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1. Introduction 

In Automath (see [I] ,[3] ,[4]) the implement ation of mathemati- 
cal functions is a simple matter if the domain of the function is a 
type, but becomes slightly awkward if that domain is a part of a 
type. For example, if the type is the type of real numbers (let us 
assume it has been called "real"), and if we take as the domain the 
interval (3,7) (the set of all x with 3 < x < 7), then the function 
value at a point b can be obtained only if apart from the value of 
b we provide a proof for 3 < b < 7. Let us call the class of all 
such proofs P(b). So for a function call we have to  provide two 
expressions, b and u, and to establish the typings b : real, u : P(b). 
Therefore the partial function has to be implemented in Automath 
by means of two lambda abstractors instead of a single one. With 
the Automath notation for typed lambdas (see section 2); these 
abstractors are [x : real][y : P(x)]. If, for example, the function is 
complex-valued, then its type becomes [x : real][y : P(x)]compl. 

In such a sequence of two or more abstractors the type of the 
second may depend on the variable in the first, the type of the 
third may depend on the variables of the first two, etc. It reminds 
of an old-fashioned telescope consisting of a sequence of segments 
of decreasing width, where each segment can be shifted into the 



previous one. That is why these abstractor strings are called tele- 
scopes .  

In Automath, like in all typed theories, we have to learn to 
live with this trouble of ~ a r t i a l  functions, due to the fact that 
sets (or generally subtypes) are not automatically types. One way 
to cope with it is to make facilities to attach a type of its own 
to every subtype, either by extension of the language machinery 
or by means of a few axioms. The question whether the use of 
such facilities is efficient may depend on the question whether the 
subtype plays a substantial role in a long piece of text. But one 
might also take the point of view that we can better leave the 
telescopes as they are, possibly soothing the pain by means of 
facilities for abbreviated input and output. 

If we leave the telescopes as they are, and implement sets as 
telescopes of length 2, we may have to study mappings of sets into 
a type (like "compl" in the example above), but we can also have 
the situation that we want to restrict the range of the mapping. 
In particular we get this if we have to describe the composition 
of two functions. So we get to mappings where both domain and 
range are described by telescopes instead of just by types. 

It is to this kind of mappings that this paper is devoted. We 
develop a notational system for these telescopic mappings, and for 
telescopes corresponding to these mappings. Moreover, we shall 
show the use of these notations for the matter of composition (sec- 
tion 9), for mappings where the range is a product of two telescopes 
(section lo),  and for mappings where the domain is such a product 
(section 11). 

It is easy to imagine that these telescopic mappings might be 
used as an input facility for Automath languages, but we shall not 
materialize that in this note. Moreover, the new notations to be 
developed in this note will not be presented as parts of a formal 
language, so everything is to be considered as infbrmal metalan- 
guage of Automath. 



2. Automath notation for typed lambda cal- 
culus 

We remind here how Automath expressions (AUT-expressions 
for short) are built: 

(i) an identifier is an AUT-expression, 
(ii) an identifier followed by a sequence of AUT-expressions, 

where the sequence is enclosed in 0 ' s  and, if of length > 1, sepa- 
rated by commas, is an AUT-expression. 

This procedure of providing an identifier with subexpressions, 
like in f (P, Q, R) (where f is the identifier, and P, Q, R st and for 
expressions), is called ins tan t ia t ion .  Instantiation will not play an 
explicit role in this paper (although the expressions we discuss may 
contain instantiations). The notations like A(x)  in section 3 should 
not be confused with instantiations: they represent a symbolism 
of the metalanguage . 

(iii) If x is an identifier, and P and Q are AUT-expressions, 
then [x : P]Q is an AUT-expression. 

The Automath notation [x : P]Q represents what others might 
write as Ax : P.Q or A,,pQ; the expression P gives the type of the 
bound variable x. The part [x : P] is called an abstractor.  

(iv) If P and Q are AUT-expressions, then ( P ) Q  is an AUT- 
expression. The interpretation is that Q stands for a function and 
(P )Q stands for the value of that function at the point P. 

This deviates from the standard notation in lambda calculus 
and in most other parts of mathematics, where the function sym- 
bol is written in front of the argument. The part (Q) is called an 
applicator. Since abstractors are written in front of the expressions 
they act on, it is reasonable to write the applicators on the left as 
well, since quite often (in beta and eta reductions) an abstractor 
and a corresponding applicator cancel each other. 

We shall be informal about the matter of names of bound vari- 
ables. If we wish, we can get rid of these names by means of a 
system of namefree lambda calculus, for which we refer to [2]. 



3. Telescopes and vectors fitting into them 

A telescope is an abstractor string 

The number k is called its length. The A;(xl, . . . , xi-1) stands 
for an AUT-expression that we allow to contain the variables xl ,. . . , 

Note that the A, have no separate meaning, it is only the 
combination A;(xl,. . . , that makes sense. 

We use column vector nota.tion 

On the right we have written the column vector x as a row XI,. . .,xr,, 
just for typographical reasons. And for simplicity we have ex- 
tended the strings of variables to length k for every A;, although 
we know that A; does not contain x;,x;+l,. . . . 

If vl, . . . , v k  are AUT-expressions, then v will be called an AUT- 
vector. 

The above telescope will be abbreviated to 

[X : A (x)] . 

We say that the AUT-vector v fits into the telescope, notation 

if the following ordinary Automath typings are valid: 



It has to be pointed out that what is meant here is not instanti- 
ation. Ak(vl, . . . , vk-l) stands for the expression we get if we start 
from the expression that was denoted by Ak(xl, . . . , ~ k - ~ ) ,  and re- 
place all occurrences of xl by the expression v~ , etc. 

We might have chosen any other symbol instead of EE. The only 
reason for E E  is that in Automath the fitting of a vector into a 
telescope can implement the belonging of an element to a set. 

For the fitting of v into the telescope [x : A(x)] we shall also 
use the notation 

Note that on the right of EE we have a telescope, on the right of : 
we have a vector. If 

Q = [X : A(x)] 

then vreQ and v : A(v) are synonymous. Accordingly, we might 
even write [XEEQ] instead of Q itself. If v has length 1, the notation 
v : A(v) describes just ordinary typing. 

If the vector v fits into the telescope Q, and if the length of v 
is >I, then we do not have the right to speak of Q as being the 
telescope of v. If the length is 1, the simple relation between type 
and telescope guarantees that Q is uniquely determined by v in 
the sense that if v fits both into Q and into R, then Q and R are 
definitionally equal. If the length is >I,  this is no longer the case. 
J. Zucker gave the following simple example. If 

and these two telescopes are definitely not definitionally equal. 

4. Further notation 



If v and w are vectors, possibly of different length: 

then (v)w denotes the vector 

And [x : A(x)]w denotes the vector 

Concatenation of the vectors v and w is denoted by v o w: 

We can also concatenate two telescopes. The second one may 
depend on variables introduced in the first one. If 

R(x) = [Y : B(x, y)l 

then the concatenation can be written as 

If we introduce A*(x o y) = A(x), B*(x 0 y ) = B(x, Y )  then the 
concatenation can be written as a single telescope 



Quite often we have to deal with the matter that a concate- 
nated vector z o v(z) (the first set of entries are variables, the last 
ones are expressions containing these variabes) fits into the con- 
catenated telescope [x : A(x)][y : B(x,y)]. In those cases we say 
(in accordance with Automath metalanguage) that in the context 
[X : A(x)] the vector v(x) fits into [y : B(x,y)]. 

5. Telescopic mappings 

The semantics of a telescopic mapping is: a function that at- 
taches a vector v to every vector that fits into a telescope Q (to 
be called the it domain telescope). If Q=[x : A(x)], the syntax is 

which will also be written as X,,,Qv(x). Note that there is some 
danger of confusion in the notation [x:A(x)]v(x). It does not re- 
veal what the domain telescope is, since v ( ~ )  itself may start with 
abstractors. 

We shall be concerned with mappings where the values v(x) fit 
into a second telescope. In general, the second one can depend on 
the variables of the first: 

R(x) = [Y : B(x, Y )I 
So if we say that the values of the mapping [x : A(x)]v(x) fit into 
the second telescope, we mean that in the context [x : A(x)] we 
have v(x)ccR(x), which means 

x o v(x) E E  [X : A(x)][y : B(x, y)]. 

We shall build a new telescope into which all these mappings 
[x : A(x)]v(x), and nothing but these mappings, fit. We denote it 



by pXCcQR(x). We shall refer to it as a functional telescope. It is 
defined as 

In section 7 it will be established to have the required properties. 
If Q has length k ,  R length m, then we have the following 

lengths: 

k m  m k  

6. An example 

Let us describe mappings from the interior of the unit circle in 
the complex plane into the set of all real numbers y with 0 5 y < 1. 

The interior of the unit circle can be related to the telescope 

(if z is a complex number then P(z)  represents the class of all 
proofs for the statement that the absolute value of z is less than 
1). The range set is related to the telescope 

R = [y : real] [v : W( y)] 

(if y is a real number, then W(y) is the class of all proofs for the 
statement that 0 < y < 1). The functional telescope becomes 
(note that z o u is a column vector of length 2, with entries z and 

1 

[P : [Z : compl] [u : P(z)]real] [q : [z  : compl] [u : P(z)] W (  (u) ( z ) ~ ) ] .  

Let the vector f = f o w fit into this functional telescope. So 

w : [ z  : compl] [u : P(z)] W((u) (z) f ). 



Furthermore, let a  o m fit into the domain telescope Q, whence 
a  : compl, m : P ( a ) .  Now 

If we put ( m ) ( a )  f = b, ( m ) ( a ) w  = T ,  we have ( a  o m)f = b o r ,  
and we infer that b : real and T : Q ( b ) ,  i.e., r is a proof for the 
statement that b satisfies 0 5 b < 1. In other words, ( a  o m) f fits 
into R. 

We can now check that 

is a telescopic mapping (defined on Q) whose values fit into R. It 
reduces to f by eta reduction (see section 7). 

7. Beta and eta reduction 

If VEE[X : A(x)] then 

The number of beta reduction steps is equal to the length of v 
If the vector f does not contain the variable x then 

The number of eta reduction steps is equal to the length of x.  
For simplicity, we shall always consider two expressions as equal 

if they are definitionally equal in the sense of beta and eta reduc- 
tion. 

8. The rules for telescopic mappings 

In this section, Q and R(x) will be as in section 5: 

Q = [X : A@)], R(x) = IY : B(x,y)l 



We formulate the rules for empty context, but they hold simi- 
larly in an arbitrary context. 

As a warning we first mention that f(x) is not the value of a 
function f at a point x.  Like A(x), . . . in section 3, f(x) stands for 
a vector of expressions containing the variables XI,. . . . If in f(x) 
we replace all x; by corresponding v; 's, the result will be denoted 
by f (v). It will be a consequence of Rule I (below) that f (v) can 
be interpreted as a function value, but not as a function value of 
f .  The function it can be interpreted as a value of, is g ,  where g 
= [xEEQ]~(x). 

Rule I. If fr~p,,,gR(x) then (by eta reduction) 

If moreover vwQ then we have as a consequence 

but here beta reduction will do, we do not need eta. 

Rule I1 (Introduction rule). 

f(x)ccR(x) in the context [XEEQ] 

X x c e ~ f  (x) C E  ~ x c c ~ R ( x )  

Proof.  In the context [x : A(x)] we have f(x) : B(x, f(x)). If 
g = XX,,~f(x) then (x)g is defhitionally equal to f(x), so f(x) : 
B(x, (x)g) in the context [x : A(x)] . Therefore 

and so 

As /ixCcQR(~)= [s : [x : A(x)]B(x, (x)s)] we now conclude 
ge%cte~R(x) .  



Rule I11 (Elimination rule). 

g : [x : A(x)lB(x, (x)g). 

v : A(v), 

and therefore (v) g : B(v, (v) g). 

Now note that R(v) = [y : B(v, y)], so (v)g : B(v, (v)g) can 
be interpreted as (v)g E E  R(v). 

9. Composition of functions 

We restrict ourselves to the case of independent telescopes Q, 
R, S.  Take 

Then we have 

Proof. In the context [XCEQ] we have xrrQ, and therefore by Rule 
I11 (x)freR. Again by Rule 111 ((x) f )geS.  Finally we apply Rule 
11. 

10. Mappings into a product 

Under this heading we generalize the idea of mappings of a 
set A into the cartesian product of two sets B and C. The set 
A t (B x C) of all mappings of A into B x C can be seen as the 
cartesian product (A + B) x (A t C). We shall generalize this 
to  telescopes. Taking 



Proof. Introduce B* and C* by 

B*(x, y o Z )  = B(x, y), C*(x, y o z) = C(x, y,  z). 

Then the concatenation [y : B(x, y)][z : C(x, y,  z)] can be written 
as a single telescope 

[y o z : H(x, y o z)], where H = B* o C*. 

Now 

/-kcQ[y O Z : H(x,y 0 z)] = [s : [x : A(x)]H(x, ( x ) ~ ) ] .  

Writing s = f o g  (with appropriate lengths of f and g )  we get 



11. Mappings where the domain is a product 

Under this heading we generalize the idea of mappings of a 
cartesian product of two sets A and B into a set C. The set of 
all those mappings, ( A  x B )  -+ C ,  can be interpreted as the set 
A --+ ( B  + C )  of all mappings of A into the set of all mappings of 
B into C. We shall generalize this to telescopes. 

Consider 

and call the components RI , R2(y )  and T ( y ,  z). If the product of 
the first two is called S, we have 

On the other hand 

Acknowledgement. The author is indebted to L.S. van Bent- 
hem Jutting and R. Nederpelt for their remarks. 

References. 

1. N.G. de Bruijn. The mathematical language AUTOMATH, its usage 
and some of its extensions, Symposium on Automatic Demonstration, IRIA, 



Versailles, December 1968. (Lecture Notes in Mathematics, Vol. 125, Springer 
Verlag 1970, pp. 29-61). 

2. N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool 
for automatic formula manipulation, with application to  the Church-Rosser the- 
orem. Kon. Nederl. Akad. Wetensch. Proceedings Ser. A 75 (=Indagationes 
Math. 34) pp.381-392 (1972). 

3. N.G. de Bruijn. A survey of the project Automath. To 1I.B. Curry: 
Essays in combinatory logic, lambda calculus and formalism, Academic Press 
1980, pp. 579-606. 

4. D.T. van Daalen. The language theory of AUTOMATH. Doctoral The- 
sis, Dept. of Mathematics, Eindhoven University of Technology, 1980. 


