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TELESCOPE CONJECTURE, IDEMPOTENT IDEALS,

AND THE TRANSFINITE RADICAL

JAN ŠŤOVÍČEK

Abstract. We show that for an artin algebra Λ, the telescope conjecture for
module categories is equivalent to certain idempotent ideals of modΛ being
generated by identity morphisms. As a consequence, we prove the conjecture
for domestic standard selfinjective algebras and domestic special biserial al-
gebras. We achieve this by showing that in any Krull-Schmidt category with
local d.c.c. on ideals, any idempotent ideal is generated by identity maps and
maps from the transfinite radical.

Introduction

The aim of this paper is to further develop and apply connections between seem-
ingly rather different topics in algebra:

(1) localizations of triangulated compactly generated categories;
(2) theory of cotorsion pairs and induced approximations;
(3) the structure of idempotent ideals in a module category;
(4) representation type of a finite dimensional algebra.

The main motivation for this paper was point (1), the study of so called smashing
localizations in triangulated compactly generated categories. There is an important
conjecture, the telescope conjecture, which roughly says that any smashing local-
ization of a compactly generated triangulated category comes from a set of compact
objects. For an extensive study of this problem and explanation of the terminology
we refer to work by Krause [18, 16]. Even though the conjecture is known to be
false in this generality—see [14] for a simple algebraic counterexample—it has not
been resolved for many important particular settings. Such special solutions would
still have significant consequences. In the case of unbounded derived categories of
rings, this is discussed in [16].

In this paper, we will focus on another setting. Let R be a quasi-Frobenius ring
(that is, the projective and injective left modules coincide), and let ModR be the
stable module category of left R-modules. Then ModR is a triangulated compactly
generated category in the sense of [18, 16]. If, moreover, R is a self-injective artin
algebra, the telescope conjecture has been translated by Krause and Solberg [20]
to a statement about modules, or more precisely about certain cotorsion pairs of
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1476 JAN ŠŤOVÍČEK

modules. The precise statements and explanation of terminology are given below.
Recently, a positive solution to the telescope conjecture for stable module categories
over finite group algebras was announced by the authors of [4]. Their methods are,
however, closely tied to group algebras and do not allow direct generalization to
other self-injective artin algebras. We will develop an alternative approach.

The aforementioned version of the telescope conjecture for cotorsion pairs of
modules from [20, §7] makes sense not only for self-injective artin algebras but in
fact for any associative ring with unit, leading to a problem in homological algebra
which is of interest in itself (see [2, 25]). Even though one loses the translation to
triangulated categories, similarities between the new and the original settings are
striking and have been analyzed in more detail in [25].

In the present paper, we further develop the approach from [25] and show that
the telescope conjecture for module categories depends on the structure of certain
idempotent ideals of the category of finitely presented modules. This is another
analogy to so called exact ideals from [16]. Further, we prove that the structure
of idempotent ideals in the category of finitely presented modules over an artin
algebra, as well as in many other categories studied by representation theory, heavily
depends on idempotent ideals inside the radical. In particular, if there are no non-
zero idempotent ideals in the radical, we get a positive answer to the telescope
conjecture.

The condition of no non-zero idempotent ideals in the radical of the module cate-
gory seems to be closely related to the domestic representation type. These notions
were proved to coincide for special biserial algebras by Schröer [27, 24]. A stronger
but closely related condition where the infinite radical is nilpotent was studied by
several authors; see for example [15, 28, 5, 6]. Our main interest in the existing
results stems from the fact that they provide us with non-trivial examples of artin
algebras over which the telescope conjecture for module categories holds. Some of
these, coming from a paper by Skowroński and Kerner [15], are self-injective, thus
allowing us to go all the way back and get a statement about smashing localizations
of their stable module categories.

Another condition which seems to be closely related to both the domestic repre-
sentation type and vanishing of the transfinite radical is that of the Krull-Gabriel
dimension of an artin algebra being an ordinal number. The concept of the Krull-
Gabriel dimension of a ring R can be interpreted as a measure of complexity for both
the category fp(modR,Ab) of finitely presented additive functors modR → Ab and
the lattice of primitive positive formulas over R. Using a result from [19], we prove
that the telescope conjecture for module categories holds true if the Krull-Gabriel
dimension of the artin algebra in question is an ordinal number.

The author would like to thank Øyvind Solberg for several helpful discussions.
The author is also grateful to Otto Kerner for his comments on idempotent ideals
in the radical of some module categories and for communicating the unpublished
result by Dieter Vossieck mentioned in Section 2.

1. Preliminaries

In this text, Λ will always be an artin algebra and all modules will be left Λ-
modules. Let us denote by ModΛ the category of all modules and by modΛ the
full subcategory of finitely generated modules. Some results in this paper will
be proved for more general categories: Krull-Schmidt categories with local d.c.c.
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TCMC, IDEMPOTENT IDEALS, AND THE TRANSFINITE RADICAL 1477

on ideals as defined in Section 3. This setting includes modΛ, derived bounded
categories, categories of coherent sheaves, and other categories of representation
theoretic significance. A reader who is not interested in the full generality can,
nevertheless, read the corresponding statements as if they were stated for modΛ.

A cotorsion pair in ModΛ is a pair (A,B) of full subcategories of ModΛ such
that A = KerExt1Λ(−,B) and B = KerExt1Λ(A,−). A cotorsion pair is called
hereditary if in addition ExtiΛ(A,B) = 0 for all i ≥ 2. This paper deals with the
telescope conjecture for module categories (TCMC) as formulated in [20, Conjecture
7.9]. Actually, we slightly alter the assumptions—we require the cotorsion pair in
question to be hereditary (since the cotorsion pairs of interest in [20] always are)
and relax the condition that [20] imposes on the class A of the cotorsion pair. We
state the conjecture as follows:

Conjecture (A). Let Λ be an artin algebra and let (A,B) be a hereditary cotorsion
pair in ModΛ such that B is closed under taking filtered colimits. Then every
module in A is a colimit of a filtered system of finitely generated modules from A.

Note that, in view of [1, Theorem 1.5], we can equivalently replace filtered col-
imits by direct limits in the statement above. We say that a cotorsion pair (A,B)
in ModΛ is of finite type if B = KerExt1Λ(S,−) for a set S of finitely generated
modules. Similarly, we define (A,B) to be of countable type if we can take S to be a
set of countably generated modules. With this definition we can for any particular
algebra Λ equivalently restate Conjecture (A) as follows; see [2, Corollary 4.6]:

Conjecture (B). Let Λ be an artin algebra and let (A,B) be a hereditary cotorsion
pair in ModΛ such that B is closed under taking direct limits. Then (A,B) is of
finite type.

As a tool for handling the conjectures, we will need the notion of an ideal of
an additive category. Let C be a skeletally small additive category. A class I of
morphisms in C is called a (2-sided) ideal of C if I contains all zero morphisms and
is closed under addition and under composition with arbitrary morphisms from
left and right, whenever the operations are defined. Let us write I(X,Y ) = I ∩
HomC(X,Y ). Note that if C = modΛ, then I(X,Y ) is always a k-submodule of
HomΛ(X,Y ) where k is the centre of Λ. Since C was assumed to be skeletally small,
ideals of C form a set.

We say that an additive category C is a Krull-Schmidt category if it is skeletally
small, every indecomposable object of C has a local endomorphism ring, and every
object of C (uniquely) decomposes as a finite coproduct of indecomposables. As
an example to keep in mind, we can put C = modΛ. For Krull-Schmidt categories
there is a prominent ideal called the radical—it is the ideal generated by all non-
invertible morphisms between indecomposable objects. We denote this ideal by
radC and if C = modΛ we use the abbreviated notation radΛ. Let us recall the well
known fact that radC contains no identity morphisms and, clearly, it is the maximal
ideal with this property. Here and also later in this paper we, of course, mean no
identity morphisms of non-zero objects since zero morphisms are in any ideal by
definition.

Following an idea in [23], we can inductively define transfinite powers Iα for any
ideal I and any ordinal number α. Let I0 be the ideal of all morphisms in C and let
I
1 = I. For a natural number n ≥ 1, we define In as usual to be the ideal generated

by all compositions of n-tuples of morphisms from I. If α is a limit ordinal, we
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define I
α =

⋂
β<α I

β. If α is infinite non-limit, then uniquely α = β + n for some

limit ordinal β and natural number n ≥ 1, and we set I
α = (Iβ)n+1. Note that

since we assume that C is skeletally small, the decreasing chain

I
0 ⊇ I

1 ⊇ I
2 ⊇ · · · ⊇ I

α ⊇ I
α+1 ⊇ . . .

stabilizes for cardinality reasons. Let us define I
∗ =

⋂
α I

α, the minimum of the
chain.

We will focus mostly on the case where I = radC . In this case we denote by rad∗C
the transfinite radical of C. Notice that it is not necessarily true that rad∗C = 0,
even when C = modΛ for an artin algebra Λ—see the next section or [23, 27]. The
main goal of this paper is to prove that the TCMC formulated as Conjecture (B)
holds true over those artin algebras for which rad∗Λ = 0. This applies in particular
to:

• [15] standard selfinjective algebras of domestic representation type;
• [27] special biserial algebras of domestic representation type.

Recall that a finite dimensional algebra over an algebraically closed field is of domes-
tic representation type if there is a natural number N such that for each dimension
d, all but finitely many indecomposable modules of dimension d belong to at most
N one-parameter families.

2. Transfinite radical

Let C be an additive category. We call an ideal I of C idempotent if I = I
2.

Equivalently, I is idempotent if and only if for each f ∈ I there are g, h ∈ I such
that f = gh. Using idempotency, we can give the following characterization of the
transfinite radical:

Lemma 1. Let C be a Krull-Schmidt category. Then rad∗C is the unique maximal
idempotent ideal of C which does not contain any identity morphisms.

Proof. We use the same (just more verbose) proof as the one given for [19, 8.10] for
module categories. Clearly, rad∗C contains no identity morphisms since radC does
not. It is easy to check that rad∗C is idempotent [23, Proposition 0.6]. On the other
hand, if I is idempotent without identity maps, then I = I

∗ ⊆ rad∗C (since I = I
α

for any ordinal α by idempotency). Hence radC is maximal with respect to these
two properties. �

There is also a useful characterization of the morphisms in rad∗C “from inside”,
shedding more light on the concept than a slightly cryptic definition such as the
intersection of a series of transfinite powers. The following statement has been
proved in [23] for C = modΛ using standard means similar to those employed when
one deals with Krull dimension of a poset, and the proof reads equally well for any
skeletally small Krull-Schmidt category:

Lemma 2. [23, Proposition 0.6] Let C be a Krull-Schmidt category and f a mor-
phism in C. Then f ∈ rad∗C if and only if there exists a collection of morphisms
fpr : Xr → Xp in radC, one for each pair of rational numbers p, r with 0 ≤ p < r ≤
1, such that

(1) fps = fprfrs whenever p < r < s;
(2) f01 = f .
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Note that the collection (fpr)0≤p<r≤1 is none other than an inverse system in-
dexed by [0, 1] ∩ Q. Using the two lemmas above, we can give some examples of
what the transfinite radical can be:

• If Λ is an artin algebra of finite representation type, then radΛ is nilpotent.
Hence rad∗Λ = 0.

• If Λ is a tame hereditary artin algebra, then radω+2
Λ = (radωΛ)

3 = 0. Hence
rad∗Λ = 0.

• If Λ is a standard (that is, having a simply connected Galois covering)
selfinjective algebra of domestic representation type, then radωΛ is nilpotent
[15]. Hence rad∗Λ = 0.

• If Λ is a special biserial algebra, then rad∗Λ = 0 if and only if radω
2

Λ = 0 if
and only if Λ is of domestic representation type. If Λ is not domestic, then
there exists an indecomposable Λ-module X such that 0 �= rad∗Λ(X,X) ⊆
EndΛ(X) (see [27, Theorem 2 and Prop. 6.2]).

• As a special case of the previous point, one may consider the “Gelfand-
Ponomarev” algebras Λm,n = k[x, y]/(xy, yx, xm, yn); see [11]. The algebra
Λ2,3 is not of domestic representation type and provides a very illustrative
example of non-zero maps in the transfinite radical; see [23].

• If Λ is a wild hereditary artin algebra, it is conjectured that radωΛ is idempo-
tent. In view of Lemma 1, this conjecture can be rephrased as rad∗

Λ = radωΛ.
• It is an unpublished result due to Dieter Vossieck that for the category
C = mod k〈x, y〉 of finite dimensional modules over the free algebra k〈x, y〉,
the radical radC is idempotent. In particular rad∗C = radC .

There is an important consequence of some of the examples above for wild artin
algebras over an algebraically closed field, namely, they always have the transfinite
radical non-zero. Let us state this precisely.

Definition 3. Let Λ and Γ be finite dimensional algebras over a field k and let
F : modΓ → modΛ be an additive functor. Then F is called a representation
embedding if F is faithful, exact, preserves indecomposability (i.e. if X is indecom-
posable, so is FX) and reflects isomorphism classes (i.e. if FX ∼= FY , then also
X ∼= Y ).

A finite dimensional k-algebra is called wild if for any other finite dimensional
algebra Γ over k, there is a representation embedding modΓ → modΛ.

The following statement immediately follows from [27, Proposition 6.2] and [23,
Lemma 0.2] (the same idea is also presented in [19, 8.15]):

Proposition 4. Let Λ be a wild algebra over an algebraically closed field. Then
rad∗Λ �= 0. Moreover, there exists an indecomposable Λ-module X such that 0 �=
rad∗Λ(X,X) ⊆ EndΛ(X).

3. Idempotent ideals in Krull-Schmidt categories

Let I be an ideal of a Krull-Schmidt category. Then clearly, if I is generated by
a collection of identity morphisms, it is necessarily an idempotent ideal. In what
follows we will show that in “nice” categories, any idempotent ideal is generated by a
collection of identity morphisms together with some morphisms from the transfinite
radical. To make the word nice precise, we need the following definition.
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Definition 5. A skeletally small additive category C is said to have local descending
chain condition (d.c.c.) on ideals if for any decreasing series

I0 ⊇ I1 ⊇ I2 ⊇ . . .

of ideals of C and any pair of objects X,Y in C, the decreasing chain

I0(X,Y ) ⊇ I1(X,Y ) ⊇ I2(X,Y ) ⊇ . . .

stabilizes.

Now, our category is “nice” if it is Krull-Schmidt with local d.c.c. on ideals.
In fact, this setting is very common in representation theory. Assume that k is
a commutative artinian ring and C is a skeletally small k-category (i.e. its Hom-
spaces are k-modules and its composition is k-linear) which satisfies the following
conditions:

(C1) C has splitting idempotents (that is, idempotent morphisms have kernels in
C);

(C2) C is Hom-finite (that is, HomC(X,Y ) is a finitely generated k-module for
any objects X,Y ∈ C).

Then C is “nice”:

Lemma 6. Let k be a commutative artinian ring and C a skeletally small Hom-
finite k-category with splitting idempotents. Then C is Krull-Schmidt with local
d.c.c. on ideals.

Proof. It is a well known fact that C is Krull-Schmidt under the assumption. It
is straightforward to show that I(X,Y ) is a k-submodule of HomC(X,Y ) for any
ideal I and any pair of objects X,Y ∈ C. Hence C clearly has local d.c.c. on ideals
thanks to (C2). �

As a consequence, we can give plenty of examples of “nice” categories:

• modΛ for an artin algebra Λ;
• Db(Λ), the derived bounded category for an artin algebra Λ;
• the category of finite dimensional modules over any algebra over a field;

and many others.
Let us start with the proof of the aforementioned statement. First we need a

technical lemma.

Lemma 7. Let C be a Krull-Schmidt category with local d.c.c. on ideals. Let

X,Y ∈ C and let α be a limit ordinal. Then there is β < α such that radβC(X,Y ) =
radαC (X,Y ).

Proof. Since C has local d.c.c. on ideals, the decreasing chain (radγC(X,Y ))γ<α is
stationary. Therefore, there is β < α such that

radβC(X,Y ) =
⋂

γ<α

radγC(X,Y ) = radαC (X,Y ). �

Now, we are in a position to give the structure theorem for idempotent ideals:

Theorem 8. Let C be a Krull-Schmidt category with local d.c.c. on ideals. Let I
be an idempotent ideal of C and let f ∈ I. Then there are f1, f2 ∈ I such that
f = f1 + f2, the morphism f1 is generated by identity morphisms from I, and
f2 ∈ rad∗C.
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Proof. We will prove the following statement for all ordinal numbers α by induction:
(∗): For every f ∈ I there are fα,1, fα,2 ∈ I such that f = fα,1+fα,2,

the morphism fα,1 is generated by identity morphisms from I,
and fα,2 ∈ radαC .

Then the theorem will follow if we take α sufficiently big. Let f : X → Y be
a morphism from I—we can without loss of generality assume that X and Y are
indecomposable.

For α = 0, we can simply take f0,1 = 0 and f0,2 = f . If α is non-zero finite, we can
construct by induction morphisms g1, g2, . . . , gα ∈ I such that f = g1g2 . . . gα. The
morphisms gi, 1 ≤ i ≤ α, are not necessarily morphisms between indecomposable
objects of C, but we can write f as a finite sum of compositions of morphisms
between indecomposables, that is:

f =
∑

j

g1jg2j . . . gαj ,

where we take gij as components of gi so that all gij are in I. Finally, we can
take fα,1 as the sum of those compositions g1jg2j . . . gαj where at least one of the
morphisms in the composition is invertible, and take fα,2 to be the sum of the
remaining compositions. Then clearly fα,1 is generated by identities from I and
fα,2 ∈ radαC .

If α is a limit ordinal, there is an ordinal β < α such that radβC(X,Y ) =
radαC (X,Y ) by Lemma 7. Of course, β depends on X and Y . Hence we can
set fα,1 = fβ,1 and fα,2 = fβ,2, where the existence of fβ,1, fβ,2 is given by the
inductive hypothesis.

Assume now that α is an infinite non-limit ordinal and gβ,1, gβ,2 have already
been constructed for all g ∈ I and β < α. We can write α = β+n where β is a limit
ordinal and n ≥ 1 is a natural number. Since I is idempotent, we can construct as
in the finite case g1, g2, . . . , gn+1 ∈ I such that f = g1g2 . . . gn+1. By the inductive
hypothesis, for each 1 ≤ i ≤ n + 1 we can write gi = giβ,1 + giβ,2 where giβ,1 is

generated by identity morphisms from I and giβ,2 ∈ I ∩ radβC . Now,

f =
∑

g1β,k1
g2β,k2

. . . gn+1
β,kn+1

where the sum runs through all tuples (k1, k2, . . . , kn+1) ∈ {1, 2}n+1. Put fα,2 =

g1β,2g
2
β,2 . . . g

n+1
β,2 and fα,1 = f − fα,2. Then it immediately follows by the choice

of giβ,1 and giβ,2 that fα,1 is generated by identity morphisms from I and fα,2 ∈

(radβC)
n+1 = radαC . �

Just by reformulating Theorem 8, we get the following corollary:

Corollary 9. Let C be a Krull-Schmidt category with local d.c.c. on ideals. Let I
be an idempotent ideal of C, let L be a representative set of identity maps contained
in I, and let R = I ∩ rad∗C. Then I is generated, as an ideal of C, by L ∪R.

By combining the above statements, we can also characterize the situation where
ideals are idempotent exactly when they are generated by a set of identity maps.

Corollary 10. Let C be a Krull-Schmidt category with local d.c.c. on ideals. Then
the following are equivalent:

(1) Every idempotent ideal of C is generated by a set of identity maps.
(2) rad∗C = 0.
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Proof. (1) =⇒ (2). If rad∗C �= 0, then by Lemma 1 it is a non-zero idempotent
ideal without identity maps, hence (1) does not hold.

(2) =⇒ (1). This is immediate by Corollary 9 since, assuming (2), we always
get R = 0. �

4. Telescope conjecture for module categories

The aim of this section is to prove the TCMC for algebras with vanishing trans-
finite radicals. First, we need to collect some general results about the TCMC
from [25]. Even though the results are often proved under weaker assumptions and
carry over almost unchanged for left coherent rings, we specialize them to artin
algebras since this is our main concern here.

Proposition 11 ([25, Theorems 3.5, 4.8 and 4.9]). Let Λ be an artin algebra, let
(A,B) be a hereditary cotorsion pair in ModΛ such that B is closed under unions of
well ordered chains, and let I be the ideal of all morphisms in modΛ which factor
through some (infinitely generated) module from A. Then:

(1) (A,B) is of countable type.
(2) B = KerExt1Λ(I,−) = {X ∈ ModΛ | Ext1(f,X) = 0 (∀f ∈ I)}.
(3) Every countably generated module in A is the direct limit of a countable

chain

C1
f1
→ C2

f2
→ C3

f3
→ . . .

of finitely generated modules such that fi ∈ I for each i ≥ 1.

We also need a technical lemma about filtrations which has been studied in [8,
26, 31] and whose origins can be traced back to an ingenious idea of Paul Hill. Let
us recall some definitions.

Definition 12. Given a class of modules S, an S-filtration of a module M is a
well-ordered chain (Mα | α ≤ σ) of submodules of M such that M0 = 0, Mσ = M ,
Mα =

⋃
β<α Mβ for each limit ordinal α ≤ σ, and Mα+1/Mα is isomorphic to a

module from S for each α < σ. A module is called S-filtered if it possesses at least
one S-filtration.

We will use the following specializations of a general statement from [31] for
finitely or countably presented modules:

Lemma 13 ([31, Theorem 6]). Let S be a set of finitely (resp. countably) presented
modules over an arbitrary ring and M a module possessing an S-filtration (Mα |
α ≤ σ). Then there is a family F of submodules of M such that:

(1) Mα ∈ F for all α ≤ σ.
(2) F is closed under arbitrary sums and intersections.
(3) For each N,P ∈ F such that N ⊆ P , the module P/N is S-filtered.
(4) For each N ∈ F and a finite (resp. countable) subset X ⊆ M , there

is P ∈ F such that N ∪ X ⊆ P and P/N is finitely (resp. countably)
presented.

Most of what we need to do now before proving the main results is to observe
that the ideal I from Proposition 11 is always idempotent. We state this statement
for artin algebras, but it again admits an almost verbatim generalization to left
coherent rings.
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Lemma 14. Let Λ, (A,B) and I be as in Proposition 11. Then I is an idempotent
ideal of modΛ.

Proof. Let f : X → Y be a morphism from I. By definition, f factors as X
g
→

A
h
→ Z for some A ∈ A. Since (A,B) is of countable type, A must be filtered by

countably generated modules from A [31, Theorem 10]. By Lemma 13, we can find
a countably generated submodule A′ ⊆ A such that Im g ⊆ A′ and A′ ∈ A. More
precisely, we use part (4) of the countable version of Lemma 13 with N = 0 and

X a finite set of generators of Im g. Hence, f factors as X
g′

→ A′ h′

→ Z, and, by
Proposition 11, we can express A′ as the direct limit of a system

C1
f1
→ C2

f2
→ C3

f3
→ . . .

of finitely generated modules such that fi ∈ I for each i ≥ 1. Finally, since X is
finitely generated, g′ factors through Ci for some i ≥ 1. But then we can write
f = h′vfi+1fiu for some morphisms u and v, and clearly both fiu and h′vfi+1 are
in I. Hence f ∈ I

2 and I is idempotent. �

Now, we can equivalently rephrase Conjecture (B) in the language of ideals:

Proposition 15. Let Λ, (A,B) and I be as in Proposition 11. Then the following
are equivalent:

(1) (A,B) is of finite type.
(2) I is generated by a set of identity morphisms from modΛ.

Proof. (1) =⇒ (2). Assume that (A,B) is of finite type, i.e., B = KerExt1Λ(S,−)
for some set S of finitely generated modules. We can without loss of generality
assume that S is a representative set of all finitely generated modules in A.

We claim that I is then generated by the set {1X | X ∈ S}. To this end we recall
that under our assumption, A consists precisely of direct summands of S-filtered
modules (see [32, Theorem 2.2] or [12, Corollary 3.2.3]). Hence, if f : X → Y is

a morphism from I, then it factors as X
g
→ A

h
→ Z for some S-filtered module A.

Using part (4) of the finite version of Lemma 13 with N = 0 and a finite set X
of generators of Im g, we can find a module A′ ⊆ A such that A′ is isomorphic to
some module in X ∈ S and Im g ⊆ A′. Thus, f factors through 1X and since f was
chosen arbitrarily, the claim is proved.

(2) =⇒ (1). Suppose that S is a set of finitely generated modules such that
{1X | X ∈ S} generates I. It is straightforward to deduce from Proposition 11(2)
that B =

⋂
X∈S KerExt1Λ(1X ,−). But this is exactly the same as saying that

B = KerExt1Λ(S,−). Hence, the cotorsion pair (A,B) is of finite type. �

Finally, we can prove the TCMC formulated as Conjecture (B) for those artin
algebras Λ for which rad∗Λ = 0. Note that all we need to do in view of Lemma 14 and
Proposition 15 is show that certain idempotent ideals are generated by identities,
and this is always the case when rad∗Λ = 0. As mentioned above, rad∗Λ = 0 whenever
Λ is a domestic standard selfinjective algebra [15] or a domestic special biserial
algebra [27] over an algebraically closed field.

Theorem 16. Let Λ be an artin algebra such that rad∗Λ = 0. Then every hereditary
cotorsion pair (A,B) in ModΛ such that B is closed under unions of well ordered
chains is of finite type.
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Proof. Let I be the ideal of all morphisms in modΛ which factor through some
module from A. Then I is an idempotent ideal by Lemma 14 and, therefore, is
generated by a set of identity maps, by Corollary 10. The latter is equivalent to
saying that (A,B) is of finite type, by Proposition 15. �

Another condition on an artin algebra Λ which seems to be closely related to
vanishing of the transfinite radical and the domestic representation type is that of
the Krull-Gabriel dimension of Λ being an ordinal number. Let us recall first that
the category C(Λ) = fp(modΛ,Ab) of finitely presented covariant additive functors
modΛ → Ab is an abelian category, and we can inductively define a filtration

S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sα ⊆ Sα+1 ⊆ . . .

of Serre subcategories of C(Λ) as follows: Let S0 be the full subcategory of C(Λ)
formed by functors of finite length, and for each ordinal number α, let Sα+1 be
the full subcategory of all functors whose image under the localization functor
C(Λ) → C(Λ)/Sα is of finite length. At limit ordinals α, we just take the unions
Sβ =

⋃
β<α Sα. We refer to [19, §7] for more details and further references. The

construction leads to the following definition:

Definition 17. The Krull-Gabriel dimension of an artin algebra Λ is defined as
KGdimΛ = α where α is the least ordinal number such that Sα = C(Λ). If no such
α exists, one puts KGdimΛ = ∞.

As a consequence of a deeper and more refined theorem, [19, Corollary 8.14]
shows that rad∗Λ = 0 whenever KGdimΛ < ∞. In particular, we get as a corollary
of Theorem 16 that the TCMC holds for any artin algebra with ordinal Krull-
Gabriel dimension:

Corollary 18. Let Λ be an artin algebra such that KGdimΛ < ∞. Then every
hereditary cotorsion pair (A,B) in ModΛ such that B is closed under unions of
well ordered chains is of finite type.

Remark. The concept of the Krull-Gabriel dimension has been nicely illustrated
by Geigle for tame hereditary algebras Λ in [9], where he explicitly computed that
KGdimΛ = 2 and described the localization categories S1/S0 and S2/S1.

The proof in [19] of the fact that KGdimΛ < ∞ implies rad∗Λ = 0 goes through
a stronger statement and involves many technical arguments. There is, however, a
more elementary way to see this, namely, one can define a so called m-dimension of a
modular lattice following [22, §10.2]. Then KGdimΛ is equal to the m-dimension of
the lattice of subobjects in fp(modΛ,Ab) of the forgetful functor HomΛ(Λ,−); see
[19, 7.2]. Such subobjects precisely correspond to pairs (M,m) where M ∈ modΛ
and m ∈ M , and (M ′,m′) corresponds to a subobject of (M,m) if and only if there
is a homomorphism f : M → M ′ in modΛ such that f(m) = m′ [19, 7.1]. Now,
KGdimΛ = ∞ if and only if there is a factorizable system in modΛ in the sense
of [23]. Existence of such a factorizable system is easily implied by Lemma 2 or [23,
Proposition 0.6] if rad∗Λ �= 0.

The Krull-Gabriel dimension of Λ also gives a strong link to model theory of
modules, as it is equal to the m-dimension of the lattice of primitive positive for-
mulas in the first order theory of Λ-modules. We refer to [23, Proposition 0.3]
and [22, §12] for more details.
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5. Telescope conjecture for triangulated categories

We also briefly recall the application of the telescope conjecture to triangulated
categories. If Λ is a selfinjective artin algebra, then the stable module category
ModΛ modulo injective modules is triangulated in the sense of [10, IV] or [13, I].
The triangles are, up to isomorphism, of the form

X
f
→ Y

g
→ Z

h
→ ΣX

where 0 → X
f
→ Y

g
→ Z → 0 is a short exact sequence in ModΛ and the suspension

functor Σ : ModΛ → ModΛ corresponds to taking cosyzygies in ModΛ. Clearly,
Σ is an auto-equivalence of ModΛ and the corresponding inverse Σ−1 is given by
taking syzygies in ModΛ.

An object X in a triangulated category with (set-indexed) coproducts is called
compact if the representable functor Hom(X,−) commutes with coproducts. In
particular, an object X ∈ ModΛ is compact if and only if it is isomorphic to a
finitely generated Λ-module in ModΛ (see [18, §1.5] or [17, §6.5]).

A full triangulated subcategory X of ModΛ is called localizing if it is closed
under forming coproducts in ModΛ. A localizing subcategory X is called smashing
if the inclusion X →֒ ModΛ has a right adjoint which preserves coproducts. We
say that a localizing subcategory X is generated by a class C of objects if there is
no proper localizing subcategory X ′ of X such that C ⊆ X ′. We refer to [18, 16]
for a thorough discussion of these concepts. It follows that ModΛ is a compactly
generated triangulated category, that is, ModΛ is generated, as a localizing class,
by a set of compact objects.

The telescope conjecture studied in [18, 16] asserts that every smashing localizing
subcategory of a compactly generated triangulated category is generated by a set
of compact objects. Even though it is generally false as mentioned in the introduc-
tion, we can give an affirmative answer in a special case. Specifically, Theorem 16
together with results from [20] imply that the conjecture holds for ModΛ where Λ
is a selfinjective artin algebra with vanishing transfinite radical.

Theorem 19. Let Λ be a selfinjective artin algebra such that rad∗Λ = 0. Let X be a
smashing localizing subcategory of ModΛ. Then X is generated by a set of finitely
generated Λ-modules.

Proof. We know that Conjecture (B) holds for Λ by Theorem 16. Hence Conjecture
(A) also holds by the discussion in Section 1. The rest follows immediately from [20,
Corollary 7.7]. �

6. Examples

We conclude with some examples of particular representation-infinite selfinjective
algebras with vanishing transfinite radical.

Example 20. The simplest example is probably the exterior algebra of a 2-dimen-
sional vector space over an algebraically closed field, i.e. Λ2 = k〈x, y〉/(x2, y2, xy+
yx). It is a special biserial algebra in the sense of [30] and it has, up to rotation
equivalence and inverse, only one band xy−1. In particular, Λ2 is domestic and
we have exactly one one-parameter family of indecomposable modules in each even
dimension. For example, we have M(a:b) = Λ2/Λ2(ax + by) for each (a:b) ∈ P1(k)
in dimension 2. Thus, rad∗Λ2

= 0 by [27, Theorem 2].
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With a little more effort, we can classify all smashing localizations and all hered-
itary cotorsion pairs with the right hand class closed under unions of chains. Using
the representation theory of special biserial algeras, one can readily compute the
Auslander-Reiten quiver of Λ2. It consists of a family (T(a:b) | (a:b) ∈ P1(k)) of
homogeneous tubes, the corresponding quasi-simples being precisely the modules
M(a:b) above. In addition, there is one more component, which we denote by C, of
the form

Λ2

���
��

��
��

�

X−3

����
��

��
��

����
��

��
��

X−1

����
��

��
��

����
��

��
��

����������
τ�� X1

���
��

��
��

�

���
��

��
��

�

τ�� X3

���
��

��
��

�

���
��

��
��

�

τ�� ��
�����������

����������� X−2

����������

����������

τ
�� X0

		��������

		��������
τ

�� X2

		��������

		��������
τ

��
τ

��

where X0 is the unique simple module and Xn and X−n are the string modules
corresponding to the strings (yx−1)n and (x−1y)n, respectively. In particular,
dimk Xn = 2 · |n|+1. It is easy to compute that Ω−(Xn) ∼= Xn+1 and Ω−(M) = M
for each indecomposable finite dimensional module in a tube. This describes the
restriction of the suspension functor Σ : ModΛ2 → ModΛ2 to modΛ2.

We recall that a full triangulated subcategory X0 of modΛ2 is called thick if it is
closed under direct summands. There is a bijective correspondence between thick
subcategories X0 of modΛ2 and localizing subcategories X of ModΛ2 generated by
a set of compact objects. More precisely, if X is generated by X0 ⊆ modΛ2 and X0

is thick, then X ∩modΛ2 = X0 [21, 2.2]. It is clear that each thick subcategory is
uniquely determined by its indecomposable objects.

We will now describe thick subcategories of modΛ2. It is straightforward to
check that if an indecomposable non-injective module M ∈ modΛ2 is contained in
a thick subcategory X0, then all modules in the same component of the Auslander-
Reiten quiver are in X0, too. On the other hand, if Tp is a tube for some p ∈ P1(k),
then one can check that in modΛ2, the additive closure of Tp ∪ {Λ2} equals

{X ∈ modΛ2 | HomΛ2
(X, Tq) = 0 = HomΛ2

(Tq, X) (∀q ∈ P1(k) \ {p})}.

Therefore, add(Tp ∪ {Λ2}) is closed under extensions, syzygies and cosyzygies
in modΛ2, and consequently addTp is thick in modΛ2. It is easy to see that
HomΛ2

(Tp, Tq) = 0 for p �= q, so the additive closure of any set of tubes is thick
in modΛ2. Finally, there is an exact sequence 0 → M → Xm → Xm+1 → 0 for
each m < 0 and each quasi-simple module M in a tube; hence a thick subcategory
containing the component C contains all the tubes, too. Upon summarizing all the
facts (and using Theorem 19), we obtain the following classification:

Proposition 21. Let k be an algebraically closed field, let Λ2 = k〈x, y〉/(x2, y2, xy+
yx), and let C and Tp, p ∈ P1(k), be the components of the Auslander-Reiten quiver
of Λ2 as above. Then each smashing localizing class X in ModΛ2 is generated by
X0 = X ∩modΛ2, and the possible intersections X0 are classified as follows:

(1) X0 = 0; or
(2) X0 is the additive closure of

⋃
p∈P Tp for some P ⊆ P1(k); or

(3) X0 = modΛ2.
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In the same spirit, we can classify the hereditary cotorsion pairs (A,B) in ModΛ2

such that B is closed under unions of chains. Recall that a subcategory A0 of
modΛ2 is called resolving if it contains Λ2 and is closed under extensions, kernels
of epimorphisms and direct summands. There is a bijective correspondence between
resolving subcategories A0 in modΛ2 and hereditary cotorsion pairs (A,B) of finite
type in ModΛ2 [3, 2.5]. Note that if A0 is resolving and contains a module Xm ∈
C, it must contain all Xz, z ≤ m, and all tubes. On the other hand, it is not
difficult to see that there is an exact sequence 0 → Xn → U → X−k → 0 with
an indecomposable (string) module U from a tube for each n, k > 0. Hence A0

must contain all of C, too. We will leave details of the following statement (using
Theorem 16) for the reader:

Proposition 22. Let k be an algebraically closed field, let Λ2 = k〈x, y〉/(x2, y2, xy+
yx), and let C and Tp, p ∈ P1(k), be the components of the Auslander-Reiten
quiver of Λ2 as above. Let (A,B) be a hereditary cotorsion pair in ModΛ2 such
that B is closed under unions of chains, and let A0 = A ∩ modΛ2. Then B =
KerExt1Λ2

(A0,−), and the possible classes A0 are classified as follows:

(1) A0 = add{Λ2}; or
(2) A0 is the additive closure of {Λ2} ∪

⋃
p∈P Tp for P ⊆ P1(k); or

(3) A0 = modΛ2.

Example 23. A recipe for construction of more complicated examples is given
in [15]. Let B be a representation-infinite tilted algebra of Euclidean type over an

algebraically closed field and B̂ its repetitive algebra. Put Λ = B̂/G where G is

an admissible infinite cyclic group of k-linear automorphisms of B̂ (see [29, §1] for
unexplained terminology). Then Λ is selfinjective and rad∗Λ = 0 by the main result
of [15].

We illustrate the construction on B = k(· ⇒ ·), the Kronecker algebra. The

repetitive algebra B̂ is then given by the following infinite quiver with relations

·
x0 


y0



 ·
x1 


y1



 ·
x2 


y2



 ·
x3 


y3



 ·

xi+1xi − yi+1yi = 0, xi+1yi = 0, yi+1xi = 0 for each i ∈ Z.

Let n ≥ 1 and let q̄ = (q1, . . . , qn) be an n-tuple of non-zero elements of k. It
is not difficult to see that we get the algebra Λn,q̄, described by the quiver and

relations below, as B̂/G for a suitable G:

·
x1 


y1



 ·
x2

���
��

��
��

y2

���
��

��
��

·

xn

��							 yn

��							
·

x3

��
y3

��
·

xn−1




yn−1





·

xi+1yi + qiyi+1xi = 0, xi+1xi = 0, yi+1yi = 0 for each i ∈ {1, 2, . . . , n}.

The addition in indices of the arrows above is considered modulo n. It is easy to
see that Λn,q̄ is special biserial and that there are exactly n one-parameter families
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of indecomposable Λn,q̄-modules in each even dimension. They correspond to the

bands xiy
−1
i . In fact, if n = 1 and q1 = 1, we get precisely the exterior algebra on

a 2-dimensional space.

References
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[29] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), no. 2,
177–199. MR1016089 (90k:16024)
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