Teleparallel versions of Friedmann and Lewis-Papapetrou spacetimes

M. Sharif • M. Jamil Amir

Received: 2 November 2006 / Accepted: 30 January 2007 /
Published online: 20 March 2007
© Springer Science+Business Media, LLC 2007

Erratum to: Gen Relativ Gravit 38:1735-1745 DOI 10.1007/s10714-006-0354-6

Some minor errors have been observed which led to a change in the final result. Correcting these errors simplifies the results.

Recently, we have investigated [1] the teleparallel versions of the Friedmann models as well as the Lewis-Papapetrou solution. The tetrad and the torsion fields are obtained for both spacetimes. The tensor part of the torsion tensor of the Weitzenböck connection is given by

$$
\begin{equation*}
t_{\lambda \mu \nu}=\frac{1}{2}\left(T_{\lambda \mu \nu}+T_{\mu \lambda \nu}\right)+\frac{1}{6}\left(g_{\nu \lambda} V_{\mu}+g_{\nu \mu} V_{\lambda}\right)-\frac{1}{3} g_{\lambda \mu} V_{\nu} \tag{1}
\end{equation*}
$$

where $\lambda, \mu, \nu=0,1,2,3$. When we take the variations of the indices of $t_{\lambda \mu \nu}$ in Eq. (1), there occurred some errors which affect the tensor part. If we correct these errors, the non-zero components of the tensor part, for the Friedmann models, will change to

$$
\begin{equation*}
t_{010}=\frac{1}{3 f_{\kappa}(\chi)}\left\{1-f_{\kappa}^{\prime}(\chi)\right\}=t_{100} \tag{2}
\end{equation*}
$$

The online version of the original article can be found at http://dx.doi.org/10.1007/s10714-006-0354-6.

[^0]\[

$$
\begin{align*}
& t_{001}=-2 t_{010}, \tag{3}\\
& t_{212}=\frac{1}{6} a^{2} f_{\kappa}(\chi)\left\{1-f_{\kappa}^{\prime}(\chi)\right\}=t_{122}, \tag{4}\\
& t_{221}=-2 t_{212}, \tag{5}\\
& t_{313}=\frac{1}{6} a^{2} f_{\kappa}(\chi)\left\{1-f_{\kappa}^{\prime}(\chi)\right\} \sin ^{2} \theta=t_{133}, \tag{6}\\
& t_{331}=-2 t_{313}, \tag{7}
\end{align*}
$$
\]

instead of those given by Eqs. (32)-(39) in [1].
Also, an error of minus sign has been found in Eq. (48) which affects the rest of the part. Inserting this minus sign, the corrected version of Eq. (48) is given by

$$
\begin{equation*}
A^{(1)}=\frac{1}{3 h}\left\{g_{00} T_{32}^{0}+g_{02}\left(T_{32}^{2}-T_{30}^{0}\right)\right\}, \tag{8}
\end{equation*}
$$

where $h=\sqrt{-g}=\rho \mathrm{e}^{(\gamma-\psi)}$. When we use this corrected form, the axial-vector becomes

$$
\begin{equation*}
\mathbf{A}=\frac{-1}{3 \rho} \mathrm{e}^{3 \psi-\gamma}\left(\omega^{\prime} \hat{e}_{\rho}+\dot{\omega} \hat{e}_{z}\right) \tag{9}
\end{equation*}
$$

instead of Eq. (51) in [1]. This shows that when ω is a function only of z, the axial-vector will stand along the radial direction, i.e.,

$$
\begin{equation*}
\mathbf{A}=\frac{-1}{3 \rho} \mathrm{e}^{3 \psi-\gamma}\left(\omega^{\prime} \hat{e}_{\rho}\right) \tag{10}
\end{equation*}
$$

If ω is a function of ρ only then it is given by

$$
\begin{equation*}
\mathbf{A}=\frac{-1}{3 \rho} \mathrm{e}^{3 \psi-\gamma}\left(\dot{\omega} \hat{e}_{z}\right) \tag{11}
\end{equation*}
$$

i.e., the axial vector will lie along z-direction. For ω to be constant, the axialvector vanishes identically, i.e.,

$$
\begin{equation*}
\mathbf{A}=0 \tag{12}
\end{equation*}
$$

The spin precession of the Dirac particle in torsion gravity will also be simplified to

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{S}}{\mathrm{~d} t}=\frac{1}{2 \rho} \mathrm{e}^{3 \psi-\gamma}\left(\omega^{\prime} \hat{e}_{\rho}+\dot{\omega} \hat{e}_{z}\right) \times \mathbf{S} \tag{13}
\end{equation*}
$$

and the corresponding extra Hamiltonian will be

$$
\begin{equation*}
\delta H=\frac{1}{2 \rho} \mathrm{e}^{3 \psi-\gamma}\left(\omega^{\prime} \hat{e}_{\rho}+\dot{\omega} \hat{e}_{z}\right) \cdot \sigma . \tag{14}
\end{equation*}
$$

Reference

1. Sharif, M., Jamil Amir, M.: Gen. Rel. Gravt. 38, 1735 (2006)

[^0]: M. Sharif (\boxtimes) • M. Jamil Amir

 Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
 e-mail: msharif@math.pu.edu.pk
 M. Jamil Amir
 e-mail: mjamil.dgk@gmail.com

