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We investigate the effects of resetting mechanisms on random processes that follow the telegrapher’s equation

instead of the usual diffusion equation. We thus study the consequences of a finite speed of signal propagation,

the landmark of telegraphic processes. Likewise diffusion processes where signal propagation is instantaneous,

we show that in telegraphic processes, where signal propagation is not instantaneous, random resettings also

stabilize the random walk around the resetting position and optimize the mean first-arrival time. We also obtain

the exact evolution equations for the probability density of the combined process and study the limiting cases.

DOI: 10.1103/PhysRevE.99.012121

I. INTRODUCTION

In recent years there has been some amount of work on

the effects and applications of the combination of unbounded

diffusion processes with a resetting mechanism which occa-

sionally, at random instants of time, returns the process to

a given fixed location. The random dynamics of the process

and the resetting mechanism are taken to be independent

of each other, while resettings to a given position occur at

Poissonian times. Besides few antecedents in physics [1] and

in the mathematics literature (see [2] for more information),

the topic has been revived and further developed by the works

of Evans, Majumdar, and collaborators [3–9] as well as an

increasing number of different investigators of which we cite

a very small sample [2,10–15].

The interest in this kind of problem essentially resides

on two rather remarkable facts. Firstly, the verification that

resetting stabilizes the underlying process, in the sense that a

nonstationary process becomes stationary when a resetting

mechanism is implemented. Secondly, and surely of wider

range, the fact that random resettings may significantly

reduce the mean first-passage time which, in turn, optimizes

any search process based on the combined process. The

overall result is the universal character of resetting processes

[13,14,16–18].

It has also been shown very recently that restart can

optimize the probability of success in Bernouilli trials [14].

Due to the ubiquitous nature of Bernouilli trials in modeling

countless phenomena, this optimization greatly enhances the

relevance of stochastic resettings from theoretical as well as

practical points of view. No wonder the problem has many ap-

plications in several branches of physical and social sciences

and technology, with special emphasis on searching processes

as, for instance, proteins in DNA [19–21], animal foraging

[22,23], or internet search algorithms which are instrumental

in data mining [24–26], just to name a few.

The development of stochastic resettings has been mainly

addressed when the primary process is a free diffusion

*jaume.masoliver@ub.edu

processes, that is to say, when the underlying process is

described by the ordinary random walk for discrete time and

space, or by Brownian motion for continuous time and space.

To my knowledge there have been few exceptions to this line

of research. These are (i) resettings within the continuous-

time random-walk formalism [10], (ii) resettings when the

underlying process is described by Lévy flights [12], and (iii)

the effect of resettings on the stationary distribution of some

potential fields of force [27].

In this paper we want to address the problem for another

generalization in which the random walker has finite speed of

propagation, so that the underlying process is driven by the

telegrapher’s equation instead of the ordinary diffusion equa-

tion. In this way we will analyze and quantify the effects of

having a finite speed of propagation and also of ballistic fluxes

when all of this is combined with a resetting mechanism.

The paper is organized as follows. In Sec. II we briefly

explain the similarities and differences between diffusion

and telegraphic processes. In Sec. III we describe the reset-

ting mechanism and show that, under rather general circum-

stances, any nonstationary random process becomes station-

ary when resetting mechanisms are implemented. In Secs. IV

and V we study the telegraphic process under resettings and

obtain the forward equation (Sec. IV) and the backward

equation (Sec. V) for the probability density function. In

Sec. VI we address the first-passage problem obtaining the

exact expressions for the survival probability and the mean

first-arrival time and show the nonmonotonous character of

the problem in terms of the resetting frequency. Concluding

remarks are in Sec. VII and some technical details in the two

appendices.

II. DIFFUSION AND TELEGRAPHIC PROCESSES

Suppose we have an unbounded diffusion process with-

out any resetting mechanism. The probability density func-

tion (PDF), or propagator, p(x, t |x0), satisfies the diffusion

equation

∂p

∂t
= D

∂2p

∂x2
, (1)
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where D is the diffusion coefficient and we assume, for

simplicity, one-dimensional processes, even though this can

be easily extended to an arbitrary number of dimensions.

Assuming that the process is initially at x0 with certainty, that

is, p(x, 0|x0) = δ(x − x0), the solution to Eq. (1) is

p(x, t |x0) =
1

(4πDt )1/2
e−(x−x0 )2/4Dt . (2)

Despite its universality, the diffusion equation has some

shortcomings; one of them is the lack of a finite velocity

of propagation. Indeed, looking at Eq. (2) we see that the

propagator instantaneously spreads out from the initial density

δ(x − x0) to the Gaussian form given in (2). In consequence,

there is a nonzero probability for the walker to be found

outside the interval |x − x0| > ct where c is the speed of

light in the vacuum. In other words, there is a small albeit

nonzero probability for a walker traveling faster than the speed

of light. The diffusion equation is, therefore, not compatible

with relativity [28,29]. Other shortcomings of the diffusion

equation and, hence, of diffusion processes, may be summa-

rized by its inability to account for ballistic motion which

implies limitations in the description of early-time effects

when the ballistic motion is not negligible, especially near

interfaces. All of this is rather relevant in the transport of

particles, especially when anisotropic scattering along the

forward direction is taken into account [29–31].

The telegrapher’s equation (TE) is one of the simplest rela-

tivistic generalizations of the diffusion equation still retaining

diffusive properties but having a finite propagation speed as

well as considering possible fluxes of ballistic motion. It is a

hyperbolic type of partial differential equation in which the

one-dimensional case reads

∂2p

∂t2
+ 2λ

∂p

∂t
= v2 ∂2p

∂x2
, (3)

where λ−1 is a characteristic time and v > 0 a characteristic

speed. As λ → 0 with v fixed, TE becomes the wave equation,

∂2p

∂t2
= v2 ∂2p

∂x2
, (4)

whereas as λ → ∞ and v → ∞ with v2/(2λ) → D finite it

becomes the diffusion equation (1). Equation (3) thus pos-

sesses wave and diffusion properties and describes “diffusion

with finite propagation speed” or “waves with damping”

[29,32].

Different physical situations can result in telegraphic pro-

cesses described by the TE. The equation first appeared in the

19th century with the works of Kelvin and Heaviside related

to the analysis of transmission of electromagnetic waves in

telegraph wires. In this context TE can be derived directly

from Maxwell’s equations [29,31]. It can also be phenomeno-

logically derived from thermodynamics by a nonlocal gener-

alization of Fick’s law called Cattaneo’s equation [33–35]1 as

well as random-walk theory where the one-dimensional TE is

1There is, in addition, the interaction between thermodynamics

and resetting processes, the so-called “stochastic thermodynamics

of resettings,” which has been recently addressed and discussed in

Refs. [36] and [37].

the master equation of the persistent random walk [38,39] (see

also [40] for a recent three-dimensional generalization and

[41–43] for alternative derivations of hyperbolic equations).

From a mesoscopic point of view (somewhere in between

the microscopic view of random-walk models and the macro-

scopic approach of thermodynamics) telegraphic processes

are closely related to Brownian motion. As was studied some

years ago in Refs. [44–46], the telegrapher’s equation, like a

diffusion equation, can also be derived from the Chapman-

Kolmogorov equation, the master equation for Markovian

processes [47].2

Contrary to a diffusion equation where only one initial

condition on p(x, t |x0) is needed, the solution to TE (3)

requires two initial conditions. These are [29]

p(x, 0|x0) = δ(x − x0),
∂p

∂t

∣

∣

∣

∣

t=0

= 0. (5)

For the sake of completeness we outline in Appendix A the

derivation of the solution to TE (3) under initial conditions

(5). Although this solution has been known since a very long

time ago, its derivation remains quite obscure [29]. The exact

solution reads

p(x, t |x0) =
1

2v
e−λt {δ(t − |x − x0|/v)

+ λ�(t − |x − x0|/v)[I0(λτ ) + (t/τ )I1(λτ )]},
(6)

where δ(·) is Dirac’s function, �(·) the Heaviside’s step

function, τ = τ (t, x) is the “proper time” defined by

τ =
√

t2 − |x − x0|2/v2, (7)

and I0(·) and I1(·) are modified Bessel functions.

The two major characteristics of the telegraphic processes

mentioned above are apparent from Eq. (6). First, there is

a delta function term decaying exponentially with time. In

transport theory this term corresponds to particles that do not

change their motion and follow ballistic motion. Because of

the decaying exponential the effect of the delta pulse fades

away as time increases. Let us incidentally note that in the

wave limit the PDF given in Eq. (6) describes deterministic

motion. Indeed, setting λ = 0 in Eq. (6) we get

p(x, t |x0) =
1

2v
δ(t − |x − x0|/v), (8)

(λ → 0) which corresponds to the deterministic motion of a

delta pulse from its initial location x0 to a final location x at

time t = |x − x0|/v.

The second feature in the solution given by Eq. (6) is

the presence of the step function �(t − |x − x0|/v) which

excludes diffusion outside the interval |x − x0| > vt . This

2It is worth noticing that such a derivation is obtained by retaining

quadratic terms in the time expansion of the Chapman-Kolmogorov

equation which sets a characteristic timescale and a characteristic

velocity. The Markovian character of the process is assured for

times greater than the characteristic time while, to my knowledge,

a possible non-Markovian character for smaller times is still an

unsettled question [46].
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is a manifestation of the property of finite speed of signal

propagation and makes TE a relativistic equation as opposed

to the diffusion equation which is not.

III. THE RESETTING MECHANISM

Let X(t ) be a random process on the line which, starting

initially at x0, suffers resettings to some fixed position xr .

Resettings occur at random times and we denote by φ(τ ) the

PDF of the time interval between two consecutive resettings.3

For the rest of this work we will assume that resetting times

are Poissonian, so that

φ(τ ) = re−rτ ;

here r > 0 is the rate of resetting, so that r−1 is the mean time

between two consecutive resetting events. Before proceeding

further let us note that in this Poissonian case the probability

that no resettings occur for time intervals greater than τ is

∫ ∞

τ

φ(τ ′)dτ ′ = e−rτ .

Let us denote by p(x, t |x0, t0) the propagator of X(t ):

p(x, t |x0, t0)dx = Prob{x < X(t ) � x + dx|X(t0) = x0}.

This propagator for the entire process (i.e., including reset-

tings) can be written in terms of the propagator with no

resetting events which we denote by p0(x, t |x0, t0). Indeed,

observe that the probability for a random walker to travel from

x0 to x is the sum of the probability of traveling when no

reset has occurred plus the probability of traveling from the

resetting position xr to x after the last reset event. These con-

siderations lead to the following renewal equation [8,10,12]:

p(x, t |x0, t0) = e−r (t−t0 )p0(x, t |x0, t0)

+ r

∫ t

t0

e−r (t−t ′ )p0(x, t |xr , t
′)dt ′, (9)

where the first term on the right-hand side accounts for the

probability density when no reset event has occurred up to

time t . The second term represents the probability density that

the last resetting occurred at any intermediate time t ′.
In what follows we will assume that the underlying (i.e.,

reset-free) process is time homogeneous implying that its

propagator only depends on time differences, p0(x, t |x0, t0) =
p0(x, t − t0|x0). In the present case p0 obeys TE (3) which is

indeed invariant under time translations. Using this property

we easily see from Eq. (9) that the complete process including

resettings is also time homogeneous, that is,

p(x, t |x0, t0) = p(x, t − t0|x0),

3It is implicit in this formulation that resettings occur instanta-

neously, that is to say, at any random instant of time ti the transition

X(ti ) → xr is instantaneous. Obviously this is unphysical since it

implies an infinite speed for such a transition. In dealing with

telegraphic processes we will assume in practice that the transition

velocity is much greater than the signal speed of the telegraphic

process.

which allows us to take t0 = 0 without loss of generality and

write Eq. (9) in simpler form:

p(x, t |x0) = e−rtp0(x, t |x0) + r

∫ t

0

e−rt ′p0(x, t ′|xr )dt ′.

(10)

Let us now address the important question of the sta-

tionarity of the complete process. To this end we define the

stationary distribution as the long-time limit of the (time-

homogeneous) propagator [47]:

pst(x) = lim
t→∞

p(x, t |x0), (11)

provided that the limit is finite and different from zero. Taking

this limit in Eq. (10) we get

pst(x) = r

∫ ∞

0

e−rtp0(x, t |xr )dt, (12)

the expression previously obtained in [7] and [12] which

shows an important property of the resetting mechanism, that

is, the possible existence of a stationary state even if in the

absence of resettings the underlying process is not stationary

[in other words, when the limit (11) on p0 does not exist or

it is zero]. Note that the only condition for this to happen

is the finiteness of the integral in Eq. (12). This fact is even

more clearly seen in terms of the Laplace transform of the

free propagator,

p̂0(x, s|x0) =
∫ ∞

0

e−stp0(x, t |x0)dt,

which proves that the stationary distribution is simply given

by

pst(x) = rp̂0(x, r|xr ), (13)

showing the explicit dependence of the stationary state on the

resetting location xr and the resetting rate r . In consequence

the existence of a stationary density for the combined process

depends on the existence of the Laplace transform of the reset-

free process.

We thus see that resettings can turn a nonstationary pro-

cess into a stationary one. This is, for instance, the case of

Brownian motion which is not stationary but that Poisson

resetting events turn it into a stationary process. In effect, in

this case the underlying propagator p0(x, t |x0) is given by

Eq. (2) which taking into account the Laplace transform [48]

L

{

e−a2/4t

√
πt

}

=
e−|a|

√
s

√
s

leads, by way of Eq. (13), to a tent-shape distribution (i.e., the

Laplace density) around the resetting location xr :

pst(x) =
1

2

√

r

D
e−|x−xr |

√
r/D. (14)

Note that pst(x) → 0 as r → 0 (lack of stationarity of the

Brownian motion without resettings). Also pst(x) → δ(x −
xr ) as r → ∞ and the stationary density becomes more and

more peaked around xr with increasing reset rates.

We, therefore, see the otherwise rather intuitive fact that the

resetting mechanism stabilizes the Brownian motion around

012121-3
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the stationary mean value given by xr with stationary variance

σ 2
st = D/r .

IV. TELEGRAPHIC PROCESSES WITH RESETTINGS

We now address the main objective of this paper and

suppose that the underlying process with no resetting events

is a telegraphic process. In such case the PDF p0(x, t |x0)

satisfies TE (3) with initial conditions (5):

∂2p0

∂t2
+ 2λ

∂p0

∂t
= v2 ∂2p0

∂x2
, (15)

p0(x, 0|x0) = δ(x − x0),
∂p0

∂t

∣

∣

∣

∣

t=0

= 0. (16)

Our first goal will be obtaining the evolution equation for

the complete propagator p(x, t |x0) when Poissonian resetting

events are superposed to the telegraphic process.4 The starting

point is the renewal equation [cf. Eq. (10)]

p(x, t |x0) = e−rtp0(x, t |x0) + r

∫ t

0

e−rt ′p0(x, t ′|xr )dt ′.

(17)

The time derivative of this equation yields

∂p

∂t
= e−rt ∂p0

∂t
+ re−rt

[

p
(r )
0 − p0

]

. (18)

Here and in the rest of the paper we use the shorthand notation

p0 = p0(x, t |x0) and p
(r )
0 = p0(x, t |xr )

and similarly for p and p(r ). Setting x0 = xr in Eq. (17) we

see that

p(r ) = e−rtp
(r )
0 + r

∫ t

0

e−rt ′p0(x, t ′|xr ). (19)

Subtracting Eqs. (19) and (17) the integrals cancel and we get

e−rt
[

p
(r )
0 − p0

]

= p(r ) − p, (20)

which substituting back into Eq. (18) yields

∂p

∂t
= e−rt ∂p0

∂t
+ r[p(r ) − p]. (21)

Taking the second time derivative we have

∂2p

∂t2
= −re−rt ∂p0

∂t
+ e−rt ∂

2p0

∂t2
+ r

[

∂p(r )

∂t
−

∂p

∂t

]

,

and using Eq. (21) we obtain

∂2p

∂t2
= e−rt ∂

2p0

∂t2
− 2r

∂p

∂t
+ r

∂p(r )

∂t
+ r2[p(r ) − p]. (22)

4Obtaining the evolution equation of the complete propagator is

not really a necessary step in order to know the solution. Indeed, the

expression for p(x, t |x0) can be readily obtained after substituting

into the renewal equation (10) the exact expression of the reset-

free propagator p0(x, t |x0) given in Eq. (6). However, knowing the

equation for p is worthy by itself but also because it provides a

guide for obtaining the backward equation which is instrumental

in our approach to the first-passage problem, as we will see in the

forthcoming sections.

On the other hand, the second derivative of Eq. (17) with

respect to x yields

∂2p

∂x2
= e−rt ∂

2p0

∂x2
+ r

∫ t

0

e−t ′ ∂
2p

(r )
0

∂x2
dt ′. (23)

By combining these derivatives [i.e., Eqs. (21), (22), and

(23)] we show in Appendix B that the complete propagator

satisfies the following inhomogeneous TE with a source term

at the resetting position:

∂2p

∂t2
+ 2(λ + r )

∂p

∂t
= v2 ∂2p

∂x2
+ r (r + 2λ)[δ(x − xr ) − p],

(24)

which constitutes one of the main results of this section.

The initial conditions that accompany Eq. (24) can be

obtained from the initial conditions of the free propagator p0.

Indeed setting t = 0 in the renewal equation (10) we see that

p(x, 0|x0) = p0(x, 0|x0) and from Eq. (16) we get

p(x, 0|x0) = δ(x − x0). (25)

The second initial condition is obtained from Eq. (21)

which, after setting t = 0, reads

∂p

∂t

∣

∣

∣

∣

t=0

=
∂p0

∂t

∣

∣

∣

∣

t=0

+ r[p(x, 0|xr ) − p(x, 0|x0)],

but from Eq. (25) we see that p(x, 0|xr ) = δ(x − xr ) and

p(x, 0|x0) = δ(x − x0), hence [see also Eq. (16)]

∂p

∂t

∣

∣

∣

∣

t=0

= r[δ(x − xr ) − δ(x − x0)]. (26)

We have shown in Sec. III that in general resettings stabi-

lize any nonstationary random process. This is obviously the

case of telegraphic processes. Indeed, the reset-free process

is not stationary as can be seen directly from Eq. (11) after

using a well-known property of the Laplace transform [48]

and Eq. (A2):

p
(st)
0 (x) = lim

t→∞
p0(x, t |x0) = lim

s→0
[sp̂0(x, s|x0)] = 0.

On the other hand, the combined process with Poissonian

resettings is stationary. In effect, we know that the stationary

density of the complete process is related to the Laplace

transform of the reset-free density by Eq. (13), pst(x) =
rp̂0(x, r|xr ). For telegraphic processes p̂0(x, s|x0) is given in

Eq. (A2) and we obtain the following Laplace density as the

stationary PDF:5

pst(x) =
1

2v

√

r2 + 2λr exp{−|x − xr |
√

r2 + 2λr/v}.

(27)

Therefore, as in Brownian motion, resettings stabilize the

telegraphic process around the average value xr with the

stationary variance σ 2
stat = v2/(r2 + 2λr ).

5Note that the stationary density (27) can also be obtained by

solving Eq. (24) with initial conditions (25) and (26) and then taking

the limit t → ∞. Obviously the result of both procedures is the same.
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Let us finish this section showing the diffusion limit and

the wave limit of TE (24).

(i) In order to obtain the diffusive limit we rewrite Eq. (24)

as

1

2λ

∂2p

∂t2
+

(

1 +
r

λ

)

∂p

∂t
=

v2

2λ

∂2p

∂x2
+ r

(

1 +
r

2λ

)

× [δ(x − xr ) − p].

In the diffusive limit, λ → ∞, v → ∞ and v2/(2λ) → D,

we get

∂p

∂t
= D

∂2p

∂x2
+ r[δ(x − xr ) − p], (28)

which is the resetting diffusion equation previously obtained

in the literature [3]. In an analogous way, it is an easy check

for the reader to obtain from Eq. (27) the stationary density in

the diffusive limit [cf. Eq. (14)]

p
(dif)
st (x) = 1

2

√

r/De−|x−xr |/
√

r/D. (29)

(ii) In the wave limit (λ → 0 and v finite) the inhomoge-

neous TE (24) reduces to a slightly simpler equation of the

same kind

∂2p

∂t2
+ 2r

∂p

∂t
= v2 ∂2p

∂x2
+ r2[δ(x − xr ) − p], (30)

with the same characteristic velocity v but with a time pa-

rameter r−1 which coincides with the average time between

consecutive resettings.

Let us incidentally note that in the presence of resettings

the process in the wave limit is no longer deterministic

because of the stochastic resetting events. In this case the

stationary distribution is given by Eq. (27) with λ = 0:

p
(w)
st (x) = (r/2v)e−r|x−xr |/v. (31)

If we compare this with the stationary distribution in the

diffusion limit, Eq. (29), we see that both distributions are

tent-shape with mean given by xr and variance (indicating the

spread of distances from xr ) given by

σ 2
st =

D

r
(diffusion), σ 2

st =
v2

r2
(wave).

The stationary variance decreases faster with r in the wave

limit than in the diffusive limit. This different behavior can be

easily interpreted on physical grounds. For in the wave limit

randomness comes only from stochastic resettings while in

the diffusive limit there are two sources of randomness, one

coming from resettings but an additional one from the random

evolution between consecutive resettings given by Brownian

motion.

V. THE BACKWARD EQUATION

Our second major objective is to study the effects of

resettings on the first-passage problem. We will approach this

problem through the backward TE in the presence of Pois-

sonian resettings. Before proceeding further let us observe

that obtaining the the backward equation for the propagator

is an interesting illustration on its own because the backward

formalism for the telegrapher’s equation is rather unknown.

However, the backward equation for the propagator it is not

strictly necessary for solving the first-passage problem since

as proved in Ref. [9] one can obtain a renewal equation for

the survival probability which allows one to get the mean

first-passage time.

To deal with the backward problem we start from the

renewal equation in the form given by Eq. (9):

p(x, t |x0, t0) = e−r (t−t0 )p0(x, t |x0, t0)

+ r

∫ t

t0

e−r (t−t ′ )p0(x, t |xr , t
′)dt ′, (32)

where p0(x, t |x0, t0) satisfies the backward (also called ad-

joint) TE [49]

∂2p0

∂t2
0

− 2λ
∂p0

∂t0
= v2 ∂2p0

∂x2
0

(33)

with “final conditions”

p0(x, t |x0, t ) = δ(x − x0),
∂p0

∂t0

∣

∣

∣

∣

t0=t

= 0. (34)

In order to obtain the backward equation for the complete

propagator p(x, t |x0, t0), we take the derivative of Eq. (32)

with respect to t0 and proceed similarly as in the forward

problem of the previous section. We get

∂p

∂t0
= e−r (t−t0 ) ∂p0

∂t0
+ r[p − p(r )]. (35)

The second derivative and the use of (35) yields

∂2p

∂t2
0

= e−r (t−t0 ) ∂
2p0

∂t2
0

+ 2r
∂p

∂t0
− r

∂p(r )

∂t0
− r2[p − p(r )].

(36)

On the other hand, from Eq. (32) we see that the second

derivative of p with respect to x0 reads

∂2p

∂x2
0

= e−r (t−t0 ) ∂
2p0

∂x2
0

. (37)

By combining these derivatives as we have done in the pre-

vious section to obtain the forward equation (24) and taking

also into account that the reset-free propagator p0 satisfies

the backward TE (33) we can readily obtain the following

backward equation for the propagator p of the whole process:

∂2p

∂t2
0

− 2(λ + r )
∂p

∂t0

= v2 ∂2p

∂x2
0

− r
∂p(r )

∂t0
+ r (r + 2λ)[p(r ) − p]. (38)

The final conditions that accompany this equation are

obtained from the final conditions on p0(x, t |x0), Eq. (34),

and from Eqs. (32) and (35). They are

p(x, t |x0, t ) = δ(x − x0),

∂p

∂t0

∣

∣

∣

∣

t0=t

= r[δ(x − x0) − δ(x − xr )].

The backward equation (38) can be written in an

alternative and somewhat simpler form which turns out to be
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very convenient for the study of first-passage problems.

Indeed, taking into account time homogeneity,

p(x, t |x0, t0) = p(x, t − t0|x0), the change of timescale

t − t0 → t (meaning that t0 = 0 and ∂/∂t0 → −∂/∂t and

∂2/∂t2
0 → ∂2/∂t2) turns Eq. (38) into the alternative form

∂2p

∂t2
+ 2(λ + r )

∂p

∂t

= v2 ∂2p

∂x2
0

+ r
∂p(r )

∂t
+ r (r + 2λ)[p(r ) − p] (39)

with initial conditions

p(x, 0|x0) = δ(x − x0), (40)

∂p

∂t

∣

∣

∣

∣

t=0

= −r[δ(x − x0) − δ(x − xr )]. (41)

Let us note that in the diffusive limit (λ → ∞, v →
∞, v2/2λ → D) Eq. (39) reduces to the inhomogeneous

backward diffusion equation previously obtained by Evans

and Majumdar [3]:

∂p

∂t
= D

∂2p

∂x2
0

− r[p − p(r )]. (42)

In the wave limit (λ → 0) Eq. (39) reduces to the following

backward and inhomogeneous TE:

∂2p

∂t2
+ 2r

∂p

∂t
= v2 ∂2p

∂x2
0

+ r
∂p(r )

∂t
− r2[p − p(r )]. (43)

VI. THE FIRST-PASSAGE PROBLEM

We next address the problem of characterizing when the

telegraphic process with a reset mechanism first reaches a

given value xc, usually called critical value or threshold. This

is called the first-passage problem and one of its main mag-

nitudes is the first-passage time, defined to be the minimum

time when the process first reaches xc. This time is obviously

a random variable depending on the given realization of the

process. We will show that for the reset-free process the

mean first-passage time is infinite while in the presence of

Poissonian resettings this average time is finite and presents

a minimum value as a function of the resetting frequency r .

The more direct way of solving the first-passage problem

is obtaining the so-called survival probability which needs

the specification of boundary conditions [47,50]. Let us first

briefly discuss this delicate issue.

In the transport of particles, such as it appears, for instance,

in chemical physics, the problem of survival is closely re-

lated to the question of when the particle is absorbed (and,

hence, disappears) if it reaches a certain critical value xc. For

diffusion processes on the line, absorption at xc corresponds

to p(xc, t |x0) = 0 or p(x, t |xc ) = 0. That is, if the particle

either reaches xc or starts at xc it disappears. For telegraphic

processes (and in the context of particle transport, at least

for one-dimensional processes) the situation is more com-

plex because of the property of persistence inherent in the

telegrapher’s equation [38]. In this context persistence, which

is analogous to the physical property of momentum, makes

it necessary, in deriving boundary conditions for absorption,

to take into account the direction in which the particle is

traveling. For if the particle starts at xc (or at time t reaches xc)

it will disappear (i.e., it will be absorbed) only if the direction

of the velocity is the appropriate one, otherwise the particle

will escape. We studied this situation some years ago [49,51]

and refer the reader to these works for more information.

However, within the scope of this paper, we are not pri-

marily interested in the escape out of some interval (which

implies absorption at both ends of the interval) but only on

the first arrival time (FAT) to some particular value xc. Let us

note that if one starts at xc, the FAT is zero, which implies

that in dealing with this problem we should take the usual

boundary condition p(x, t |xc ) = 0, regardless of the direction

of the velocity at this particular initial location.6

We define the survival probability S(t |x0) inside some

interval (a, b) as the probability that at time t the process

starting initially in the interval has not reached the boundary

points a and b at time t or before. This probability can be

written as

S(t |x0) =
∫ b

a

p(x, t |x0)dx (44)

(a � x0 � b) where p(x, t |x0) is the propagator with appro-

priate boundary conditions at both ends of the interval [47].

For our problem (i.e., obtaining the first arrival time to either

a or b) these boundary conditions are p(x, t |a) = p(x, t |b) =
0 which, in turn, imply the boundary conditions S(t |a) =
S(t |b) = 0.

In what follows we will restrict ourselves to only one

threshold xc. In such case we have the probabilities

S(t |x0) =
∫ xc

−∞
p(x, t |x0)dx if x0 < xc, (45)

or

S(t |x0) =
∫ ∞

xc

p(x, t |x0)dx if x0 > xc. (46)

As is well known [47], in terms of S(t |x0) the mean first-

arrival time (MFAT) to some critical value xc is given by

T (x0) =
∫ ∞

0

S(t |x0)dt. (47)

If we denote by Ŝ(s|x0) the Laplace transform

Ŝ(s|x0) =
∫ ∞

0

e−stS(t |x0)dt,

then the MFAT is simply given by

T (x0) = Ŝ(0|x0). (48)

6Thus, for example, within the persistent random-walk approach if

a particle moving to the right reaches some threshold xc the particle

will not get trapped and disappear if at that instant of time the

velocity of the particle changes direction; when this is the case the

particle will go to the left and escape. If, however, we are only

interested in whether the particle gets the mark xc regardless of

any trapping, then any switch in velocity is irrelevant. If we define

survival as not having touched xc, then the survival probability at xc

is zero, which is the boundary condition used in this paper.
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A. Survival probability

Let us return to the telegraphic process with resettings and

integrate the backward equation (39) for the propagator with

respect to the final position [cf. Eqs. (45)–(46)]. Commuting

derivatives and integrals we readily see that the survival prob-

ability satisfies the following inhomogeneous telegrapher’s

equation:

∂2S

∂t2
+ 2(λ + r )

∂S

∂t

= v2 ∂2S

∂x2
0

+ r
∂S (r )

∂t
− r (2λ + r )[S − S (r )], (49)

where S (r ) = S(t |xr ). From Eqs. (40) and (41) and Eqs. (45)

and (46) we see that the initial conditions are

S(0|x0) = 1,
∂S

∂t

∣

∣

∣

∣

t=0

= 0, (50)

while as a boundary condition we have

S(t |xc ) = 0. (51)

The problem posed by Eqs. (49)–(51) becomes much sim-

pler if we take the Laplace transform. Thus, bearing in mind

the standard rules [cf. Eq. (50)]

L

{

∂S

∂t

}

= sŜ(s|x0) − 1, L

{

∂2S

∂t2

}

= s2Ŝ(s|x0) − s,

we see after some elementary manipulations that Ŝ(s|x0)

obeys the following ordinary differential equation

d2Ŝ

dx2
0

− ρ2(s)Ŝ = −
ρ2(s)

r + s
[1 + rŜ (r )], (52)

with boundary condition

Ŝ(s|xc ) = 0. (53)

Function ρ(s) in Eq. (52) is defined by

ρ(s) =
1

v

√

(r + s)(r + s + 2λ), (54)

and Ŝ (r ) = Ŝ(s|xr ) refers to the survival probability starting at

the resetting point.

As can be easily seen by direct substitution, the solution to

Eq. (52) that is finite for all possible values of x0 (that is, even

if x0 → ±∞) and satisfying the boundary condition (53) is

Ŝ(s|x0) =
1

r + s
[1 + rS (r )][1 − e−ρ(s)|x0−xc |]. (55)

Setting x0 = xr we have

Ŝ (r ) =
1

r + s
[1 + rS (r )][1 − e−ρ(s)|xr−xc |].

Solving for S (r ) we have

Ŝ (r ) =
1 − e−ρ(s)|xr−xc |

s + re−ρ(s)|xr−xc |
,

and

1

r + s
[1 + rS (r )] =

1

s + re−ρ(s)|xr−xc |
.

Substituting this expression into Eq. (55) we finally get

Ŝ(s|x0) =
1 − e−ρ(s)|x0−xc |

s + re−ρ(s)|xr−xc |
. (56)

B. Mean first-arrival time

Setting s = 0 we obtain the MFAT [cf. Eq. (48)] 7

T (x0) =
1

r
eρ0|xr−xc |[1 − e−ρ0|x0−xc |], (57)

where ρ0 = ρ(0), that is [cf. Eq. (54)],

ρ0 =
1

v

√

r (2λ + r ). (58)

We next analyze one of the most essential features of

resettings, that is, the fact that the MFAT can be modulated

by the resetting mechanism. In other words, T (x0) is a non-

monotonous function of the resetting rate r , decreasing for

increasing values of r toward a minimum value at a critical

rate, rmin, by then increasing for greater values of r .

Let us first note from Eq. (57) that for the telegraphic

process with no resettings (i.e., r = 0) the MFAT is infinite.

We can be more precise by expanding Eqs. (57) and (58) in

powers of the resetting rate r . We have

T (x0) =
√

2λ/v
√

r
|x0 − xc| + O(1), (59)

and the MFAT diverges as r−1/2 when r → 0 (we will see

below that the limits r → 0 and λ → 0 do not commute).

On the other hand, when r → ∞ we see from Eq. (58) that

ρ0 = (r/v)[1 + O(1/r )].

Hence e−ρ0|xr−x0| is exponentially small as r → ∞ and the

MFAT diverges exponentially,

T (x0) ≃
1

r
er|xr−xc |/v −→ ∞ (r → ∞). (60)

We thus see that the MFAT to an arbitrary threshold xc

diverges for both small and large values of the resetting fre-

quency. Since, as we see from Eq. (57), T (x0) is a continuous

function of r we conclude that at some intermediate value of

r the MFAT attains a minimum value (see Fig. 1). Unfortu-

nately we cannot obtain a close analytical expression for the

minimum rate (which, among other variables and parameters,

will vary depending on the initial position x0). This rate is

the solution of the transcendental equation, ∂T /∂r = 0, which

has to be solved numerically in every practical setting.8

7As already mentioned, some results of this work can be obtained

by employing different approaches. This is also the case for Eq. (57)

which could have been obtained using the first-passage density when

r = 0 (i.e., from the telegraphic process without resettings) following

the procedure of Ref. [13].
8For diffusion processes and in the special case when x0 = xr , it

has been recently obtained [13] the rate at which T (x0 ) is min-

imum. The procedure involves the numerical solution of a rather

simple transcendental equation (see main text below). For telegraphic

processes we can do a similar development. However, even in the

particular case of x0 = xr , the transcendental equation to be solved
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FIG. 1. Representation of T (x0) in terms of the resetting rate r

[cf. Eq. (57)] for parameter values λ = 1/2, |xr − xc| = v, and |x0 −
xc| = 2v.

C. Limiting cases

Let us finish this section by obtaining the expressions for

the survival probability and the MFAT in the diffusive and

wave limits of the telegraphic process.

1. Diffusive limit

The diffusive limit is obtained by setting λ → ∞, v →
∞, and v2/(2λ) → D. In this case ρ(s) =

√
(r + s)/D and

Eqs. (56) and (57) reduce to

Ŝ(s|x0) =
1 − e−|x0−xc |

√
(r+s)/D

s + re−|xr−xc |
√

(r+s)/D
(61)

and

T (x0) =
1

r
e|xr−xc |

√
r/D[1 − e−|x0−xc |

√
r/D]. (62)

Expanding Eq. (62) for small values of r we see that the

MFAT diverges like the general telegraphic case [cf. Eq. (59)]

T (x0) ≃
1

√
r
|x0 − xc|/

√
D (r → 0).

For large values of the resetting rate we see from Eq. (62) that

T (x0) ∼
1

r
e|xr−xc |/

√
r/D (r → ∞), (63)

proving that in the diffusion limit T (x0) grows more slowly

than the telegraphic case given by Eq. (60) (see also Fig. 2).

We therefore see that, as in the general case described

by Eq. (57), the MFAT is not a monotonous function of r

and T (x0) reaches a minimum value for a particular resetting

frequency rmin which has to be obtained numerically for each

set of parameters D, x0, xr , and xr .

is more complicated and depends on the parameters λ, v and also on

|x0 − xc| with the subsequent lack of appeal and generality. We do

not present here such a development.

FIG. 2. Representation of T (x0) in terms of the resetting rate r .

(i) Solid line: telegraphic process, Eq. (57), parameter values λ =
1/2, |xr − xc| = v, and |x0 − xc| = 2v. (ii) Dashed line: diffusion

limit, Eq. (62), parameter values |xr − xc| =
√

D and |x0 − xc| =
2
√

D. (iii) Dotted line: wave limit, Eq. (66), with |xr − xc| = v and

|x0 − xc| = 2v.

In the special case when resetting coincides with the initial

position, xr = x0, we see from Eq. (62) that MFAT reduces to

T (x0) =
1

r
[e|x0−xc |

√
r/D − 1], (64)

which agrees with a previous result [3]. The rate at which

T (x0) is minimum is the solution to ∂T /∂r = 0. In the

particular case given in Eq. (64) one can easily show that

the minimum rate is given by rmin = ξ 2D/(x0 − xc )2, where

ξ = 1.594 . . . is the nonzero solution of the transcendental

equation e−ξ = 1 − ξ/2 [13].

2. Wave limit

For the wave limit λ → 0 and ρ(s) = (r + s)/v. Equations

(56) and (57) now reduce to

Ŝ(s|x0) =
1 − e−(r+s)|x0−xc |/v

s + re−(r+s)|xr−xc |/v
(65)

and

T (x0) =
1

r
er|xr−xc |/v[1 − e−r|x0−xc |/v]. (66)

Contrary to the general case given in Eq. (57) we will see

that in the wave limit the MFAT is an increasing function of

r . Let us first observe that in this limiting case T (x0) does not

diverge when r → 0 but goes to the finite value:9

T (x0) →
|x0 − xc|

v
(r → 0), (67)

9When r = 0 Eq. (65) yields Ŝ(s|x0) = [1 − e−s|x0−xc |/v] and in real

time reads

S(t |x0) = �

[

|x0 − xc|
v

− t

]

,
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which is the ballistic time. When r → ∞ the MFAT diverges

exponentially:

T (x0) ∼
1

r
er|xr−xc |/v (r → ∞),

which is the same growth as that of the general telegraphic

case, Eq. (60). Now the monotonous increasing character of

T with r can be seen by taking the derivative of Eq. (66) with

respect to r . This yields

∂T

∂r
→

1

v2
|x0 − xc||xr − xc| > 0 (r → 0)

and

∂T

∂r
∼

1

rv
|xr − xc|e|xr−xc |r/v > 0 (r → ∞),

thus proving that the MFAT is a monotonous increasing

function of r (see Fig. 2). In fact the minimum value of T (x0)

is attained when r = 0. In other words, the ballistic time is the

minimum MFAT.

Let us briefly mention a relatively hidden aspect of the

problem: the fact that, as far as the MFAT is concerned, the

limits r → 0 and λ → 0 do not commute. Indeed, (i) let us

first note that the limit r → 0 (for any λ �= 0) corresponds to a

situation where the telegraphic process is undergoing less and

less resettings. When we finally set r = 0, the combined pro-

cess becomes a homogeneous telegraphic process for which

the MFAT is infinite, even for arbitrarily small values of λ

[see Eq. (59)]. (ii) Secondly, suppose that λ → 0 (for any

r �= 0) which corresponds to a wave process with the addition

of resettings. In the limit λ = 0 and as far as r �= 0 we get

an inhomogeneous telegraphic process [cf. Eq. (43)]. In this

case, and because of the inhomogeneity (which is due to re-

settings) the MFAT is not infinite but given by Eq. (66) which

approaches the ballistic time, Eq. (67), for arbitrarily small

values of r (see also footnote 9). Therefore the limits r → 0

(reset-free limit) and λ → 0 (wave limit) do not commute.

Let us finally note that when λ = 0 and r = 0 simultaneously,

the combined process corresponds to a free wave process. In

this case, as can be seen in Eq. (8), the propagator is given

by deterministic pulses moving in opposite directions and the

time for reaching any location is ballistic.

We finally comment on another aspect of resetting that

consists in studying the effect of the addition of a drift on the

resetting mechanism. Obviously such an effect will depend

on the precise nature of the drift. As far as the effects on

the stationary distribution, this has been studied in [27] for

constant and linear drifts. In a very recent work [52] it has

been shown that the addition of a (constant) drift to a diffusion

process with Poissonian resettings alters the MFAT in the

sense that, depending on the location of the target and the sign

of the drift, the MFAT becomes bigger or smaller than the

MFAT when no drift is present. In other words, the addition

of a drift may or may not help in the search process. One may

expect the same behavior for telegraphic processes, because,

which is the survival probability of a deterministic wave process

[compare with Eq. (8)]. The MFAT can now be obtained substituting

this expression into Eq. (47) which yields the ballistic time (67).

as shown in Sec. II, any telegraphic process has a strong diffu-

sive component. In any case this can be seen quantitatively in

the case of a constant drift, f (x) = µ, with x0 = xr = 0. One

can easily show in this case that for a positive drift, µ > 0,

the MFAT is a decreasing function of the drift for a positive

target and an increasing one for negative targets. We will try

to further develop this issue in a future work.10

VII. CONCLUDING REMARKS

In this paper we have analyzed the problem when tele-

graphic processes are under a resetting mechanism which,

after random intervals of time, brings the process to a fixed

position. We have assumed that times at which reset takes

place are Poissonian. The combination of random motion with

stochastic resetting has many practical applications notably in

searching processes such as animal foraging, protein search,

and computer-aide web searches, among many others.

We have obtained the modifications to the ordinary telegra-

pher’s equation when the process is under Poissonian resetting

events, not only for the forward equation (24),

∂2p

∂t2
+ 2(λ + r )

∂p

∂t
= v2 ∂2p

∂x2
+ r (r + 2λ)[δ(x − xr ) − p],

but for the backward equation (39) as well,

∂2p

∂t2
+ 2(λ + r )

∂p

∂t
=v2 ∂2p

∂x2
0

+ r
∂p(r )

∂t
+r (r + 2λ)[p(r )−p],

where p(r ) = p(x, t |xr ) and xr is the resetting position. It

is worth noticing the analogies and differences among both

equations.

Likewise, for diffusion processes we have proved that

stochastic resettings also stabilize telegraphic processes, in

the sense that the combined processes are stationary while

the reset-free process is not. The stationary distribution is the

tent-shape density (27),

pst(x) =
1

2v

√

r2 + 2λr exp{−|x − xr |
√

r2 + 2λr/v},

showing, the otherwise intuitive fact, that resetting mecha-

nisms stabilize telegraphic processes around the average value

given by the resetting position xr .

The backward equation has allowed us to study the first-

arrival problem, one of the cornerstones of resetting. We have

thus been able to obtain the exact expression for the mean

first-arrival time from initial position x0 to some threshold xc,

T (x0) =
1

r
eρ0|xr−xc |[1 − e−ρ0|x0−xc |],

where ρ0 is given in Eq. (58).

As in diffusion processes, the resetting mechanism opti-

mizes the combined process; in the sense that the process

becomes stationary and the mean first-arrival time T (x0) to

some fixed critical value is greatly optimized because T (x0)

attains a minimum value for a particular value of the resetting

rate. In other words, there exists an optimal resetting rate that

10All of this can be extended to a linear drift; however, studying the

effect of a general nonlinear drift seems to be beyond reach.
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may considerably diminish the search time in any searching

process.

We have shown that these characteristics, which had been

first obtained for diffusion processes, remain valid for tele-

graphic processes but now depending on two parameters

(propagation speed and characteristic time) which modulate

the entire response of the system from diffusionlike to wave-

like behavior. All of this sustaining the universal character of

the resetting mechanism.
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APPENDIX A: SOLUTION TO THE

TELEGRAPHER’S EQUATION

The first step in solving TE (3) with initial conditions (5)

consists in taking the joint Fourier-Laplace transform:

ˆ̃p0(ω, s|x0) =
∫ ∞

−∞
eiωxdx

∫ ∞

0

e−stp0(x, t |x0)dt.

This transformation turns the initial-value problems (3) and

(5) into an algebraic equation, whose solution is straightfor-

ward and reads [38,39]

ˆ̃p0(ω, s|x0) =
(s + 2λ)eiωx0

s2 + 2λs + v2ω2
. (A1)

Fourier inverting and taking into account that

F
−1

{

aeiωx0

b2 + c2ω2

}

=
a

2|b||c|
e−|x−x0||b|/|c|,

we have

p̂0(x, s|x0) =
s + 2λ

2v
√

s2 + 2λs
exp{−|x − x0|

√

s2 + 2λs/v}.

(A2)

We rewrite this equation as

p̂0(x, s|x0) =
(s + λ) + λ

2v
√

(s + λ)2 − λ2

× exp{−|x − x0|
√

(s + λ)2 − λ2/v},

and take into account the well-known property of the Laplace

transform,

L
−1{f̂ (s + λ)} = e−λt

L
−1{f̂ (s)},

where L−1{·} stands for the inverse Laplace transform. We

thus have

p0(x, t |x0) =
1

2v
e−λt

L
−1

{

s + λ
√

s2 − λ2

× exp[−|x − x0|
√

s2 − λ2/v]

}

. (A3)

We next use the following inversion formulas [48]:

L
−1

{

e−b(s2−a2 )1/2

(s2 − a2)1/2

}

= �(t − b)I0[a(t2 − b2)1/2]

and

L
−1

{

se−b(s2−a2 )1/2

(s2 − a2)1/2

}

= δ(t − b) + �(t − b)
at

(t2 − b2)1/2

× I1[a(t2 − b2)1/2],

where I0(·) and I1(·) are modified Bessel functions.

Substituting these inverse transforms into the right-hand

side of Eq. (A3) with the identifications a = λ and b = |x −
x0|/v we readily get the solution given in Eq. (6).

APPENDIX B: THE INHOMOGENEOUS

TELEGRAPHER’S EQUATION

Let us prove that the propagator p(x, t |x0) of the com-

bined process obeys the inhomogeneous TE (24). Multiplying

Eq. (21) by 2λ, adding Eq. (22), subtracting Eq. (23) multi-

plied by v2 and reorganizing terms, we get

∂2p

∂t2
+ 2(λ + r )

∂p

∂t
− v2 ∂2p

∂x2

= e−rt

[

∂2p0

∂t2
+ 2λ

∂p0

∂t
− v2 ∂2p0

∂x2

]

+ r
∂p(r )

∂t

+ r (r + 2λ)[p(r ) − p] − v2r

∫ t

0

e−rt ′ ∂
2p

(r )
0

∂x2
dt ′,

but [see Eq. (15)]

∂2p0

∂t2
+ 2λ

∂p0

∂t
− v2 ∂2p0

∂x2
= 0, (B1)

hence

∂2p

∂t2
+ 2(λ + r )

∂p

∂t
− v2 ∂2p

∂x2

= r
∂p(r )

∂t
+ r (r + 2λ)[p(r ) − p]−v2r

∫ t

0

e−rt ′ ∂
2p

(r )
0

∂x2
dt ′.

(B2)

On the other hand, setting x0 = xr in the TE (B1) for a

reset-free propagator we have

∂2p
(r )
0

∂x2
=

1

v2

∂2p
(r )
0

∂t2
+

2λ

v2

∂p
(r )
0

∂t

and

v2

∫ t

0

e−rt ′ ∂
2p

(r )
0

∂x2
dt ′ =

∫ t

0

e−rt ′ ∂
2p

(r )
0

∂t ′2
dt ′

+ 2λ

∫ t

0

e−rt ′ ∂p
(r )
0

∂t ′
dt ′. (B3)
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Integrating by parts

∫ t

0

e−rt ′ ∂p
(r )
0

∂t ′
dt ′ = e−rtp

(r )
0 − p(x, 0|xr ) + r

∫ t

0

e−rt ′p
(r )
0 dt ′,

but p(x, 0|xr ) = δ(x − xr ) and [cf. Eq. (17)]

p(r ) = e−rtp
(r )
0 +

∫ t

0

e−rt ′p
(r )
0 dt ′.

Hence

∫ t

0

e−rt ′ ∂p
(r )
0

∂t ′
dt ′ = p(r ) − δ(x − xr ). (B4)

As to the second derivative term with respect to time in

Eq. (B3), integrating also by parts we have

∫ t

0

e−rt ′ ∂
2p

(r )
0

∂t ′2
dt ′ = e−rt ∂p

(r )
0

∂t
−

∂p
(r )
0

∂t

∣

∣

∣

∣

t=0

+ r

∫ ∞

0

e−rt ′ ∂p
(r )
0

∂t ′
dt ′,

but [cf. Eq. (16)] ∂p
(r )
0 /∂t |t=0 = 0 and using Eq. (B4) we get

∫ t

0

e−rt ′ ∂
2p

(r )
0

∂t ′2
dt ′ = e−rt ∂p

(r )
0

∂t
+ r[p(r ) − δ(x − xr )].

On the other hand, setting x0 = xr in Eq. (21) we see that

∂p(r )

∂t
= e−rt ∂p

(r )
0

∂t
.

Hence

∫ t

0

e−rt ′ ∂
2p

(r )
0

∂t ′2
dt ′ =

∂p(r )

∂t
+ r[p(r ) − δ(x − xr )]. (B5)

Plugging (B4) and (B5) into (B3) yields

v2

∫ t

0

e−rt ′ ∂
2p

(r )
0

∂x2
dt ′ =

∂p(r )

∂t
+ (r + 2λ)[p(r ) − δ(x − xr )],

which substituting into Eq. (B2) results, after some cancella-

tions, in TE (24):

∂2p

∂t2
+ 2(λ + r )

∂p

∂t
= v2 ∂2p

∂x2
+ r (r + 2λ)[δ(x − xr ) − p].
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