.0 8.4 4.0 9.0 5.5 2.6 9.0 4.1

Tree-based (proposed) TeKET 8.8 9.4 9.1 5.5 11.6 7.8 4.4 13.8 6.7

830 Cogn Comput (2020) 12:811–833

it fails due to receiving higher ranks by the inferior

keyphrases. In the case of TR, it exhibits relatively better

performance as it takes topical coverage into account. The

highest F1 score it receives is 6.4 for top-10 keyphrases,

which is higher than that of YAKE. The latter only receives

higher F1 score for top-5 keyphrases.

For this corpus, TeKET and MR perform comparably.

For instance, although TeKET outperforms MR for top-5

keyphrases, it suffers a defeat for top-15 keyphrases. For

top-10 keyphrases, both exhibit identical performance. The

reason for MR’s better performance is due to solving the

error propagation problem of the TR technique. Based on

the aforementioned discussions and the reported results in

the table, we can conclude that the proposed technique is

also language independent.

Conclusions

In this paper, a new unsupervised automatic keyphrase

extraction technique, named Tree-based Keyphrase Extrac-

tion Technique (TeKET) is proposed, which is domain and

language independent, employs limited statistical knowl-

edge, but no train data are required. It introduces a

new variant of binary tree, called KeyPhrase Extraction

(KePhEx) tree), for extracting final keyphrases from can-

didate keyphrases. The proposed tree is formed using a

candidate keyphrase and processed with other similar can-

didate keyphrases of a certain root. In the end, the tree

is pruned before extracting final keyphrases employing

the mamu value, which also provides flexibility during

keyphrase extraction process from the tree. Afterwards, all

the final keyphrases are extracted from the resultant tree and

they are ranked taking TF and μ factors into account, and

then, sorted. At last, top-N keyphrases are selected from the

sorted list and returned.

Our proposed technique is compared with other promi-

nent unsupervised keyphrase extraction techniques on a uni-

form experimental setup. The results are acquired for three

datasets, namely SemEval-2010, Theses100, and German

Research Article to evaluate their performance. According

to the acquired results, TeKET outperforms the rest of the

compared techniques in terms of F1 scores for all consid-

ered parameters. They also establish the claim of domain

and language independence of the proposed technique.

Acknowledgements The authors would like to thank Prof. Min-Yen

Kan from the National University of Singapore for providing the

dataset.

Author Contributions This work was carried out in close collaboration

among all authors. S.A. conceived the method and experiments.

G.R. and S.A. implemented and conducted the experiments. M.M.

contributed to the experiments and in analyzing the results. K.Z.Z. and

M.M.R. analyzed the results. All authors have contributed to writing

the paper.

Funding Information This work has been financially supported in part

by the RDU project under Grant No. RDU180359 and RDU182201-3.

Compliance with Ethical Standards

Conflict of Interests The authors declare that they have no conflict of

interest.

Ethical Approval This article does not contain any studies with human

participants or animals.

Informed Consent As this article does not contain any studies with

human participants or animals, the informed consent is not applicable.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Adeniyi D, Wei Z, Yongquan Y. Automated web usage data min-

ing and recommendation system using k-nearest neighbor (knn)

classification method. Appl Comput Inform. 2016;12(1):90–108.

2. Arampatzis A, Tsoris T, Koster CHA, Weide TPVD. Phrase-

based information retrieval. Inf Process Manag. 1998;34(6):693–

707.

3. Bennani-Smires K, Musat C, Hossmann A, Baeriswyl M, Jaggi

M. Simple unsupervised keyphrase extraction using sentence

embeddings. arXiv:180104470. 2018.

4. Bird S, Loper E. NLTK: the natural language toolkit. In: Proc

ACL; 2004. p. 214–217.

5. Boudin F. pke: an open source python-based keyphrase extraction

toolkit. In: Proc COLING; 2016. p. 69–73.

6. Boudin F. Unsupervised keyphrase extraction with multipartite

graphs. In: Proc NAACL: Human language technologies; 2018.

p. 667–672.

7. Bougouin A, Boudin F, Daille B. Topicrank: Graph-based

topic ranking for keyphrase extraction. In: Proc IJCNLP; 2013.

p. 543–551.

8. Brin S, Page L. The anatomy of a large-scale hypertextual web

search engine. Comput Netw ISDN Syst. 1998;30(1-7):107–117.

9. Brown JS, Duguid P. Organizing knowledge. California

Management Review. 1998;40(3):90–111.

10. Campos R, Mangaravite V, Pasquali A, Jorge AM, Nunes

C, Jatowt A. A text feature based automatic keyword extraction

method for single documents. In: Proc ECIR; 2018. p. 684–691.

11. Campos R, Mangaravite V, Pasquali A, Jorge AM, Nunes

C, Jatowt A. Yake! collection-independent automatic keyword

extractor. In: Proc ECIR; 2018. p. 806–810.

12. Chor B, Gilboa N, Naor M. Private information retrieval by

keywords. Princeton: Citeseer; 1997.

13. Chowdhury GG. Natural language processing. Wiley Online

Library. 2003;37:51–89.

831Cogn Comput (2020) 12:811–833

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/180104470

14. Das AS, Datar M, Garg A, Rajaram S. Google news

personalization: scalable online collaborative filtering. In: Proc

WWW; 2007. p. 271–280.

15. Dashtipour K, Poria S, Hussain A, Cambria E, Hawalah AY,

Gelbukh A, Zhou Q. Multilingual sentiment analysis: state of

the art and independent comparison of techniques. Cogn Comput.

2016;8(4):757–771.

16. DeWilde B. Intro to automatic keyphrase extraction. http://

bdewilde.github.io/blog/2014/09/23/intro-to-automatic-keyphrase-

extraction/. 2014.

17. El-Beltagy SR, Rafea A. Kp-miner: a keyphrase extraction system

for english and arabic documents. Inf Syst. 2009;34(1):132–144.

18. El-Beltagy SR, Rafea A. Kp-miner: Participation in semeval-2.

In: Proc SemEval; 2010. p. 190–193.

19. Florescu C, Caragea C. Positionrank: an unsupervised approach

to keyphrase extraction from scholarly documents. In: Proc. ACL;

2017. p. 1105–1115.

20. Franceschini F, Maisano D, Mastrogiacomo L. Empirical

analysis and classification of database errors in scopus and web of

science. J Informetr. 2016;10(4):933–953.

21. Frank E, Paynter GW, Witten IH, Gutwin C, Nevill-Manning

CG. Domain-specific keyphrase extraction. In: Proc. IJCAI; 1999.

p. 668–673.

22. Freitag D. Machine learning for information extraction in informal

domains. Mach learn. 2000;39(2-3):169–202.

23. Hardeniya N, Perkins J, Chopra D, Joshi N, Mathur I.

Natural language processing: python and NLTK. Birmingham:

Packt Publishing Ltd; 2016.

24. Hariharan R, Hore B, Li C, Mehrotra S. Processing spatial-

keyword (sk) queries in geographic information retrieval (gir)

systems. In: Proc. SSBDM; 2007. p. 16–16.

25. Hasan KS, Ng V. Automatic keyphrase extraction: a survey of the

state of the art. In: Proc. ACL; 2014. p. 1262–1273.

26. Herrera JP, Pury PA. Statistical keyword detection in literary

corpora. Eur Phys J B. 2008;63(1):135–146.

27. Hoare CAR. Quicksort. The Computer Journal. 1962;5(1):10–16.

https://doi.org/10.1093/comjnl/5.1.10.

28. Huang F, Zhang Y, Vogel S. Mining key phrase translations from

web corpora. In: Proc. HLT; 2005. p. 483–490.

29. Hulth A. Improved automatic keyword extraction given more

linguistic knowledge. In: Proc. EMNLP; 2003. p. 216–223.

30. Jean-Louis L, Zouaq A, Gagnon M, Ensan F. An assessment

of online semantic annotators for the keyword extraction task. In:

Proc. PRICAI; 2014. p. 548–560.

31. Kantrowitz M, Mohit B, Mittal V. Stemming and its effects on

tfidf ranking. In: Proc. SIGIR; 2000. p. 357–359.

32. Karaa WBA, Gribâa N. Information retrieval with porter stemmer:

a new version for english. In: Advances in computational science,

engineering and information technology. Springer; 2013. p. 243–

254.

33. Kim SN, Medelyan O, Kan MY, Baldwin T. Semeval-2010

task 5: Automatic keyphrase extraction from scientific articles. In:

Proc. SemEval; 2010. p. 21–26.
34. Kim SN, Medelyan O, Kan MY, Baldwin T. Automatic

keyphrase extraction from scientific articles. Lang Resour Eval.

2013;47(3):723–742.
35. Kononenko I. Machine learning for medical diagnosis: history,

state of the art and perspective. Artif Intell Med. 2001;23:89–109.
36. Kosala R, Blockeel H. Web mining research: a survey. ACM

SIGKDD Explor Newsl. 2000;2(1):1–15.
37. Kotler P, Roberto EL. Social marketing. Strategies for changing

public behavior. New York: Free Press; 1989.
38. Kuchling A. Regular expression howto. https://docs.python.org/3/

howto/regex.html. 2018.

39. Lawrence S, Giles CL, Bollacker K. Digital libraries and

autonomous citation indexing. Computer. 1999;32(6):67–71.

40. Litvak M, Last M. Graph-based keyword extraction for single-

document summarization. In: Proc. MMIES; 2008. p. 17–24.

41. Manevitz LM, Yousef M. One-class svms for document

classification. J Mach Learn Res. 2001;2(Dec):139–154.

42. McCallum A, Nigam K, et al. A comparison of event models for

naive bayes text classification. In: AAAI-98 Workshop learn. text

categ.; 1998. p. 41-48.

43. Merrouni ZA, Frikh B, Ouhbi B. Automatic keyphrase extraction:

an overview of the state of the art. In: Proc. CiST; 2016.

p. 306–313.

44. Mihalcea R, Tarau P. Textrank: Bringing order into text. In:

Proceedings of the 2004 conference on empirical methods in

natural language processing; 2004. p. 404–411.

45. Ohsawa Y, Benson NE, Yachida M. Keygraph: automatic

indexing by co-occurrence graph based on building construction

metaphor. In: Proc. ADL; 1998. p. 12–18.

46. Page L, Brin S, Motwani R, Winograd T. The pagerank citation

ranking: bringing order to the web. Stanford InfoLab, Tech rep.

1999.

47. Paik JH, Pal D, Parui SK. A novel corpus-based stem-

ming algorithm using co-occurrence statistics. In: Proc SIGIR;

2011. p. 863–872.

48. Pandarachalil R, Sendhilkumar S, Mahalakshmi G. Twitter

sentiment analysis for large-scale data: an unsupervised approach.

Cognitive Computation. 2015;7(2):254–262.

49. Pudota N, Dattolo A, Baruzzo A, Ferrara F, Tasso C. Automatic

keyphrase extraction and ontology mining for content-based tag

recommendation. Int J Intell Syst. 2010;25(12):1158–1186.

50. Rabby G, Azad S. Automatic keyphrase extraction. https://drive.

google.com/drive/folders/1e2UrDtYqRAjAE5hso4oXobX Djuo

VUW. 2019.

51. Rabby G, Azad S. Datasets - german papers. https://github.com/

corei5/TeKET/tree/master/Data%20set/German%20Papers. 2019.

52. Rabby G, Azad S, Mahmud M, Zamli KZ, Rahman MM. A

flexible keyphrase extraction technique for academic literature. In:

Procedia Comput Sci; 2018. p. 653–663.

53. Reilly RG, Sharkey N. Connectionist approaches to natural

language processing. Abingdon: Routledge; 2016.

54. Ricci F, Rokach L, Shapira B. Introduction to recommender sys-

tems handbook. In: Recommender systems handbook. Springer;

2011. p. 1–35.

55. Rowley J, Hartley R. Organizing knowledge: an introduction to

managing access to information. Abingdon: Routledge; 2017.

56. Salton G, Buckley C. Term-weighting approaches in automatic

text retrieval. Inf Process Manag. 1988;24(5):513–523.

57. Seuring S, Gold S. Conducting content-analysis based literature

reviews in supply chain management. Supply Chain Manag: Int J.

2012;17(5):544–555.
58. Siddiqi S, Sharan A. Keyword and keyphrase extraction

techniques: a literature review. International Journal of Computer

Applications. 2015;109(2):18–23.
59. Steinbach M, Karypis G, Kumar V, et al. A comparison

of document clustering techniques. In: KDD Workshop on text

mining, boston; 2000. p. 525–526.
60. Sterckx L, Demeester T, Deleu J, Develder C. Topical word

importance for fast keyphrase extraction. In: Proc WWW; 2015.

p. 121–122.
61. Sterckx L, Demeester T, Deleu J, Develder C. Creation and

evaluation of large keyphrase extraction collections with multiple

opinions. Lang Resour Eval. 2018;52:503–532.
62. Sugiyama K, Kan MY. Scholarly paper recommendation datasets.

http://www.comp.nus.edu.sg/∼sugiyama/SchPaperRecData.html.

2018.

63. Thomas JR, Bharti SK, Babu KS. Automatic keyword extraction

for text summarization in e-newspapers. In: Proc ICIA; 2016.

p. 86–92.

832 Cogn Comput (2020) 12:811–833

http://bdewilde.github.io/blog/2014/09/23/intro-to-automatic-keyphrase-extraction/
http://bdewilde.github.io/blog/2014/09/23/intro-to-automatic-keyphrase-extraction/
http://bdewilde.github.io/blog/2014/09/23/intro-to-automatic-keyphrase-extraction/
https://doi.org/10.1093/comjnl/5.1.10
https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/howto/regex.html
https://drive.google.com/drive/folders/1e2UrDtYqRAjAE5hso4oXobX_Djuo_VUW
https://drive.google.com/drive/folders/1e2UrDtYqRAjAE5hso4oXobX_Djuo_VUW
https://github.com/corei5/TeKET/tree/master/Data%20set/German%20Papers
https://github.com/corei5/TeKET/tree/master/Data%20set/German%20Papers
http://www.comp.nus.edu.sg/~sugiyama/SchPaperRecData.html

64. Tixier A, Malliaros F, Vazirgiannis M. A graph degeneracy-

based approach to keyword extraction. In: Proc EMNL; 2016.

p. 1860–1870.

65. Tomokiyo T, Hurst M. A language model approach to keyphrase

extraction. In: Proc ACL; 2003. p. 33–40.

66. Tümer D, Shah MA, Bitirim Y. An empirical evaluation on

semantic search performance of keyword-based and semantic

search engines: Google, yahoo, msn and hakia. In: Proc ICIMP;

2009. p. 51–55.

67. Vencovsky F, Lucas B, Mahr D, Lemmink J. Comparison of text

mining techniques for service aspect extraction. In: Proc ECSM;

2017. p. 297–307.

68. Vállez M, Pedraza-Jiménez R, Codina L, Blanco S, Rovira C. A

semi-automatic indexing system based on embedded information

in html documents. Libr Hi Tech. 2015;33(2):195–210.

69. University of Waikato NZ. Datasets of automatic key-

phrase extraction. https://github.com/LIAAD/KeywordExtractor-

Datasets#theses. 2019.

70. Wan X, Xiao J. Collabrank: towards a collaborative approach to

single-document keyphrase extraction. In: Proc COLING; 2008.

p. 969–976.

71. Wang H, Xu F, Hu X, Ohsawa Y. Ideagraph: a graph-based

algorithm of mining latent information for human cognition. In:

Proc SMC; 2013. p. 952–957.

72. Wang J, Liu J, Wang C. Keyword extraction based on pagerank.

In: Proc PAKDD; 2007. p. 857–864.

73. Wang QF, Xu M, Hussain A. Large-scale ensemble model for

customer churn prediction in search ads. Cognitive Computation.

2019;11(2):262–270.

74. Wu Z, Zhu H, Li G, Cui Z, Huang H, Li J, Chen E, Xu G. An

efficient wikipedia semantic matching approach to text document

classification. Inf Sci. 2017;393:15–28.

75. Xu C, Wu Y, Liu Z. Multimodal fusion with global and local fea-

tures for text classification. In: Proc ICONIP; 2017. p. 124–134.

76. Xu W, Liu X, Gong Y. Document clustering based on non-

negative matrix factorization. In: Proc SIGIR; 2003. p. 267–273.

77. Yoo SC, Eastin MS. Contextual advertising in games: impacts of

game context on a player’s memory and evaluation of brands in

video games. J Mark Commun. 2017;23(6):614–631.

78. Zhai C, Lafferty J. A study of smoothing methods for language

models applied to ad hoc information retrieval. In: ACM SIGIR

Forum; 2017. p. 268-276.

79. Zhang K, Xu H, Tang J, Li J. Keyword extraction using support

vector machine. In: Proc WAIM; 2006. p. 85–96.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

833Cogn Comput (2020) 12:811–833

https://github.com/LIAAD/KeywordExtractor-Datasets#theses
https://github.com/LIAAD/KeywordExtractor-Datasets#theses

	TeKET: A Tree-Based Unsupervised Keyphrase Extraction Technique
	Abstract
	Introduction
	Related Works
	Graph-Based Techniques
	Statistical Techniques

	Preliminaries
	Problem Formulation
	Conceptual Framework

	Methods
	Candidate Keyphrase Selection
	Candidate Keyphrase Processing Using KeyPhrase Extraction (KePhEx) Tree
	Root Selection
	Tree Formation
	Tree Processing
	Update Values

	Keyphrase Extraction
	Ranking and Selecting Final Keyphrases

	Experimental Setup
	Corpora Details
	Evaluation Metrics
	Implementation Details

	Results and Discussion
	Parameter Value Selection
	Results Analyses
	TeKET Is Domain Independent
	TeKET Is Language Independent

	Conclusions
	Compliance with Ethical Standards
	References

