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Abstract

To ensure uninterrupted service, telecommunication networks contain excess (spare)
capacity for rerouting traffic in the event of a link failure.  We study the NP-hard
capacity planning problem of economically installing spare capacity on a network with
steady-state working flows to permit link restoration.  We present a spare capacity
planning model that incorporates multiple facility types, and develop optimization-
based heuristic solution methods based on solving a linear programming relaxation and
minimum cost network flow subproblems.  We establish bounds on the performance of
the algorithms, and discuss problem instances for which the bounds are tight to within a
constant factor. In tests on three real-world problems and several randomly-generated
problems containing up to 50 nodes and 150 edges, the heuristics provide good
solutions (often within 0.5% of optimality) to problems with single facility type, in
equivalent or less time than methods from the literature.  For multi-facility problems,
the gap between our heuristic solution values and the linear programming bounds are
larger.  For small graphs, we show that the optimal linear programming value does not
provide a tight bound on the optimal integer value, suggesting that the heuristic
solutions are closer to optimality than implied by the gaps.
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1. Introduction

By providing vastly increased network bandwidth, new telecommunication technologies offer the

capability to transmit large amounts of data on just a few fibers.  However, since each fiber

carries so much traffic, the failure of even one of these fibers can seriously compromise the level

of service provided to customers.  To protect against service interruptions due to transmission

failures, network planners install more capacity than is necessary on each link of a network,

reserving the excess (spare) capacity for rerouting network traffic in the event of a link failure.

Digital Cross-connect Switches (DCSs) installed at each node automatically reroute traffic along

pre-specified paths when a network link fails.

Current systems use two types of rerouting schemes for network restoration: link restoration and

path restoration.  Link restoration reroutes all of the disrupted traffic from one endpoint of the

failed link to the other, regardless of the origins and destinations of individual units of this traffic.

Path restoration, on the other hand, separately considers each unit of traffic on the failed link, and

reroutes this traffic from its origin to its destination.  Although path restoration often requires less

spare capacity than link restoration (Veerasamy, Venkatesan, and Shah [30]), it also requires

more complex network hardware to reroute traffic to respond to any failure.  In particular, the

system must maintain information concerning the sources and destinations of the traffic flowing

on each link, and have the ability to direct flow on alternate routes for each affected origin-

destination pair.  In practice, telecommunication networks employ both link and path restoration

schemes ([8], [9]).

In this paper, we focus on spare capacity planning for link restoration.  We study the problem of

economically installing enough spare capacity on a network with given (steady-state) working

traffic flows, so that the network can reroute traffic when any single link fails.  We adopt a

common single-link failure assumption used in both path and link restoration planning models,

namely that at most one link will be out of service at any given time.  Planners consider this

assumption to be reasonable since link failure rates are typically much smaller than repair rates

([8], [9])1.  The spare facilities needed to carry restoration traffic, comprising transmission lines

and terminating equipment, are modular, i.e., each facility has a fixed capacity, but we can install

many facilities on an edge.  We consider multiple facility types, each with a specified capacity

and fixed cost; these facilities can be installed in any desired combination to achieve the required

                                                     
1  Meshkovskiy and Rokotyan [24] discuss the contingency when a widespread disaster destroys many links of a

network.  In this case, the focus shifts from selecting alternate routes for traffic to prioritizing the links to repair in
order to reconnect the network as quickly as possible.
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spare capacity on a link.  Generally, capacities are expressed in terms of Optical Carrier level b

(OC-b) bandwidths.  Common OC-b levels include OC-1, OC-3, OC-12, OC-48 and so on, with

OC-1 representing a capacity of 51.84 Mbps.  If we measure traffic in OC-1 units, then the

capacity of an OC-b facility is b units; thus, for instance, an OC-12 has four times the

transmission capacity of an OC-3.  Consistent with actual cost structures, we assume that facility

costs exhibit economies of scale, i.e., for b > 1, an OC-b facility costs less than b times an OC-1

facility.  The literature on spare capacity planning for link restoration has not previously

considered the possibility of installing multiple facility types.  Most papers assume that capacity

is available only in OC-1 units; a few permit a single facility type with capacity b > 1.

Venables [31] has shown that the spare capacity planning problem for link restoration is NP-hard,

even with only a single facility type.  Thus, practitioners are interested in efficient heuristics that

provide near-optimal solutions.  This paper develops optimization-based heuristic methods to

generate cost-effective spare capacity solutions for link restoration.  In Section 2, we formulate

the multi-facility spare capacity planning problem as an integer program, and briefly review the

related literature.  In Section 3, we present heuristics based on linear programming and network

flow optimization, establish worst-case bounds on the performance of our algorithms, and

demonstrate using examples that the bounds are tight to within a constant factor.  We also

describe a local improvement method that attempts to reduce the capacity installed in any given

spare capacity solution.  Section 4 discusses our computational results.  We tested our heuristics

on three real-world networks provided by industry as well as 155 randomly-generated networks

that permit testing the methods’ sensitivity to a wider range of problem structures; these problems

range in size from 10 nodes and 15 edges to 50 nodes and 150 edges.  For each network, we

considered both the single-facility and the multi-facility versions of the problem.  Our best

heuristic results are within 0.5% of the linear programming lower bound for most cases, with a

maximum gap of 3.5% over all problem instances.  For multi-facility test problems, although the

heuristic costs were sometimes significantly higher than the optimal linear programming value,

we show that these costs are within 10% of the true (integer) optimal value, suggesting that the

linear programming bound is weak for these problems.  To compare our heuristics’ performance

to results reported in the literature (by Venables, Grover, and MacGregor [32]), we also

considered single-facility test problems with working flows of 0 or 1.  Our heuristics provide

solutions that are no more expensive than previous results from the literature, but require

significantly less computational time.  Section 5 summarizes our results and suggests some future

research directions.
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2.  Multi-facility Spare Capacity Planning Problem

2.1.  Problem definition

Let : ( , )G N E  be the undirected graph representing the underlying telecommunications network.

For each edge e ∈ E, we are given the steady-state working flow ed , expressed in multiples of
OC-1 traffic, that the edge will carry when the network is fully functional.  Let fE E⊆  denote

the subset of f fm E m≤@  vulnerable edges that have positive working flows and can fail.  For

notation, let n = |N| and m = |E| denote the number of nodes and edges in G, let O(e) and D(e)
denote the endpoints of edge fe E∈ , and let  (i, j) refer to the any (undirected) edge of the

network connecting node i and node j.

Suppose K facility types are available to provide spare capacity.  We index these facility types

from 1 to K in increasing order of capacity.  For k = 1, 2, …, K, let kb  be the capacity  of facility
type k expressed in multiples of OC-1 capacity, and let k

ijc  denote the (nonnegative) cost of

installing one unit of facility type k on edge (i, j).  Spare capacity is modular, i.e., we must install

integer amounts of each facility type, but can combine different facility types to provide the

required capacity on each edge.  Clearly, the cost of different facility types must increase

monotonically with capacity.  That is, for all edges (i, j) ∈ E, if k < l (and so k lb b≤  since we
index facility types in order of increasing capacity), then k l

ij ijc c≤ .  Otherwise, if k l
ij ijc c>  for some

k < l, then optimal solution will not use facility type k.  We might also expect costs to increase at
a decreasing rate with capacity, reflecting economies of scale, i.e., / /k k l l

ij ij ij ijc b c b≥  for all k < l.

We refer to this cost structure, with larger facilities having lower per-unit costs, as concave

facility costs.

Let ijβ  denote the excess capacity that is currently available on edge (i, j) for use as spare

capacity, after netting out working flows.  Some switching technologies require distinct working

and spare capacities, i.e., they do not permit utilizing the residual capacity in the working links to

route restoration traffic (see Balakrishnan, Magnanti, Sokol, and Wang [3]).  In this distinct
capacity special case, 0ijβ =  for all edges (i, j).

The multi-facility capacity planning (MCP) problem for link restoration requires finding the least-
cost installation of spare capacity so that, for each vulnerable edge fe E∈ , we can reroute all the

working traffic on this link if it fails.  As noted earlier, this model (like others in the literature)

effectively assumes that the repair rate for failed links is much greater than the failure rate of

working links, so that no more than one link will be in a state of failure at any given time.  For

feasibility, we require the underlying graph G to be doubly-connected with respect to the
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vulnerable edges.  That is, for every edge fe E∈ , the network must contain at least one arc-

disjoint path excluding edge e joining nodes O(e) and D(e).  Otherwise, the failure of some edge

would disconnect the graph, making restoration impossible.  Our model permits routing

restoration flows on multiple paths, rather than requiring all of the flows from a failed edge e to

be routed on a single path from O(e) to D(e).  Such flow splitting is feasible in practice, and

reduces the total spare capacity needed in the network.  Finally, we assume that flows and

capacities are all integer-valued.  (More generally, we permit these parameters to be rational

numbers.  We can then convert these numbers to integers by suitably scaling all parameters.)

2.2. Model formulation
For each edge (i, j) ∈ E and facility type k = 1, …, K, let k

ijy  be the nonnegative, integer amount

of spare capacity of type k installed on edge (i, j), and let e
ijf  and e

jif   be the flows from node i to

node j and vice versa when a vulnerable edge e has failed.  By definition, if edge e connects
nodes i and  j, then 0e e

ij jif f= = , i.e., when an edge e fails its own spare capacity is unusable.

We can formulate the multi-facility capacity planning problem as follows:

[MCP] *

( , )

min  k k
ij ij

k K i j E

Z c y
∈ ∈

= ∑ ∑ (2.1)

subject to:

:( , )

if  ( )
( ) if  ( ) 

0 otherwise

e

e e e
ij ji

j i j E

d i O e
f f d i D e

∈

 =
− = − =



∑ for all , fi N e E∈ ∈ ,i N e E∈ ∈ , (2.2)

e e k k
ij ij ij ij

k K

f f b y β
∈

+ ≤ +∑ for all ( , ), fi j e E∈ ( , ),i j e E∈ , (2.3)

0e e
ij jif f= = for all ( , ) fi j e E= ∈ ( , )i j e E= ∈ , (2.4)

0e
ijf ≥ for all ( , ), fi j e E∈ ( , ),i j e E∈ , (2.5)

0k
ijy ≥ for all ( , ) , 1, ,i j E k K∈ = … , and (2.6)

k
ijy  integer for all ( , ) , 1, ,i j E k K∈ = … . (2.7)

Formulation [MCP] has 2f fm n m m+ + 2mn m m+ +  constraints (excluding nonnegativity and

integrality constraints), 2 fm mi 2m  continuous variables, and | |m K  integer variables.
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Constraints (2.2) are flow balance constraints at each node i for the restoration flows when edge e

fails.  Since edges are bidirectional, we arbitrarily select node O(e) as the origin and node D(e) as

the destination for the restoration flow when edge e fails.  The current working flow ed

essentially represents the demand for a commodity that must be routed from origin O(e) to

destination D(e).  Constraints (2.3) ensure that we install sufficient spare capacity on each edge to

accommodate the maximum restoration flow assigned to it in any of the restoration scenarios

(i.e., over all edge failures), and constraints (2.4) prevent using the spare capacity on a failed edge

to restore its own working flow.

Observe that we did not restrict the flow variables e
ijf  to be integral.  Given the feasible capacity

choices y, the constraints (2.2) to (2.5) to find feasible restoration flows decompose by edge e

into |E| network flow subproblems that are each feasible.  Since demands and capacities are

integer-valued, these network subproblems have integer solutions.  Consequently, we have the

following result.

Flow Integrality Property: The MCP problem has an optimal solution with integral flows.

We refer to the special case of the MCP problem with just one facility type (|K| = 1) as the single-

facility capacity planning (SCP) problem.  For this special case, Balakrishnan et al. [3] have
shown that if the single facility type OC-b has capacity b > 1 and if 0ijβ =  for all edges

( , )i j E∈  (e.g., spare capacity must be distinct from working capacity), we can convert any given

SCP problem instance into an equivalent (in terms of integer solutions) SCP instance with unit
capacities.  The transformation entails replacing the original demand parameters ed  with /ed b  
for all edges fe E∈ e E∈ .  In other words, we express the demand in terms of OC-b units by

scaling and rounding up the original working flows; the rounding up operation effectively

increases the demand that spare capacities must accommodate.  Intuitively, since capacities can

be installed only in bundles of b units at a time, any feasible capacity plan for the original

problem must also be adequate for the rounded-up demands.  This transformation is advantageous

because it strengthens the linear programming relaxation of the problem (without eliminating any

integer solutions to the original problem), thus vastly improving the performance of LP-based

solution methods (see Balakrishnan et al. [3]).

2.3. Literature review

Telecommunication carriers have begun deploying restoration technologies only relatively

recently.  So, the literature on spare capacity planning—for both path and link restoration—is also
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recent, but continues to grow.  As we noted earlier, none of the previous papers have considered

the availability of multiple facility types in the context of link restoration.

Sakauchi, Nichimura, and Hasegawa [26] proposed an LP-based algorithm to solve the single-

facility restoration planning problem, assuming link restoration.  Their Iterated Cutsets Heuristic

(ICH) iteratively solves the linear programming relaxation of a cutset formulation, generating

violated cutset inequalities at each iteration to strengthen the linear program.  Because the cutset

formulation has exponentially many constraints, the algorithm might require excessive

computation time.  Further, because the constraints do not define the convex hull of the integer

problem, the final solution might be fractional.  The ICH method rounds up the fractional values

to obtain a feasible solution.  Herzberg [12] showed how to exploit the existence of two simple

subgraphs, the triangle and the triangular pyramid, to enhance the linear program solved by the

ICH method.

Grover, Bilodeau, and Venables [11] proposed an alternate heuristic called the Spare Link

Placement (SLP) algorithm.  The SLP method is a two-stage heuristic procedure.  First, it creates

a feasible solution by iteratively adding one, two, or an entire path of unit spare capacities.  Then,

it examines the spare capacity on each link to see if it can reduce the overall amount of spare

capacity by removing capacity from one edge and adding, if necessary, a lower amount of

capacity on another edge.  The SLP method selects the restoration paths from a list of the k

shortest origin-to-destination paths.  Other researchers (Herzberg, Bye, and Utano [13] and

Chujo, Komine, Miyazaki, Ogura, and Soejima [5]) have included “hop limit” constraints that

impose an upper bound on the number of links on which rerouted traffic can travel.  Our model

does not impose such constraints on the available restoration paths.  Lee and Chun [16] attempted

to solve the restoration problem using an artificial neural network.  They obtained good results for

a 4-node test network.

The ICH and SLP heuristics, as well as the other previously cited research, assume (as we do)

that restoration traffic can be split into multiple paths, rather than requiring all traffic to follow a

single path.  Veerasamy, Venkatesan, and Shah [29] found that allowing traffic splitting reduces

the total spare capacity needed by approximately 35%, with greater reduction for larger, denser

networks.  Both the ICH and SLP heuristics also assume that the spare facilities are distinct from

the working network.  Most of the literature implicitly defines the spare capacity problem as the

installation of OC-1 lines.  Grover, Bilodeau, and Venables [11] consider a single facility type

with capacity b (i.e., OC-b lines), and solve this problem using the SLP algorithm.
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Magnanti and Wang [22] and Bienstock and Muratore [4] studied the polyhedral characteristics

of the SCP problem and a related problem for which only a predetermined fraction of demand

must be rerouted.  They developed several classes of facets and described the convex hull of

special cases.  When incorporated in a cutting plane algorithm, these inequalities accelerated

considerably the solution time of the integer program (Balakrishnan et al. [3]).  The literature also

includes examples of special cases and variants of the SCP problem.  Minoux [25] used

subgradient optimization to solve the case when spare capacity can be installed in any amount,

rather than only discrete amounts.  Stoer and Dahl [27] and Dahl and Stoer [6] studied an

integrated model that selects the set of edges to be included in the network, in addition to the

working and spare capacities on each edge.  Lisser, Sarkissian, and Vial [20] also studied the

integrated model, first determining base traffic and spare capacity using line restoration, and then

computing the necessary spare capacity to protect the base traffic using path restoration.  Lisser,

Sarkissian, and Vial [19] used an analytic-center-based cutting plane algorithm to solve the linear

programming formulation of a similar path restoration problem.  Vachani and Kubat [28] studied

the problem of minimizing spare capacity for line restoration in a special type of network, a

bidirectional SONET ring.  Kennington and Whitler [15] developed a decomposition algorithm

for a more general SONET mesh architecture.

Groetschel, Monma, and Stoer [10] provided a comprehensive review of computational and
polyhedral results in survivable network design.  Two models from the network design
literature—the capacitated network loading problem (Magnanti, Mirchandani, and Vachani [21])
and the multi-level network design problem (Balakrishnan, Magnanti, and Mirchandani [2])—
consider multiple facility types.  However, both of these models differ from our restoration
planning problem in two ways: (i) the network design models consider simultaneous flows
whereas restoration entails non-simultaneous flows, and (ii) the restoration setting imposes the
special constraint (2.4) prohibiting flow on the failed edge.

3.  Optimization-based Solution Methods

In this section, we first describe two heuristic methods for the MCP problem—an LP round-up

method that constructs a feasible solution from the optimal solution to the MCP model’s linear

programming (LP) relaxation, and a Capacity Layering heuristic based on minimum cost network

flow subproblems.  We study the worst-case performance for both methods, and develop

examples to show that the worst-case bound is achieved to within a constant factor.  We conclude

the section by describing a local improvement method that can often reduce the cost of any given

heuristic solution such as those generated by the LP round-up or Capacity Layering procedures.
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3.1. LP round-up heuristic

The LP round-up heuristic constructs a feasible MCP solution by selecting a minimum cost

combination of facilities to install on each edge to provide at least as much capacity on the edge

as suggested by the optimal solution to the linear programming (LP) relaxation of formulation

[MCP].  The procedure consists of the following three steps:

1. Solve the LP relaxation of formulation [MCP], obtained by relaxing the integrality
constraints (2.7) on the y-variables.  Let $( , )y f$  denote the optimal LP solution, and for

each edge ( , )i j E∈ , let $
1

K kk
ij ij

k

T b y
=

= ∑  denote the total capacity (in OC-1 units), possibly

fractional, that the LP solution installs on that edge.
2. For each edge ( , )i j E∈ , round up the LP capacity ijT  to obtain the total required

capacity ij ijR T =    on that edge.

3. For each edge ( , )i j E∈ , determine the least cost combination of available facility types
to attain the required spare capacity of ijR  units or higher.

Step 3 requires solving, for each edge ( , )i j E∈ , the following facility loading subproblem.

[FL(i, j)] Minimize 
1

K
k k
ij ij

k

c x
=

∑ (3.1)

subject to

1

K
k k

ij ij
k

b x R
=

≥∑ for all ( , )i j E∈ , and (3.2)

0 or 1k
ijx = for all k = 1, …, K. (3.3)

If the number of facility types is small or the values of ijT (and so Rij) are low, we can solve this

subproblem by enumeration.  Alternatively, the following dynamic programming recursion finds
the optimal solution.  Let ( )ijV t  denote the minimum cost combination of facilities to achieve a

total spare capacity of t units or higher on arc (i, j).

Facility Loading Algorithm
Step 0: Set ( ) 0ijV t = for all 0t ≤ .

Step 1: For 1,2, , ijt R= …
Set { }1, , 0,1,..., 1

( ) min min ( )k
k k

ij k K ij ijs b
V t V t s b c= = −

 = + − + … (3.4)

next t;
( )ij ijV R  is the optimal value of the subproblem [FL(i, j)].
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The recursion (3.4) specifies that the minimum cost to achieve a spare capacity of t or higher

equals the minimum cost, among all facility types k, of adding a type k facility to a system that

has total capacity between kt b−  and t – 1.  Note that, if at an intermediate iteration of Step 1 the

installed capacity, say, w exceeds the required capacity t, then we can skip the next (w-t-1)

iterations (since the capacity w is feasible for all required capacity values from t+1 to w).  We can
obtain the optimal values of k

ijx  for problem [FL(i, j)] by keeping track of the facility choice that

minimizes the right-hand side of equation (3.4) at each stage.

Observe that the optimal solution to the capacity installation subproblem [FL(i, j)] might provide
some “free” spare capacity, i.e., 

1

K k k
ijk

b x
=∑  might exceed ijR .  As an example, suppose two

capacity facility types are available, OC-1 lines and OC-3 facilities, at costs of 1 and 1.5 each.  If

the LP solution installs half a unit of an OC-3 facility on an edge (i, j), i.e., if $ $1 2
1
20 and ij ijy y= = ,

then 1
2 3 2ijR = =   , and so we must install at least two units of capacity on this edge.  We can do

so by installing two OC-1 lines facilities at a total cost of 2; a cheaper alternative is to install one

OC-3 facility at a cost of 1.5.  This latter solution provides a capacity of three units, exceeding the

required two units.  Thus, the optimal capacity installation solution creates one unit of “free”

spare capacity.  Our local improvement heuristic (discussed in Section 3.3) attempts to exploit

this excess capacity to reduce capacity on other edges.

Finally, note that, if the facility costs are the same for all edges, then we need to solve the facility

loading subproblem only once overall—for the maximum capacity requirement over all edges.

The method generates the optimal solutions for all smaller requirement values at intermediate

steps.

3.1.1 Worst-case analysis

To characterize the cost performance of the LP round-up heuristic, we compare the heuristic cost

to the optimal value of the LP relaxation.  For this analysis, we assume that the facility costs are

the same for all edges, and so we omit the subscript (i.e., the edge index) from these cost

parameters.

For each node i N∈ , let max : ( ) or ( )( ) max
f

e
e E O e D e iD i d∈ ==  be the maximum working flow among all

edges incident to node i.  To reroute this working flow, the linear programming solution must
install a total of at least max ( )D i  units of spare capacity on the edges incident to node i.  Thus, the
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LP solution must install at least max ( ) 2
i N

D i
∈∑  units of total capacity on edges of the network.

Let $ 1, ,argmin k k
k Kk c b== …  denote the index of facility type with the lowest per-unit cost; if the

cost structure is concave, $k K= .  Then, the optimal linear programming value LPZ  must be at

least 
$ $

max( ) ( ) 2k k
i N

c b D i
∈∑ .

Let us now develop an upper bound on the cost of the LP round-up heuristic solution.  For any

required capacity r, let V(r) denote the minimum cost to achieve a capacity of r or more on any

edge (i.e., V(r) is the optimal value of the facility loading problem with required capacity r).  The

rounding up operation in step 2 of the LP round-up heuristic increases the capacity by at most one
unit for each edge, i.e., 1ij ijR T≤ + .  Consequently, if $ max

f

e
e Ed d∈=  denotes the maximum

working flow over all the edges in the network, the LP round-up heuristic incurs a cost of no

more than
$ $

$
$ $( )( )( 1) max ( ) ( )k k k k

ij ij r d
C c b T V r r c b

≤
= + + − (3.5)

 to install the required capacity ijT  on any edge (i, j).  The first term of this upper bound

represents the lowest possible cost to install 1ijT +  units of capacity on edge (i, j), and the second

term is the maximum incremental cost due to integrality restrictions.  Note that this second term,

$
$ $( )max ( ) ( )k k

r d
V r r c b

≤
− , depends only on the facility costs, capacities, and maximum working

flow, independent of the spare capacity installation decisions; so, we can compute it a priori for

any given problem instance.

Summing the upper bound over all edges of the networks gives an upper bound on the total cost
LRUZ  of the LP round-up solution.  That is,

$ $
$

$ $( )
( , )

( )( 1) max ( ) ( )LRU k k k k
ij r d

i j E

Z c b T V r r c b
≤

∈

≤ + + −∑

$ $
$

$ $( )max( ) ( ) 2 max ( ) ( )k k k k
r di

c b D i m V r r c b
≤

≤ + −∑ .

Therefore, if LRUρ  denotes the ratio of the LP round-up solution’s cost to the optimal value of the

LP relaxation, we have:

$
$ $( )

$ $
max max

max ( ) ( )
1

( ) / 2 ( ) ( ) / 2

k k
LRU

r dLRU
LP k k

i i

m V r r c bZ m
Z D i c b D i

ρ ≤
−

= ≤ + +
∑ ∑

. (3.6)

Since the optimal value *Z  of the integer program [MCP] is greater than or equal to LPZ , the
right-hand side expression in equation (3.6) also applies to the ratio *LRUZ Z .
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For the SCP problem (single-facility case), assuming we have scaled the demands so that the
facility capacity b equals one, the cost V(r) exactly equals 1 1( / )r c b for all integer values r, and so

inequality (3.6) implies that:

max

2
1

( )
LRU LP

i

m
Z Z

D i

 
≤ +  

 ∑
. (3.7)

We next discuss an example for which this bound on the performance of the LP round-up

heuristic is tight up to a constant factor.

3.1.2 “Worst”-case example

Consider an SCP problem instance defined on a complete graph containing n nodes.  Assume that

the demands have been scaled so that the facility has unit capacity, i.e., b = 1.  The cost per unit

of spare capacity is the same for all edges, and so minimizing the total spare capacity installed

also minimizes total cost.  Suppose all edges of the network are vulnerable, and the working flow
on each edge of the network is one unit, i.e., 1ed =  for all fe E E∈ = .

Consider a fractional solution that installs 1 ( 2)n −  units of spare capacity on each edge.  This

solution is feasible for the LP relaxation because, if any edge e fails, we can reroute 1 ( 2)n −

units of this edge’s working flow on each of the n-2 paths ( ) ( )O e l D e→ → , for all

, ( ), ( )l N l O e D e∈ ≠ .  We next show that this solution is also optimal for the LP relaxation.

For every node i of the network and every edge (i, j) incident to this node, the LP solution must

install at least a total of one unit of spare capacity on all of the remaining edges (other than edge

(i, j)) incident to node i in order to protect against the failure of edge (i, j).  That is, the LP

solution must satisfy:

'
'
' ,

1ij
j N
j i j

y
∈
≠

≥∑ for all ,  and j N j i i N∈ ≠ ∈ . (3.8)

Our solution 1 ( 2)ijy n= −  for all ( , )i j E∈  satisfies conditions (3.8) as an equality for all

,  and j N j i i N∈ ≠ ∈ .  Therefore, this solution installs the minimum possible total capacity, and

must therefore be optimal for the LP relaxation.

The cost of this LP optimal solution is ( 2) ( 1) 2( 2)m n n n n− = − − .  Starting with this LP

solution, the LP round-up heuristic rounds each of the 1 ( 2)n −  spare capacities to value 1.  Thus,

the cost of the LP round-up solution is ( 1) 2m n n= − , and so the ratio of actual cost of the LP-
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round solution to actual LP value for this example is ( 2)n −  compared to the theoretical bound,

from expression (3.6), of 1 2 1 ( 1)m n n n+ = + − = .  This example shows that the theoretical

bound is nearly tight.

Now consider any feasible integer solution to formulation [MCP].  The spare capacity network

must be connected since, if no path connects nodes i and j, then we cannot restore edge (i, j).

Also, inequality (3.8) applies to the integer program as well.  Summing these inequalities over all
nodes ,  j N j i∈ ≠  shows that

'
'
'

( 1) 2ij
j N
j i

n y n
∈
≠

− ≥ −∑ for all i N∈ . (3.9)

Dividing both sides of inequality (3.9) by ( 1)n −  and rounding up the right-hand side to two

(since the y variables must be integral) shows that any feasible integer solution must install a total

capacity of at least two units incident to each node i N∈ .  Consequently, the cost of the integer
solution must be at least 2 2n n= .  Since a Hamilton cycle has this cost and is feasible, it is an

integer optimal solution, at a cost of n.  Thus, the LP round-up cost divided by the optimal integer
program value is ( 1) 2n − , showing that the theoretical bound of n is at least of the correct order

of magnitude.

3.2 Capacity Layering heuristic

The Capacity Layering (CL) heuristic adds spare capacity in “layers” by iteratively considering

increasing levels of working flows (or demands) to be restored.  Let $d  denote the maximum

working flow over all edges, and suppose we consider L different demand levels
$

1 21 Lh h h d≤ < < < =…  in the range $[1, ]d .  Let H denote the set of chosen demand levels.  For

instance, H might consist of all integer values from 1 to $d , or all the distinct values of working

flows in the original network.  For 1,2, ,l L= … , let lG  denote the original network but with

working flows reduced to min( , )e
ld h  for every edge e E∈ .  The CL heuristic consists of L

major iterations, successively adding capacity at each iteration to permit restoration of the

increasing demand levels.  At the end of iteration l, the method provides a feasible spare capacity

installation plan for network lG .  The next iteration adds spare capacity to this solution to

generate a feasible plan for network 1lG + .  To add spare capacity, the method sequentially
considers each edge e whose working flow equals or exceeds 1lh + , and augments the capacity of

the existing spare network in order to restore a flow of 1lh +  on edge e.  To augment capacity cost

effectively, the method solves a minimum cost network flow (abbreviated henceforth as min-cost

flow) subproblem that incorporates the capacity that has already been installed and the
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incremental cost of adding capacity on every edge of the network.   We first describe the generic

method, and later discuss our specific implementation.

In the following description of the CL heuristic, ijR  denotes the spare capacity currently available

on edge (i, j) , and lE  represents the subset of edges of the original network whose working flows
exceeds the (l-1)th demand level 1lh − .  Recall from Section 3.1 that ( )ijV r  is the minimum cost of

providing a total spare capacity of  r units or higher on edge (i, j), obtained by solving the facility

loading subproblem [FL(i, j)].

Capacity Layering (CL) heuristic
Step 0: Initialization

Set ij ijR β=  for all ( , )i j E∈ , and 0 0h =

Step 1: Iterative capacity addition
For 1, ,l L= …

Set 1{ : }l e
f lE e E d h −= ∈ >

For each edge le E∈
Set min( , )e e

l lq d h=

Step 1a: Solve the minimum cost flow restoration subproblem
§ Construct a network ' : ( , ')G N E  defined over the original node set N but

containing two parallel edges 1( , )i j  and 2( , )i j  corresponding to every original
edge ( , ) \{ }i j E e∈ .  Edge  1( , )i j  has capacity equal to the current spare capacity

ijR  on edge (i, j) and zero cost.  Edge 2( , )i j  has capacity equal to 1( )e
l lq h −−  and

per unit flow cost of ( ) ( )1 1( ) ( )e e
ij l l ij l lV R q h V R q h− −+ − − − .

§ Solve a minimum cost network flow problem to route min( , )e e
l lq d h=  units of

working flow on G’ from O(e) to D(e).  For each edge ( , ) \{ }i j E e∈ , let ijφ

denote the total flow on the parallel edges 1( , )i j  and 2( , )i j  in the min-cost flow

solution.
§ For each edge ( , ) \{ }i j E e∈ :
§ solve the facility loading problem [FLP(i, j)] assuming a requirement of ijφ

units of spare capacity on that edge;
§ set ijR  equal to the total capacity installed by the optimal solution to this

problem.
Next edge (i, j);

Next edge e;
Next l;

Starting with the existing spare capacities, the CL method first installs enough spare capacity to

accommodate link restoration for the network 1G  in which the working flow of all edges is
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restricted to be less than or equal to 1h .  It then progressively augments this capacity to build

feasible solutions for successively higher demand levels.  At each major iteration l, the method
sequentially considers each edge e that has flow greater than the previous demand level 1lh − , and

uses the min-cost flow model to decide the paths needed to restore min( , )e e
l lq d h=  units of flow

if this edge fails.  The min-cost flow model considers the capacity that has already been installed

(either available originally or installed in previous iterations); it assigns this capacity to the
parallel edge 1( , )i j  at zero cost.  The network flow solution can install additional capacity by

routing flow on the second parallel edge 2( , )i j .  Since, at iteration l, the current capacity is

adequate to restore 1lh −  units of flow on every edge le E∈ , the network flow solution will never

install more than 1( )e
l lq h −−  of additional capacity on any edge.  So, we can impose an upper

bound of 1( )e
l lq h −−  on the flow on edge 2( , )i j .  The method sets the unit cost of flow on this

second edge equal to the average incremental cost of increasing the capacity of edge ( , )i j  from

its current level of ijR  to 1( )e
ij l lR q h −+ − .  Note that this cost of new spare capacity is not exact

since the network flow solution might install less than 1( )e
l lq h −−  units of additional capacity.  If

the cost structure is concave, the per-unit cost underestimates the true cost.

Different choices of the set of demand levels H and different sequencing rules for selecting the

edges to be restored (in the augmentation step) within each major iteration give rise to various

versions of the CL heuristic. First, let us consider some possible choices for the set H.  If we set
${ }H d= , then the algorithm performs only one major iteration (since all edges have working

flows between 0 and $d ).  For each edge in turn, the method installs adequate capacity to restore

the full working flow ed  if that edge fails.  We refer to this version of the CL heuristic, with L =

1, as the max step version.  At the other extreme, suppose H contains all integers from 1 to $d ,

and so $L d= .  In this case, each “layer” covers one more unit of demand.  This unit step version

entails $d  major iterations.  An intermediate choice sets H equal to the set of all distinct values of

working flows among all the edges of the network.  We refer to this choice of demand levels as
the demand step version.  Note that, for this version, $min( , )fL m d≤ .  Furthermore, since the

heuristic reduces the number of edges in lE  by at least one in each major iteration, and since
fL m≤ , the demand step version of the CL method solves at most ( 1) 2f fm m −  min-cost flow

problems.

The max step version requires the least computational effort since it requires only one major
iteration, and solves fm  min-cost flow problems in this iteration. However, this method tends to

install large amounts of spare capacity on some edges, and in our preliminary computational tests

produced solutions that generally had a much higher cost than the demand step version.  The unit
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step version requires much more solution time than the demand step method since it must solve
up to $

fm d  min-cost flow problems.  The solutions cost approximately the same as those from the

demand step version, so the extra running time is not worthwhile.  Within each major iteration,

we need to specify the order for considering edges for solving the min-cost flow restoration

problems.  We tested several approaches, including sorting the edges in increasing order of

working flow, decreasing order of working flow, random order, and lexicographic order (in terms

of the node numbers of the endpoints of the edges).  We found that, for all of our test cases,

considering the edges in increasing order of working flow gave the best results.  The

computational results for the CL heuristic that we report in Section 4 pertain to the demand step

version with edges sequenced in increasing order of working flow.

3.2.1. Worst-case analysis
For each failed edge fe E∈ , let SP(e) denote the length of the shortest restoration path (excluding

edge e) from node O(e) to node D(e) using ( )e
ij ijV d β−  as the length of each edge (i, j).  Recall

that ( )e
ij ijV d β−  is the minimum total cost to install a spare capacity of ( )e

ijd β−  or more on

edge (i, j).  The value SP(e) is the “full” cost of installing a feasible restoration path if edge e

fails, without taking advantage of spare capacities needed to restore flows when other edges fails.
Therefore, the sum of these shortest path costs over all edges, ( )

fe E
SP e

∈∑ , is an upper bound on

the total cost CLZ  of the CL heuristic solution.  Note also that SP(e) is the optimal value of a

“relaxed” MCP problem in which only edge e can fail.  Consequently, the value of SP(e)  for any
edge fe E∈  is a lower bound on the optimal value of the original MCP problem.  In particular, if

' argmax ( )
fe Ee SP e∈= , then ( ')SP e  is a lower bound on the optimal value, and hence on the cost

of the CL heuristic solution.  That is, if *Z  denotes the optimal value of the MCP problem, the

cost of the CL heuristic solution is bounded above and below as follows:
*max ( ) ( )

f f

CL
e E e E

SP e Z Z SP e∈ ∈
≤ ≤ ≤ ∑ . (3.10)

Since ( ) max ( ) max ( )
ff

f f e E f e Ee E
SP e m m SP e m SP e∈ ∈∈

≤ =∑ , the bounds in (3.10) imply that

the CL heuristic solution costs no more than fm  times the optimal value of the MCP problem.

3.2.2. “Worst”-case example

As with the LP round-up heuristic, we will create a class of problem instances where the worst-

case bound on the CL heuristic is tight up to a constant factor.

In the network shown Figure 1, in the main cycle of length M (M ≥ 4 and even), every second

edge (edges (i, i+1) for all odd i) is vulnerable and has a working flow of one.  All other working
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flows are zero.  For every vulnerable edge (i, i+1), the network has a possible restoration side

path of length M-1-(i+1)/2.  As before, we assume that all edges have the same facility costs.

Since working flows are all one or less, we can consider unit cost for each facility, effectively

minimizing the total spare capacity installed.

Figure 1. Worst-case example for the Capacity Layering heuristic.

The optimal solution to this problem installs one unit of spare capacity all around the M-cycle, at

a total cost of M.  Since the maximum flow and hence L is one, the CL heuristic performs only

one major iteration.   If we sort the vulnerable edges in lexicographic order (since they all have

the same working flow), then for each vulnerable edge e, the min-cost flow solution selects the

side path from O(e) to D(e) of length M-1-(i+1)/2.  Thus, all of the attached paths will have spare
capacity installed, for a total cost of 

/ 2 2
1

( ( 1)) 3 /8 / 4
M

i
M i M M

=
− + = −∑ .

Since the network contains / 2fm M= µ / 2m M=  vulnerable edges, the lower bound on the

heuristic solution is M/2.  The ratio of the heuristic solution to the optimal solution is
approximately 3M/8, and so the worst-case bound of / 2fm M=  is tight to within a constant

factor.

3.3.  Capacity Reduction method for local improvement

Given a feasible MCP solution, the Capacity Reduction (CR) method attempts to locally improve

this solution by removing units of spare capacity that are “redundant,” i.e., whose removal retains

sufficient restoration capacity for all edges.  Suppose the current solution installs a total spare
capacity of ijS  on edge ( , )i j E∈ .  Since spare capacity is modular, ijS  might include some “free”
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spare capacity (see Section 2.1) that is not needed for restoration but arises because the total

capacity of the least cost combination of facilities chosen by the facility loading problem FL(i, j)
exceeds the required capacity.  Let ijp  be the minimum amount of capacity that must be removed

from edge (i,  j) to reduce the cost of spare capacity on this edge, i.e.,
{ }1, ,min ( ) ( ) 0

ijij p S ij ij ij ijp V S p V S== − − >… .  For example, suppose two facility types, OC-1 and OC-3

costing 1 and 1.5 are available, and suppose 3ijS = .  The least cost facility for edge (i, j) is,

therefore, an OC-3 facility costing 1.5.  If we were to decrease the requirement to 2, the cost
would still be 1.5, whereas decreasing the requirement to 1 reduces the cost to 1.  Thus 2ijp =  in

this example.  For each edge ( , )i j E∈ , the CR method first determines the value of capacity

reduction ijp  needed to reduce the cost of spare capacity on this edge.  The method then verifies,

by solving min-cost flow problems for each vulnerable edge, whether the MCP solution maintains
feasibility when we remove ijp  units from the currently installed capacity of ijS .  If the new

solution is feasible, then we reduce the capacity on edge (i, j) to ij ijS p− .  Otherwise, this edge

retains its existing capacity ijS , and the method attempts to reduce the capacity on another edge.

A formal description of this CR method follows.

Capacity Reduction (CR) procedure
 Step 0:  Set ijS  equal to the total capacity installed on each edge ( , )i j E∈  in the given starting

solution.
Step 1: For each edge ( , )i j E∈

Step 1a:
§ Calculate ijp , the minimum capacity reduction needed to reduce the cost on edge (i,

j)
§ Remove ijp  units of spare capacity from edge (i, j) (while retaining the current spare

capacities for all other edges) to obtain the “reduced” capacity network G”; set the
cost of flow on each edge equal to zero.

§ For all vulnerable edges fe E∈

Step 1b: Solve the min-cost flow problem on network G” with edge e removed to
determine if the reduced capacity network has adequate spare capacity to
restore ed  units of flow from O(e) to D(e).

Next edge e;
§ If the reduced capacity network can fully restore the flows for all vulnerable edges

(i.e., if none of the min-cost flow problems in Step 1b are infeasible), then
update ij ij ijS S p← −  and repeat Step 1a.

Next edge (i, j);

Interestingly, the CR heuristic will generally run faster for multi-facility (MCP) problems than for

the single-facility special case.  MCP solutions might have some “free” spare capacity, so that the
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algorithm needs to solve fewer min-cost flow problems.  SCP solutions, on the other hand, do not

contain free spare capacity (assuming the parameters have been scaled so that b = 1), and so the

algorithm may need to solve more min-cost flow problems.

In general, if T is the amount of spare capacity removed by the CR procedure, the method must
solve fTm  min-cost flow problems (less if “free” spare capacity can be removed).  For the

Capacity Layering heuristic, T could be large.  For the LP round-up heuristic, however, at most m
units of spare capacity can be removed; and so the CR procedure solves at most fm mi  min-cost

flow problems to reduce capacity for a starting solution obtained using the LP round-up method.

The CR heuristic might not necessarily improve either the CL or LP round-up solutions or the

bounds on the heuristics.  Consider, for example, the CL and LP round-up solutions (for either the

multi-facility or single-facility versions of the problem) to the problem instance shown in Figure

1.  In both heuristic solutions, every unit of spare capacity is essential to the feasibility of the

solution, so the CR method does not provide any improvement.

4. Computational Results

To test the performance of our heuristic procedures, we applied them to three real-world networks

and 155 randomly-generated networks ranging in size from n = 10 nodes to n = 50 nodes, m =

3n/2 edges to m = 3n edges, and average working flows from 5 to 175 units.  To compare our

methods’ performance with previous results reported by Venables et al. [32], we also tested

problems with m = 2n edges, each having a working flow of 0 or 1 unit.

4.1 Test problems

A telecommunications company (see Balakrishnan et al. [3]) provided, two of the real-world test

problems.  The smaller instance contained 10 nodes, 14 edges, and working flows between 13 and

302, while the larger instance had 53 nodes, 79 edges, and working flows between 0 and 94.  We

obtained a third test problem from the literature ([11], [24], [33]), with 11 nodes, 23 edges, and

working flows between 16 and 81.  To test the methods over a wider range of problem

parameters, we also generated numerous random test problems using the procedure described in

Appendix A.  Given user-specified values for the desired number of nodes n, number of edges m,

and range of working flows [p, q], the problem generator first constructs a doubly-connected

random graph of appropriate dimensions.  All edges of the graph are vulnerable.  For each edge,

the method sets the working flow equal to a random integer selected from the interval [p, q].  We

refer to problem instances with working flows in the range [p, q] as [p, q]-problems. We
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considered 10 different network sizes, ranging from 10 nodes and 15 edges to 50 nodes and 150

edges.  Five networks are “sparse” with m = 3n/2 edges and five networks are “dense” with m =

3n edges2.  For each size, we considered three different ranges of working flow levels: [0,10],

[0,100], and [0,350].  We assume that the current network does not contain any free capacity that
can be used for restoration (i.e., 0ijβ =  for all edges (i, j)).  For each of the 30 size-flow range

combinations, we generated five random networks; all of the statistics we report are averaged

over these five instances.  For each random network instance, we considered both the single-

facility version (with b = 1) and multi-facility versions with two different cost structures, giving a

total of 450 test problem instances.  To benchmark our methods with those reported by Venables

et al. [32], we also considered five network sizes with single facility and [0,1]-flows, generating

five random networks for each size.

All of our test problems assume, for convenience, that facility costs are the same for each edge.

For convenience, we also set the unit cost 1c  of the first (lowest capacity) facility type equal to

one.  Most previous research has also assumed edge-invariant costs.  This assumption holds in

practice if the fixed cost of transmission lines and terminating equipment dominate any cost

components that depend on the edge lengths.  Our solution methods, of course, apply to the more

general situation when facility costs vary by edge.  For single-facility problems with b = 1, when

costs do not vary by edge, minimizing total cost is equivalent to minimizing the total spare

capacity installed.  For multi-facility (MCP) problems, we must define values for the facility

capacity kb  and cost kc .  We considered three facility types with relative capacities of  b = 1, 3,

and 12 lines (representing, for example, OC-1, OC-3, and OC-12 facilities).  By pricing the

hardware, we found, as anticipated, that actual facility costs reflect economies of scale.  In

particular, the relative costs of the different facility types (with OC-3 as facility type 2, and OC-
12 as facility type 3) approximately satisfy the following relationships: 2 1 2 1( )(0.6)c c b b= + −

and 3 2 3 2 2( )(0.6)c c b b= + − .  Thus, costs exhibit quadratic economies of scale, with a scale factor

δ  = 0.6.  In addition to this real-world scale factor, we solved for two extreme scale factors: δ  =

0.1 representing strong economies of scale and δ  = 1.0 for situations with no economies of scale.

Note that, when δ  = 1, the MCP problem reduces to the SCP special case (since, without

economies of scale, installing OC-1 facilities is as cost-effective as higher capacity facilities).

We set the unit cost 1c  of the first (lowest capacity) facility type equal to one.

                                                     
2 These choices for edge densities were motivated by two observations: the real-world problems have

approximately m = 3n/2 edges, and the maximum density of a planar graph is on the order of m = 3n
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To solve the linear programming relaxation in the LP round-up heuristic, we used CPLEX 3.0,

running on a Sun Sparc workstation.  To obtain the optimal value as a benchmark for comparison,

we also attempted to solve the integer program [MCP] optimally for SCP problems and small

MCP problems, using the CPLEX solver.  To solve the minimum cost network flow subproblems

for the Capacity Layering (CL) heuristic and the Capacity Reduction (CR) procedure, we used the

network flow algorithm developed by Lee [17], implemented on a DEC 5000/133 workstation.

For all test problems, we applied the LP round-up heuristic and the CL heuristic, and then applied

the local improvement CR procedure to both of these solutions.

4.2. Results for SCP problems

Table 1 shows the results for 30 randomly generated SCP problems and the three real-world

problems.  The table reports the percentage difference between the heuristic solution values (for

the LP round-up and CL heuristics; before and after improvement using the CR procedure) and

the optimal LP value.  Also, included are statistics showing the percentage gap between the

theoretical upper bound (3.6) on the LP round-up cost and the optimal LP value.  The last column

of the table shows the percentage gap between the best (lowest) heuristic cost and the optimal

value of the integer program (IP).  All statistics for the randomly generated networks represent

averages over five problem instances for each network size-flow range combination.

For the randomly generated networks, the LP round-up heuristic was more effective than the CL

heuristic.  Although the worst-case performance guarantees (theoretical upper bound) on the cost

of the LP round-up solutions ranged as high as 70% from optimality, the solutions themselves

were within 4% of the LP value, with the exception of the dense (m = 3n) [0,10]-problems.  The

CR method, applied to the LP round-up solutions, further reduced the gaps to within 0.5% of the

linear programming bound.  For the dense [0,10]-problems, the heuristic to LP gaps were within

5%.  On the whole, the CR method reduced the gaps by a factor of five or more in almost every

instance.  In fact, by solving the IPs to optimality, we found that the improved solution generated

by the CR method, starting with the LP round-up solutions, was optimal for every random SCP

test problem.  Thus, for all these test problem instances, the observed heuristic-to-LP gaps

represent exactly the duality gaps between the optimal IP and LP values.  The CL heuristic was

less effective for the random instances of the SCP problem, with the gaps for the improved CL

solutions ranging from 3% to 63%.  Interestingly, the performance of the CL heuristic appears to

be very sensitive to the density of the networks.  For sparse networks, the improved CL solutions

were no more than 5% from optimal.
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In general, the LP round-up method was fast, often running in a few seconds and always less than

one minute for small problems.  The method required approximately 1 hour for 40 node, 120 edge

problems, and around 2.5  hours for our largest problems.  Because the CR local improvement

method must solve at most 2m min-cost flow problems when applied to the LP round-up method,

it ran in a few seconds for small problems, and required no more than 15 minutes for the largest

problems.

When applied to the three real-world problems, the LP round-up heuristic followed by the CR

local improvement method found solutions that were within 0.2% of optimal, running in under 10

seconds for the smallest problem and requiring just over two minutes for the largest problem.

Again, for these problems, the CL heuristic gave solutions that were further from optimality (up

to 5.65%).

4.3. Results for MCP problems

As we noted earlier, our MCP problems incorporate three facility types with capacities
1 2 31,  3,  and b 12b b= = = , and costs  1 1c =  and 1 1 1( )( )k k k k kc c b b δ− − −= + −   for k = 2, 3.  We

considered two values for the scale factor—δ = 0.6 and δ = 0.1—reflecting realistic (moderate)

and strong economies of scale.  Tables 2 and 3 present the computational results for these two

cost scenarios for 30 randomly generated MCP test problems, and the three real-world problems.

Again, the statistics for the random problems are averages over five problem instances for each

network size-flow range combination.  Unlike the SCP problems, finding optimal solutions to

MCP problems was very difficult; CPLEX could find the optimal integer solutions for only small

MCP problem instances.   A blank in the last column of Tables 2 and 3 indicates that we were not

able to optimally solve the integer program for any problem instance corresponding to that

network size and flow range.  For the remaining cases, the notation “< x %” indicates that we

could not solve the integer program to optimality for some instances, but obtained, during the

branch-and-bound procedure, a better lower bound than the LP value; in this situation, x %

represents the average of the exact heuristic-to-IP gaps and the heuristic-to-lower bound gaps.

The gaps between the costs of our heuristic solutions and the optimal LP values were higher than

those for SCP problems.  With a cost scale factor of δ  = 0.6 (Table 2), the LP roundup heuristic

performed on average no worse than, and often better than, the CL heuristic.  For the δ = 0.1 case

(Table 3), the LP roundup results were superior for [0,350] and [0,100] problems.  However, for

[0,10] problems, the CL method with improvement gave better results.  Although heuristic-to-LP

gaps are relatively large for MCP problems, the heuristic costs are within 3.5% of the optimal IP
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value for the small problems that we could solve, or at least bound.  These results suggest that the

heuristic solutions are near-optimal, but the linear programming relaxation is very weak.  We

might expect the LP bounds to be poor, especially for smaller values of δ, because the optimal

linear programming solution will use fractional amounts of the most cost-effective (but high

capacity) facility type whereas the true solution might require integer amounts of the smaller, less

cost-effective facilities.

Note that the optimal solution to the LP relaxation is the same for all values of δ since this

solution always uses the facility type with the lowest per-unit cost.  Therefore, the running times

for the LP round-up heuristic were the same for the MCP problems as for the SCP problems.  On

the other hand, because MCP solutions typically contain free spare capacities, the min-cost flow

heuristics (CL and CR procedures) were up to twice as fast for MCP problems compared to SCP

problems.

For the [0,10]-problems, the CL heuristic provided better solutions and was also faster than the

LP round-up method.  In these cases, the running times (including the CR procedure) ranged from

under 10 seconds (for the 10-node, 15-edge problems) to about 40 minutes (for the 50-node, 150-

edge problems).

For the MCP versions of the real-world problems (see Tables 2 and 3),  the LP round-up method

performed better (as was the case for random problems with similar parameters).  The cost of the

best heuristic solution for each problem ranged from 1.1% from LP optimal to 12.8% from LP

optimal, although we suspect that the gaps relative to the optimal IP value are much smaller.

4.4. Comparisons to ICH and SLP results

Venables, Grover, and MacGregor [32] tested both the ICH heuristic and three implementations

of the SLP heuristic on some [0,1]-problems (problems in which each working flow is either 0 or

1) with unit facility capacities.  Note that, for [0,1]-problems, only the SCP case is meaningful

since the optimal solution will not install more than one unit of spare capacity on any edge.  For

networks with m = 2n edges, Venables et al. reported both the results and execution time for their

computational tests.  To compare our heuristics’ performance with their methods, we tested our

heuristics on [0,1] problems with m = 2n edges, for random networks containing 10, 20, 30, 40,

and 50 nodes generated using the same methodology as described in Venables et al.
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For the 10 and 20 node problems, we were able to find exact IP solutions using CPLEX.  For 30,

40, and 50  node problems, we obtained lower bounds on the optimal IP value by using
connectivity arguments of the following nature: Let fE  be the set of edges of E with positive

working flow (of one).  Suppose the graph * : ( , )fG N E  consists of T connected components, and

for t = 1, …,T, let tN  denote the number of nodes in component t.  By construction of the

components, the edges containing spare capacity in each component t must also define a
connected graph over tN .  Therefore, each component must contain at least ( 1)tN −  edges with

spare capacity (of one unit).  Summing ( 1)tN −  over all components t gives a lower bound on the

total spare capacity that any feasible solution must install.

Table 4 contains results for the [0,1]-test problems.  As the comparison of heuristic-to-LP gaps

with the heuristic-to-IP gaps in Table 4 reveals, the LP relaxation is quite weak for [0,1]-

problems.  The CL heuristic ran much faster than the LP round-up heuristic, and when followed

by the CR procedure, generated solutions that were at least as good (see Table 4).  Although these

solutions can cost up to 12% more than the optimal solution, in four of the five test cases,

including the 50-node, 100-edge problem, the CL heuristic with local improvement produced a

solution that installed at most one unit of spare capacity more than the optimal plan.  These

solutions are no more costly, and in most cases less costly, than solutions for similar problems

obtained using the ICH and SLP heuristics [32].

The running times of our best solutions ranged from under 3 seconds (for the 10-node problem) to

just over two minutes (for the 50-node problem).  By comparison, the SLP heuristics took over 2

hours and 45 minutes (for the fastest SLP algorithm; the slowest took more than 1.5 days) to

solve a 50-node, 100-edge problem, and the ICH heuristic was unable to find a solution after 4

days of calculation [32]. (Although these algorithms were implemented on different platforms, we

expect the running times to be of the same order of magnitude as our implementation.)

5. Summary

As our extensive computational tests demonstrate, the LP roundup method with local

improvement via capacity reduction provides good results for SCP problems with moderate or

high working flows.  For all our test networks, the heuristic solutions were actually optimal

(although the heuristic to LP gaps were positive, but small).  The LP round-up method takes

advantage of the possibility of sharing spare capacities, and has a tighter worst-case bound than

the Capacity Layering (CLO) heuristic.  For problems with low working flows, including the
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[0,1]-problems, the CL method with local improvement appears to both provide better quality of

solutions and require less computational time.  The method generates solutions that are often

within one unit of spare capacity of the optimal IP solution, and requires less than two minutes of

computational time—a marked improvement over previous solution methods from the literature.

For the MCP problem, the LP roundup method with improvement works best except in the

extreme cases of low working flows and a very high economy of scale (a low δ-value).  For these

latter cases, the CL method gives much better results.  Our MCP results, especially for situations

with smaller working flows, show that the heuristic-to-LP gaps are quite large.  We speculate,

based upon our attempts to solve the integer program optimally that most of this gap is due to a

weak LP bound, rather than poor heuristics.  In fact, we tried solving the integer program for one

10-node, 30-edge, [0,10]-problem instance for which the LP bound was approximately 40% of

the improved CL solution’s cost.  After running five days, CPLEX had still not solved the IP, but

had established a lower bound that was only 7.5% below our heuristic cost; moreover, the

intermediate feasible solutions generated by the branch-and-bound procedure did not improve

upon the CL solution.

The algorithms and results reported in this paper suggest two areas for further research: (i)

exploring enhancements to the heuristic methodology to improve both their speed and accuracy,

and (ii) identifying new classes of valid inequalities that strengthen the LP formulation for MCP

problems so that we can obtain more accurate lower bounds on these problems.  As our

computational results demonstrate, the heuristic-to-LP gaps grossly overestimate the actual

heuristic-to-IP gaps for cases when we could find the optimal integer solution or identify better

lower bounds.  Strengthening the LP relaxation can not only help better assess the quality of the

heuristic solutions, but also vastly improve the performance (both computational time and

bounds) of linear-programming based solution methods such as branch-and-bound or cutting

plane algorithms.  As we discussed in Section 2.3, several authors have studied the polyhedral

structure of the SCP problem, and developed new classes of valid inequalities that have proved to

be computationally effective.  Similar work needs to be conducted for the MCP problem.
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Table 1.  Computational results for SCP problems

Problem Size % from optimal LP value
% from

optimal IP
value

Nodes Edges Flow
Range

Upper Bound
on

LP round-up

LP round-up
cost

LP round-up
+ CR cost CL cost CL + CR cost Best heuristic

cost

Random problems
10 15 [0,350] 1.16% 0.06% 0.02% 7.04% 5.16% 0.00%
20 30 [0,350] 1.17% 0.06% 0.01% 6.77% 4.92% 0.00%
30 45 [0,350] 1.14% 0.09% 0.01% 5.70% 4.06% 0.00%
40 60 [0,350] 1.21% 0.07% 0.01% 4.49% 3.21% 0.00%
50 75 [0,350] 1.20% 0.09% 0.01% 6.06% 4.19% 0.00%
10 15 [0,100] 4.06% 0.08% 0.03% 6.99% 5.12% 0.00%
20 30 [0,100] 4.07% 0.43% 0.05% 6.77% 4.84% 0.00%
30 45 [0,100] 4.00% 0.38% 0.05% 5.94% 4.15% 0.00%
40 60 [0,100] 4.21% 0.30% 0.05% 4.35% 2.89% 0.00%
50 75 [0,100] 4.18% 0.31% 0.04% 6.14% 4.25% 0.00%
10 15 [0,10] 39.66% 0.83% 0.28% 6.95% 4.95% 0.00%
20 30 [0,10] 39.91% 2.41% 0.31% 6.35% 4.07% 0.00%
30 45 [0,10] 39.10% 3.44% 0.33% 6.78% 4.36% 0.00%
40 60 [0,10] 40.96% 2.95% 0.40% 4.75% 3.27% 0.00%
50 75 [0,10] 40.79% 2.73% 0.43% 6.01% 3.74% 0.00%
10 30 [0,350] 2.03% 0.55% 0.10% 69.75% 63.03% 0.00%
20 60 [0,350] 2.00% 0.44% 0.07% 52.57% 46.61% 0.00%
30 90 [0,350] 2.05% 0.49% 0.09% 43.85% 36.22% 0.00%
40 120 [0,350] 2.05% 0.54% 0.09% 49.42% 43.90% 0.00%
50 150 [0,350] 2.03% 0.51% 0.08% 36.98% 31.07% 0.00%
10 30 [0,100] 7.10% 1.66% 0.25% 68.88% 61.52% 0.00%
20 60 [0,100] 6.99% 1.50% 0.33% 52.12% 46.51% 0.00%
30 90 [0,100] 7.17% 1.95% 0.34% 43.21% 34.95% 0.00%
40 120 [0,100] 7.17% 1.75% 0.30% 49.39% 43.71% 0.00%
50 150 [0,100] 7.08% 1.80% 0.26% 40.67% 35.57% 0.00%
10 30 [0,10] 69.01% 20.67% 4.43% 68.87% 61.01% 0.00%
20 60 [0,10] 67.84% 15.41% 3.27% 53.71% 47.47% 0.00%
30 90 [0,10] 69.70% 18.64% 3.35% 43.96% 34.94% 0.00%
40 120 [0,10] 69.52% 17.06% 2.89% 49.83% 41.79% 0.00%
50 150 [0,10] 68.98% 16.89% 3.26% 43.90% 35.89% 0.00%

Real-world problems

10 14 [13,302] 1.42% 0.47% 0.30% 6.96% 5.65% 0.00%
11 23 [16,81] 5.98% 1.82% 1.17% 7.30% 5.12% 0.16%
53 79 [0,94] 7.71% 3.73% 3.28% 4.77% 3.37% 0.09%
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Table 2.  Computational results for MCP problems with cost scale factor δ = 0.6

Problem Size % from optimal LP value
% from

optimal IP
value

Nodes Edges Flow
Range

Upper Bound
on

LP round-up

LP round-up
cost

LP round-up
+ CR cost CL cost CL + CR cost Best heuristic

cost

Random problems
10 15 [0,350] 6.9% 1.5% 1.3% 8.1% 6.8% 0.03%
20 30 [0,350] 6.9% 1.6% 1.4% 7.3% 5.6% ≤ 0.22%
30 45 [0,350] 6.8% 1.7% 1.5% 6.1% 4.5%
40 60 [0,350] 7.1% 1.8% 1.6% 5.7% 4.6%
50 75 [0,350] 7.1% 1.8% 1.6% 6.0% 4.6%
10 15 [0,100] 24.0% 6.1% 5.5% 11.8% 9.6% 0.03%
20 30 [0,100] 24.1% 6.0% 5.1% 10.6% 8.9% ≤ 0.29%
30 45 [0,100] 23.6% 5.7% 4.7% 9.8% 7.5%
40 60 [0,100] 24.8% 5.8% 5.1% 8.8% 7.5%
50 75 [0,100] 24.7% 6.3% 5.3% 10.1% 8.4%
10 15 [0,10] 234.5% 61.4% 60.7% 63.1% 60.8% 0.28%
20 30 [0,10] 235.9% 129.8% 61.7% 136.8% 133.8%
30 45 [0,10] 231.2% 67.7% 65.3% 70.7% 64.6%
40 60 [0,10] 242.2% 66.3% 62.6% 65.9% 63.6%
50 75 [0,10] 241.2% 67.9% 64.0% 69.1% 66.6%
10 30 [0,350] 12.0% 4.7% 3.2% 39.0% 33.5% ≤ 0.08%
20 60 [0,350] 11.8% 3.7% 2.5% 33.4% 27.0%
30 90 [0,350] 12.1% 4.0% 2.9% 34.0% 28.1%
40 120 [0,350] 12.1% 4.3% 3.0% 36.5% 30.7%
50 150 [0,350] 12.0% 4.2% 3.0% 36.8% 30.4%
10 30 [0,100] 41.9% 15.8% 11.7% 46.6% 40.0% ≤ 3.44%
20 60 [0,100] 41.3% 13.5% 10.4% 40.1% 34.9%
30 90 [0,100] 42.4% 14.3% 10.1% 42.1% 36.0%
40 120 [0,100] 42.4% 14.2% 10.5% 45.2% 38.9%
50 150 [0,100] 41.9% 15.4% 11.4% 36.7% 30.1%
10 30 [0,10] 407.9% 126.6% 98.4% 145.0% 132.9%
20 60 [0,10] 401.0% 111.6% 89.6% 128.4% 114.6%
30 90 [0,10] 412.0% 119.8% 91.6% 133.7% 120.4%
40 120 [0,10] 411.0% 117.5% 90.5% 139.8% 123.7%
50 150 [0,10] 407.8% 118.3% 92.7% 134.1% 115.8%

Real-world problems

10 14 [13,302] 8.39% 1.46% 1.43% 10.24% 3.56% 0.50%
11 23 [16,81] 35.36% 11.04% 8.75% 21.20% 14.95%
53 79 [0,94] 45.59% 10.01% 8.73% 15.88% 13.36%
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Table 3.  Computational results for MCP problems with cost scale factor δ = 0.1

Problem Size % from optimal LP value
% from

optimal IP
value

Nodes Edges Flow
Range

Upper Bound
on

LP round-up

LP round-up
cost

LP round-up
+ CR cost CL cost CL + CR cost Best heuristic

cost

Random problems
10 15 [0,350] 11.8% 3.2% 2.5% 8.6% 7.2% 0.00%
20 30 [0,350] 11.9% 3.4% 3.0% 9.6% 7.8% ≤ 0.98%
30 45 [0,350] 11.6% 3.3% 2.6% 7.6% 5.3%
40 60 [0,350] 12.3% 3.3% 2.4% 6.3% 5.0%
50 75 [0,350] 12.2% 3.3% 2.5% 7.3% 5.6%
10 15 [0,100] 41.3% 10.4% 7.3% 15.9% 13.6% 0.00%
20 30 [0,100] 41.4% 12.2% 9.1% 13.3% 12.5% ≤ 1.09%
30 45 [0,100] 40.6% 11.0% 8.3% 13.4% 11.2%
40 60 [0,100] 42.7% 11.4% 9.4% 12.7% 11.2%
50 75 [0,100] 42.5% 11.7% 9.3% 12.6% 10.6%
10 15 [0,10] 403.0% 131.6% 88.8% 113.7% 85.9% 2.2%
20 30 [0,10] 405.6% 228.6% 198.7% 212.0% 165.9%
30 45 [0,10] 397.4% 135.8% 111.1% 118.5% 94.6%
40 60 [0,10] 416.3% 140.5% 114.9% 122.9% 99.6%
50 75 [0,10] 414.6% 143.5% 122.7% 126.7% 109.3%
10 30 [0,350] 20.7% 9.1% 4.8% 40.6% 31.9% ≤ 0.28%
20 60 [0,350] 20.3% 7.4% 3.9% 32.9% 27.4%
30 90 [0,350] 20.9% 7.4% 3.9% 33.7% 27.6%
40 120 [0,350] 20.9% 7.8% 4.2% 35.2% 32.0%
50 150 [0,350] 20.6% 8.1% 4.4% 32.7% 30.5%
10 30 [0,100] 72.1% 29.5% 13.9% 48.2% 41.1% ≤ 0.33%
20 60 [0,100] 71.0% 27.6% 13.8% 40.3% 32.4%
30 90 [0,100] 72.9% 27.1% 14.4% 42.4% 36.3%
40 120 [0,100] 72.9% 28.1% 14.8% 43.9% 35.2%
50 150 [0,100] 72.0% 29.7% 13.9% 40.0% 34.1%
10 30 [0,10] 701.3% 428.7% 321.8% 224.2% 180.6%
20 60 [0,10] 689.4% 351.3% 279.9% 238.8% 204.4%
30 90 [0,10] 708.3% 386.1% 294.0% 247.0% 194.8%
40 120 [0,10] 706.6% 391.5% 297.6% 236.2% 197.9%
50 150 [0,10] 701.0% 398.6% 310.8% 250.3% 202.4%

Real-world problems

10 14 [13,302] 14.4% 3.84% 3.18% 15.46% 6.42% 0.00%
11 23 [16,81] 60.79% 19.99% 12.87% 22.61% 16.85%
53 79 [0,94] 78.37% 18.17% 14.26% 26.00% 22.90%



- 28 -

Table 4.  Computational results for random [0,1] SCP problems

Problem Size % from optimal LP value
% from

optimal IP
value

Nodes Edges Flow
Range

LP round-up
cost

LP round-up
+ CR cost CL cost CL + CR cost Best heuristic

cost

10 20 [0,1] 110% 50% 65% 35% 0%

20 40 [0,1] 44% 25% 56% 25% 5%

30 60 [0,1] 99% 27% 40% 27% 4%

40 80 [0,1] 133% 41% 57% 41% 12%

50 100 [0,1] 134% 34% 48% 25% 2%
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Appendix A - Random Graph Generation
Given the desired number of nodes, number of arcs, and minimum and maximum potential
working flow, the random graph generator creates a random doubly-connected graph using the
following procedure:

Random Graph Generation Procedure
• Create a random spanning tree.
• While number of edges < target number of edges

• Choose a new edge randomly as follows:
• Select a current edge (i,j) whose endpoints are not doubly connected.
• Temporarily remove (i,j), splitting the graph into two disconnected subgraphs.
• Randomly select nodes i$  and $j , one from each subgraph.

• If the selected nodes are i and j, repeat the node selection step.
• Otherwise, add edge $( , )i j$ .

• Return edge (i,j) to the graph.
• Update the list of edges whose endpoints are not doubly connected.
• If the endpoints of some remaining edges are not doubly connected, restart procedure.
• Otherwise, for each edge, randomly choose a working flow in the specified range.

The procedure generates random numbers using a linear congruential generator first proposed by
Lewis, Goodman, and Miller [18].

Every edge we add to the initial spanning tree will necessarily create (and thus be part of) a cycle.
Thus, the only edges that might not be part of a cycle (and thus whose endpoints might not be
doubly connected) are the edges of the initial spanning tree.  At each iteration, we select our
current edge randomly from these candidates.  When we create the initial spanning tree, we
simultaneously create a table listing the first edge in the tree-arc path between every two nodes.
This table serves two purposes.  First, when we remove edge (i,j) at each iteration, we use the
table to quickly define the disconnected subgraphs.  Any node l such that the i,lth table entry is j
is in one subgraph, and all other nodes are in the other subgraph.  Second, when we add edge

$( , )i j$  to the graph, we use the table to quickly reconstruct the tree-arc paths from i to i$  and from

j to $j .  All nodes along these paths are now doubly connected, and so in the update step, we

remove all edges on these paths, as well as edge (i,j), from the edge candidate list.  Although
procedure does not guarantee producing a doubly-connected graph on the first attempt (except
when m ≥ 2n-3), we found that it succeeds very often, and in any case requires very little
computational time even with “second-tries”.
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