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Abstract We study a general, high-order, fully explicit numerical method for simulating

kinetic equations with a BGK-type collision model with multiple relaxation times. In that

case, the problem is stiff and its spectrum consists of multiple separated eigenvalue clusters.

Projective integration methods are explicit integration schemes that first take a few small

(inner) steps with a simple, explicit method, after which the solution is extrapolated forward

in time over a large (outer) time step. These are very efficient schemes, provided there are only

two clusters of eigenvalues, one corresponding to a single fast relaxation time scale, and one

corresponding to the slow macroscopic dynamics. Here, we show how telescopic projective

integration can be used to efficiently integrate kinetic equations with multiple relaxation

times. Telescopic projective integration generalizes the idea of projective integration by

constructing a hierarchy of projective levels. The main idea is to adjust the size of the inner

time step at each level to one of the relaxation time scales. We show that the size of the outer

time step, as well as the required number of inner steps at each level, does not depend on

the stiffness of the problem. The computational cost of the method depends on the stiffness

of the problem only via the number of projective levels. For problems with a fixed number

of well-separated spectral clusters, the number of projective levels is independent of the

stiffness, and the computational cost of telescopic projective integration is independent of

the stiffness. For problems with a time-varying spectrum, the number of projective levels

grows logarithmically with the stiffness. We illustrate numerically that, also in that case, the

resulting computational cost is acceptable.
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1 Introduction

The Boltzmann equation forms the cornerstone of the kinetic theory of rarefied gases. In a

scalar D-dimensional setting without external forcing, this equation portrays the evolution

of the one-particle distribution function f (x, v, t) in phase space (x, v) at time t , and takes

the following general form [11]:

∂t f + v · ∇x f = Q( f ), (1)

in which x =
(

xd
)D

d=1
∈ R

D and v =
(

vd
)D

d=1
∈ R

D denote the positions and velocities of

the particles, respectively. The left hand side of Eq. (1) represents the transport of particles

with velocity v, whereas the collision operator Q on the right hand side describes velocity

changes as a consequence of collisions between particles. The collision operator proposed

by Boltzmann is the most general and considers collisions between any two particles [11].

However, due to the resulting quadratic cost, it is very expensive to discretize. To reduce

the computational cost, the full Boltzmann collision operator is typically replaced by the

well-known BGK model [5], in which collisions are modeled as a linear relaxation towards

a local Maxwellian equilibrium distribution function Mv ( f ):

∂t f + v · ∇x f = ν

ε
(Mv ( f ) − f ), (2)

where ν(x, t) ∈ R
+ is the collision frequency and 0 < ε ≪ 1 is a positive small-scale

parameter that determines the relaxation time scale. The specific expression of ν(x, t) depends

on the dimension of velocity space and the type of microscopic collisions considered [11].

For instance, for Maxwellian molecules, in a one-dimensional velocity space one simply uses

ν = 1, whereas in two dimensions, one takes ν(x, t) = ρ(x, t) with ρ(x, t) the density of

particles, see, e.g., [52].

The difficulty of numerically integrating equations of the form (2) follows from the stiff-

ness present on the right hand side, for which appropriate numerical methods need to be

selected. There is currently a large research effort in the design of algorithms that are uni-

formly stable in ε and approach a scheme for the limiting equation when ε tends to 0; such

schemes are called asymptotic-preserving in the sense of Jin [28]. We refer to [14] for a clear

survey on numerical methods for kinetic equations. Here, we briefly review some achieve-

ments using different strategies. In [29,30,34], separating the distribution function f into its

odd and even parts in the velocity variable results in a coupled system of transport equations

where the stiffness appears only in the source term, allowing to use a time-splitting technique

[51] with implicit treatment of the source term; see also related work in [28,35,36]. Implicit–

explicit (IMEX) schemes are an extensively studied technique to tackle this kind of problems

[3,17] (and references therein). Recent results in this setting were obtained by Dimarco et

al. to deal with nonlinear collision kernels [13], and an extension to hyperbolic systems in

a diffusive limit is given in [6]. A different approach, based on well-balanced methods, was

introduced by Gosse and Toscani [22,23], see also [8,9]. Discontinuous Galerkin schemes

have also been developed [1,24,40,43,44], as well as regularization methods [25,27]. When

the collision operator allows for an explicit computation, an explicit scheme can be obtained

subject to a classical diffusion CFL condition by splitting f into its mean value and the first-

order fluctuations in a Chapman-Enskog expansion form [21]. Also, closure by moments, e.g.

[12], can lead to reduced systems for which time-splitting provides new classes of schemes

[10], see [42,45,46,52] for more complete references on moment methods in general. Alter-

natively, a micro–macro decomposition based on a Chapman-Enskog expansion has been
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proposed [42], leading to a system of transport equations that allows to design a semi-

implicit scheme without time splitting. A non-local procedure based on the quadrature of

kernels obtained through pseudo-differential calculus was proposed in [4].

A robust and fully explicit method, which allows for time integration of (two-scale) stiff

systems with arbitrary order of accuracy in time, is projective integration. Projective inte-

gration was proposed in [19] for stiff systems of ordinary differential equations with a clear

gap in their eigenvalue spectrum. In such stiff problems, the fast modes, corresponding to the

Jacobian eigenvalues with large negative real parts, decay quickly, whereas the slow modes

correspond to eigenvalues of smaller magnitude and are the solution components of practical

interest. Projective integration allows a stable yet explicit integration of such problems by

first taking a few small (inner) steps using a step size δt with a simple, explicit method, until

the transients corresponding to the fast modes have died out, and subsequently projecting

(extrapolating) the solution forward in time over a large (outer) time step of size �t > δt . In

general, the stability properties of projective integration depend on the time-scale separation

in the problem. In particular, the number of inner steps (and hence, the computational cost)

typically grows logarithmically with the stiffness [19].

In [39], projective integration was analyzed for linear BGK equations with a diffusive

scaling. The spectral properties of the linear BGK equation are particularly favorable for

projective integration. The analysis in [39] shows that, for this problem, also the number of

inner steps in projective integration can be chosen independently of the small-scale parameter

ε. Projective integration therefore results in a method with ε-independent computational

cost. However, the method is, strictly speaking, not asymptotic-preserving in the sense that

it readily reverts to a standard scheme for the limiting diffusion equation when inserting

ε = 0 into the scheme. An arbitrary order version, based on Runge–Kutta methods, has

been proposed recently in [37], where it was also analyzed for kinetic equations with an

advection–diffusion limit [38]. Also for these higher-order methods, the computational cost

was shown to be independent of ε. Alternative approaches to obtain a higher-order projective

integration scheme have been proposed in [41,48]. These methods fit within recent research

efforts on numerical methods for multiscale simulation [32,33,54,55].

Projective integration methods work best whenever the problem’s spectrum consists of

two eigenvalue clusters (one corresponding to the fast and the other to the slow eigenvalues)

with a clear spectral gap between them. When the outer time step is much larger than the inner

time step, �t ≫ δt , the stability domain of projective integration methods consists of two

circle-like stability regions [19]. In that case, the projective integration method parameters

can be tuned such that (1) all fast eigenvalues of the naive time discretization of the kinetic

equation fall into its first stability region, and (2) its dominant stability region contains all

dominant eigenvalues of this naive time discretization. However, when more relaxation time

scales are present, the spectrum will contain more than two eigenvalue clusters. There are

two options to choose the method parameters for projective integration in such cases [19].

First, one can ensure that the stability region of the projective integration method does not

split into two disjoint regions for the fast and the slow time scales; the method is then called

[0, 1]-stable. However, this results in outer time step sizes that are still limited by the stiffness

of the problem. An alternative route is to adjust the number of inner time steps: the part of

the stability region that contains the fast modes grows as the number of inner steps increases.

However, also in this case, the computational cost cannot be made independent of the stiffness

of the problem, as the required number of inner time steps grows logarithmically with the

stiffness.

To integrate problems with multiple eigenvalue clusters more efficiently, we can use

telescopic projective integration (TPI) methods, which are presented in [20]. In these methods,
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the outer integrator step of the classical projective integration method is seen as the inner

integrator of yet another outer integrator on a coarser level. By repeating this idea, TPI

methods construct a hierarchy of projective levels in which each outer integrator step on a

certain level serves as an inner integrator step one level higher. TPI methods can remedy

the aforementioned difficulty of multiple spectral gaps in two distinct ways resulting in

different criteria for selecting the method parameters: (1) they can be designed such that the

method is always [0, 1]-stable with a greater speedup than classical projective integration,

or alternatively (2) they can be set up such that there is one stability region around every

eigenvalue cluster. The latter is discussed in more detail in [18]. To conclude this literature

review, we also refer to [16,50,53] for related approaches.

In this paper, we will construct telescopic projective integration methods of arbitrary order

of accuracy in time to integrate kinetic equations of the form (2), and study their numerical

properties on a set of linear model problems. Based on a comparison of the numerically

computed spectra with the spectral analysis in [37,38] for a single relaxation time BGK

equation, we choose the method parameters for telescopic projective integration. It will turn

out that the method gives considerable speedups, but the required number of telescopic levels

(and hence, the computational cost) grows logarithmically with ε. As an intermediate step,

which is interesting in its own right, we consider the relaxation time of the collisions to vary in

space only. This variation is embodied in a relaxation profile function denoted by ω(x) ∈ R.

In that case, we end up with the following multiple relaxation times kinetic equation:

∂t f + v · ∇x f = ω(x)

ε
(Mv ( f ) − f ). (3)

The introduction of a relaxation profile function ω(x) leads to a time-invariant spectrum that,

in general, comprises multiple eigenvalue clusters separated by spectral gaps. The relax-

ation profile in Eq. (3) can, for instance, be understood as the mathematical description of a

composite material in which each material has its own properties, which naturally leads to

differing collisional relaxation times. When the number of eigenvalue clusters is independent

of ε, the method parameters can be chosen such that the computational cost is independent of

the stiffness. (In particular, the number of telescopic levels is never higher than the number

of spectral clusters.)

The remainder of this paper is structured as follows. In Sect. 2, we introduce our math-

ematical setup in more detail, discuss the choice of the Maxwellian function Mv ( f ) in 1D

and 2D and compute the spectrum of both Eqs. (2) and (3) in 1D. In Sect. 4, we describe the

telescopic projective integration method that will be used to integrate these kinetic equations.

In Sect. 5, we determine the TPI method parameters for solving Eq. (3) based on its spectrum

and extend the TPI construction procedure to kinetic equations of the form (2). We report

numerical results in Sect. 6, where we illustrate the method for Eq. (2) in one and two space

dimensions. We conclude in Sect. 7.

2 Linearized Kinetic Equations with Multiple Relaxation Times

In this work, we are interested in the BGK-type kinetic Eq. (2) describing the evolution of a

nonnegative one-particle distribution function f (x, v, t) ∈ R, in which the particle positions

and velocities are denoted by x ∈ R
D and v ∈ V ⊂ R

D , respectively. We are specifically

interested in the cases D = 1 and D = 2. The right hand side of Eq. (2) represents the

BGK collision operator [5], modeling linear relaxation of the distribution function f (x, v, t)

to a local Maxwellian distribution Mv ( f ) ∈ R. We also introduce the position density
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ρ(x, t) = 〈 f (x, v, t)〉, obtained via averaging over the measured symmetric velocity space

(V, μ),

ρ := 〈 f 〉 =
∫

V

f dμ(v). (4)

The local Maxwellian equilibrium function Mv ( f ) in the BGK model corresponds to the

equilibrium distribution function of the full Boltzmann operator and is given by:

Mv ( f ) = ρ

(2πT )D/2
exp

(

−|v − v̄|2
2T

)

, (5)

in which the density ρ(x, t) ∈ R
+, the mean velocity v̄(x, t) =

(

v̄d(x, t)
)D

d=1
∈ R

D and the

temperature T (x, t) ∈ R
+ are obtained as the moments of the distribution function f ,

ρ = 〈 f 〉 , v̄d = 1

ρ

〈

vd f
〉

, T = 1

Dρ

〈

|v − v̄|2 f
〉

. (6)

In this paper, we focus on showing the stability of telescopic projective integration methods

for kinetic equations with multiple relaxation times. To this end, we will numerically study

the spectral properties of suitably linearized collision operators and use these results to

determine suitable method parameters. We now introduce the linearizations that we will use

in the numerical experiments: the one-dimensional case in Sect. 2.1 and the two-dimensional

case in Sect. 2.2.

2.1 One-Dimensional Case

To simplify the analysis in this work, we focus on the one-dimensional case (D = 1). In that

case, Eq. (2) reads:

∂t f + v∂x f = ν

ε
(Mv ( f ) − f ), (7)

in which the particle positions and velocities are denoted by x ∈ R and v ∈ V ⊂ R,

respectively.

According to the BGK model, particles interact with a collision frequency ν(x, t) that

depends on the dimension of the velocity space. Since we are interested in studying the

numerical difficulties that arise when dealing with multiple relaxation times, we choose

ν(x, t) = ρ(x, t). While this choice only improves the modeling accuracy of the BGK

approximation in 2D, compared to simply choosing ν = 1, the numerical difficulties that are

associated with the appearance of the additional relaxation times are the same (but easier to

analyze) in 1D as in 2D.

To facilitate the calculations of the spectrum (Sect. 3) and the numerical simulations

(Sect. 6), we introduce a linearized Maxwellian distribution, denoted by Mlin,v ( f ), obtained

by linearizing the local Maxwellian distribution in Eq. (5) around the following distribution,

M
ρ∞,v̄∞,T ∞
v = ρ∞

√
2πT ∞ exp

(

−|v − v̄∞|2
2T ∞

)

, (8)

where ρ∞, v̄∞ and T ∞ are parameters of the distribution.

To that end, we truncate the multivariate Taylor series expansion of Mv ( f ) around

(ρ, v̄, T ) = (ρ∞, v̄∞, T ∞) after the first order terms, yielding:

Mlin,v ( f ) = M
ρ∞,v̄∞,T ∞
v + ∂ρMv ( f ) · (ρ − ρ∞) + ∂v̄Mv ( f ) · (v̄ − v̄∞)

+ ∂T̄ Mv ( f ) · (T̄ − T̄ ∞), (9)
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in which all derivatives are evaluated in (ρ∞, v̄∞, T ∞). The terms in Eq. (9) are computed

as:

∂ρMv ( f ) · (ρ − ρ∞) = M
ρ∞,v̄∞,T ∞
v ·

(

ρ

ρ∞ − 1

)

,

∂v̄Mv ( f ) · (v̄ − v̄∞) = M
ρ∞,v̄∞,T ∞
v · (v − v̄∞)(v̄ − v̄∞)

T ∞ ,

∂T̄ Mv ( f ) · (T̄ − T̄ ∞) = M
ρ∞,v̄∞,T ∞
v ·

(

(v − v̄∞)2) − T ∞) (T − T ∞)

2 (T ∞)2
.

Substituting these expressions into the linearization (9), we arrive at:

Mlin,v ( f )

M
ρ∞,v̄∞,T ∞
v

=1

2

(

T

T ∞ − 1

)(

v2

T ∞ − 1

)

+
(

v

T ∞ − v̄∞

2T ∞

)(

v̄ − T v̄∞

T ∞

)

+ ρ

ρ∞ + v̄∞

2T ∞
(

v̄∞ − v̄
)

, (10)

where we moved M
ρ∞,v̄∞,T ∞
v to the left hand side for conciseness. If we evaluate this

linearization for (ρ∞, v̄∞, T ∞) = (ρ, 0, 1), and for a constant mean velocity v̄ = 1 and

background temperature T = 1 this leads to the following linearized Maxwellian:

Mlin,v ( f ) = ρ(1 + v)√
2π

exp

(

−v2

2

)

, (11)

from which we define the velocity measure as:

μ(v) = 1√
2π

exp

(

−v2

2

)

. (12)

We remark that this linearized Maxwellian falls into the class of Maxwellian distributions

that was studied in [7] in the setting of kinetic equations as relaxation models for hyperbolic

conservation laws, see also [2]. For a projective integration method in this context, we refer

to [38]. In [38], it is shown that in the hydrodynamic limit, ε → 0, and on long time scales,

Eq. (7) with the linearized Maxwellian (11) tends to the dynamics of the linear advection

equation:

∂tρ + ∂xρ = ε∂x (B∂xρ) + O(ε2), (13)

where the right hand side of Eq. (13) contains a small diffusive term with diffusion coeffi-

cient εB. Since the exact solution of the linear advection equation is known, the linearized

Maxwellian case provides a means of assessing the accuracy of the proposed numerical

technique.

2.2 Two-Dimensional Linear Kinetic Equations

In two space dimensions, Eq. (2) is written as:

∂t f + vx∂x f + vy∂y f = ν

ε
(Mv ( f ) − f ), (14)

in which x = (x, y) ∈ R
2 and v = (vx , vy) ∈ V ⊂ R

2 denote the particle positions and

velocities, respectively. In this case, based on the one-dimensional linearized Maxwellian

(11), we postulate the following Maxwellian distribution in 2D:
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Mlin,v ( f ) = ρ(1 + vx )(1 + vy)

2π
exp

(

−|v|2
2

)

, (15)

which falls in the class of linear BGK operators that was proposed in [2,7]. From (15), we

derive the velocity measure as:

μ(v) = 1

2π
exp

(

−|v|2
2

)

. (16)

For the Maxwellian in Eq. (15), the dynamics of Eq. (14) in the hydrodynamic limit, ε → 0,

and on long time scales now tends to the dynamics of the two-dimensional linear advection

equation:

∂tρ + ∂xρ + ∂yρ = O(ε), (17)

see also [38]. Therefore, we can also compare with the exact solution in 2D.

In what follows, we will always assume that the velocity space is discrete, symmetric and

of the form

V :=
(

v j

)J

j=1
, dμ(v) =

J
∑

j=1

w jδ(v − v j )dv, (18)

where the chosen velocities satisfy v j = −vJ− j+1 and w j represent the corresponding

weights for which we have
∑J

j=1 w j = 1. These discrete velocities
(

v j

)J

j=1
and weights

(

w j

)J

j=1
are derived from the measures given in (12) and (16) as the nodes and weights of

the corresponding Gauss-Hermite quadrature. In this case, Eqs. (11) or (15) break up into a

system of J coupled partial differential equations,

∂t f j + v j · ∇x f j = ν

ε
(Mlin, j ( f ) − f j ), 1 ≤ j ≤ J, (19)

in which f j (x, t) ≡ f (x, v j , t).

3 Spectrum of the Linearized Kinetic Equation

To analyze stability of the telescopic projective integration technique, we need to investigate

in more detail the spectrum of (a spatial discretization of) the one-dimensional BGK-type

kinetic Eq. (7), together with the linearized Maxwellian Mlin,v ( f ) given in Eq. (11). To

that end, we first discretize the system of Eq. (19) on a uniform, constant in time, periodic

spatial mesh with spacing �x , consisting of I mesh points xi = i�x , 1 ≤ i ≤ I , with

I�x = 1. After discretizing in space, we obtain the following semi-discrete system of

ordinary differential equations:

ḟ = Dt (f), Dt (f) := −Dx,v(f) + ν

ε
(Mlin,v (f) − f), (20)

in which f and ν are vectors of length I × J resulting from the discretization in space and

velocity, and Dx,v(·) represents a suitable discretization of the convective derivative v∂x (e.g.,

upwind differences) where x = (xi )
I
i=1 and v =

(

v j

)J

j=1
denote the discrete grids in space

and velocity, respectively.

As an intermediate step, in Sect. 3.1 we calculate the spectrum of system (20) when

considering a time-invariant collision frequency ν(x, t) = ω(x). Afterwards, we extend the

obtained results to the case ν(x, t) = ρ(x, t) in Sect. 3.2.
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3.1 Time-Invariant Collision Frequency

We begin by deriving the spectrum of the semi-discrete system (20) using ν(x, t) = ω(x)

with a constant relaxation profile function ω(x) = ω̄ ∈ R
+. System (20) then becomes:

ḟ = Dt (f), Dt (f) := −Dx,v(f) + ω̄

ε
(Mlin,v (f) − f). (21)

We assume that ω̄ is bounded below by: 0 < ε ≪ ωmin ≤ ω̄, with ωmin independent of ε

such that there is a clear spectral gap. We transform the semi-discrete system of Eq. (21) to

the (spatial) Fourier domain yielding:

∂t F̂(ζi ) = B F̂(ζi ), B = ω̄

ε

(

MP − I + ε

ω̄
D
)

, (22)

in which F̂ ∈ C
J , B, D ∈ C

J×J , M, P ∈ R
J×J , and I represents the identity matrix

of dimension J . In Eq. (22), the matrix D represents the (diagonal) Fourier matrix of the

spatial discretization chosen for the convection part, which depends on the Fourier mode

ζi = 2π i�x , P is the Fourier matrix of the averaging of f over the discrete velocity space

V , and the matrix M corresponds to the Fourier transform of the linearized Maxwellian in

Eq. (11),

M = I + V,

with V the diagonal matrix given by diag (v), and using the velocity measure defined in (12).

Since the velocity space is symmetric, we have the following property on the diagonal

elements of the matrix D:

DJ− j+1 = D̄ j , 1 ≤ j ≤ J/2. (23)

Moreover, we write, from now on,

D j = α j + ıβ j ,

in which α =
(

α j

)J

j=1
and β =

(

β j

)J

j=1
depend on the spatial discretization technique, the

Fourier mode ζi and the chosen velocity grid v. The following theorem is a corollary to [38,

Theorem 4.1].

Theorem 3.1 Under the above assumptions, the spectrum of the matrix B = ω̄

ε

(

MP − I

+ ε

ω̄
D
)

satisfies

Sp(B) ⊂
{

D

(

− ω̄

ε
, max

1≤ j≤J

(√

α2
j + β2

j

)

)

∪
{

λ(1)(ω̄)

}

}

, (24)

in which D(c, r) denotes the disk with center (c, 0) and radius r . The dominant eigenvalue

λ(1)(ω̄) is simple and can be expanded as

ℜ
{

λ(1)(ω̄)

}

= 〈α〉 +
(〈

α2
〉

− 〈α〉2 −
〈

β2
〉

+ 〈βv〉2
) ε

ω̄
+ O

(

ε2

ω̄2

)

, (25)

ℑ
{

λ(1)(ω̄)

}

= 〈βv〉 + O

(

ε2

ω̄2

)

. (26)
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Fig. 1 Spectrum of the semi-discretized system (20) with ν(x, t) = ω(x) and ω(x) piecewise constant

containing 4 ω-values verifying the formal result in Eq. (27). For clarity, the scaling of the real axis is adapted

to clearly visualize the different parts of the spectrum

When the relaxation profile function ω(x) is piecewise constant over the spatial domain

consisting of Lω constant values ω̄lω , lω = 1, . . . , Lω, the above expressions in the spatial

Fourier domain rapidly become very difficult for in this case the equations contain convolu-

tions. However, we can still qualitatively identify the spectrum of the (formal) amplification

matrix, which we denote by B̃, by performing numerical experiments. These experiments

suggest that the spectrum of B̃ consists of (i) a combination of the Lω fast spectra obtained

when considering constant ω(x) = ω̄lω for all x and for every lω = 1, . . . , Lω, and (ii) the

dominant eigenvalues λ(1)(ω̄1) given by (25) and (26), in which ω̄1 is considered to be the

largest ω-level. Therefore, using the spectrum of B in (24), we formally write the following

conjecture on the spectrum of B̃:

Sp(B̃) ⊂

⎧

⎨

⎩

Lω
⋃

lω=1

D

(

− ω̄lω

ε
, max

1≤ j≤J

(√

α2
j + β2

j

)

)

∪
{

λ(1)(ω̄1)

}

⎫

⎬

⎭

. (27)

Let us numerically illustrate this result. To that end, we set ε = 10−6 and discretize velocity

space using J = 10 velocity components corresponding to the Gauss-Hermite quadrature

nodes for integration with respect to the measure in Eq. (12). We consider x ∈ [0, 1], apply

periodic boundary conditions and use the upwind scheme of order 1 with grid spacing

�x = 0.01 as spatial discretization technique. The relaxation profile ω(x) is chosen as

a piecewise constant function containing 4 well separated ω-levels {1, 0.2, 0.01, 0.002} that

are distributed in zones of equal length over the spatial domain. The resulting spectrum is

shown in Fig. 1. From this, we observe 4 fast eigenvalue clusters corresponding to the 4

ω-values which are positioned around ω̄lω/ε, lω = 1, . . . , 4 and 1 slow cluster in the neigh-

borhood of 0. The red disks D(−ω̄lω/ε, R f ) bound the fast eigenvalues where the radius R f

is calculated as the maximal radius in Eq. (27):

R f = max
ζ ,v

(
√

α2 + β2

)

,

with ζ = (ζi )
I
i=1. In this illustration, we have R f = 971.89.

3.2 Time-Varying Collision Frequency

Moving on to the time-varying case ν(x, t) = ρ(x, t), the same reasoning as in the previous

section can be used to obtain the eigenvalue spectrum of system (20).

When ρ(x, t) is a continuous function, the spectrum would be continuously spread along

the negative real axis in the interval [− maxx ρ(x, t)/ε, 0]. Notice that the size of this con-
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Fig. 2 Spectrum of the semi-discretized system (20) with ν(x, t) = ρ(x, t) depicted for the initial density

ρ(x, 0) in Eq. (29). The left plot shows the global spectrum whereas the right plot provides a closer look of

the slow part of the spectrum within the red rectangle. This confirms the formal result in Eq. (28)

tinuous spectral interval is time-dependent due to the time dependency of its left end point.

However, by discretizing in space we obtain a discrete spectrum where each value ρ(xi , t)

can be seen as an ω-level of the previous section. Extending the same reasoning used to

derive Eq. (27) we now find the following result:

Sp(B̃) ⊂
{

I
⋃

i=1

D

(

−ρ(xi , t)

ε
, max

1≤ j≤J

(
√

α2
j + β2

j

)

)

∪
{

λ(1)(ρ̄(t))
}

}

, (28)

in which B̃ now refers to the amplification matrix of system (20) in the Fourier domain

using ν(x, t) = ρ(x, t). We remark that the centers of the fast eigenvalue disks now depend

on the space-discretized particle density ρ(xi , t). In that respect, a special case arises when

ρ(xi , t) → 0 for some space–time points (xi , t) as this implies a transition from a fast cluster

to an additional slow cluster.

A numerical experiment is performed in which we use the same parameters as in the

previous section. Since, in this case, the spectrum evolves with time we only plot the result

for an initial density given by:

ρ(x, 0) = exp(−100(x − 0.5)2). (29)

The spectrum is shown in Fig. 2. We observe that the spectrum is indeed spread along the

negative real axis in the interval [− maxx ρ(x, 0)/ε, 0] with maxx ρ(x, 0) = 1 for Eq. (29).

In addition, we find a number of extra slow clusters in the right hand side plot of Fig. 2

corresponding to values of ρ(x, 0) that are sufficiently close to 0.

4 Telescopic Projective Integration

In this section, we construct a fully explicit, arbitrary order time integration method for the

stiff semi-discretized system (20) containing in general more than two distinct time scales. It

will turn out that, in the limit when ε tends to zero, an ε-independent time step constraint of

the form �t = O(�x) can be used, similar to the hyperbolic CFL constraint for the limiting

Eq. (13). To achieve this and overcome the difficulties mentioned in the introduction, we will

use an extension of the projective integration method that can handle multiple time scales,

entitled telescopic projective integration (TPI) [20].

Projective integration is a time integration method that allows a stable yet explicit inte-

gration of two-scale stiff problems by first taking a few small (inner) steps with a simple,
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Fig. 3 A level-3 telescopic projective integration method drawn for three outermost time steps h3. The dots

correspond to the different time points at which the numerical solution is calculated. We used K = 2 constant

on all levels. The time step and projective step size of each level ℓ = 0, . . . , 2 are denoted by hℓ and Mℓ,

respectively

explicit method, until the transients corresponding to the fast modes have died out, and subse-

quently projecting (extrapolating) the solution forward in time over a large (outer) time step

[19]. Telescopic projective integration builds on this idea by employing a number of such

projective integrator levels, which, starting from a base (innermost) integrator, are wrapped

around the previous level integrator [20]. In this way, a hierarchy of projective integrators is

formed in which each level fulfills both an inner and outer integrator role (except, of course,

for the innermost and outermost level which only serve as an inner and outer integrator,

respectively). This generalizes the idea of projective integration, which contains only one

projective level wrapped around an inner integrator. On that account, in the TPI framework,

the projective integration method is called a level-1 TPI method. The idea of a level-3 TPI

method is sketched in Fig. 3.

The different level integrators can in principle be selected independently from each other,

but in general one selects a first order explicit scheme (e.g., the forward Euler scheme)

for all but the outermost integrator level, whose order is chosen to meet certain accuracy

requirements dictated by the problem.

The remainder of this section is structured as follows. In Sects. 4.1 and 4.2 we present

the innermost integrator and the projective outer levels, respectively. We summarize the TPI

method parameters in Sect. 4.3 and discuss stability of the method in Sect. 4.4.

4.1 Innermost Integrator

We intend to integrate the semi-discrete system of Eq. (20) using a uniform time mesh with

time step h0, i.e., tk = kh0. The innermost integrator of the TPI method is chosen to be an

explicit scheme, for which we use the following shorthand notation:

fk+1 = S0(f
k), k = 0, 1, . . . , (30)
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in which S0 denotes the time stepper with corresponding time step h0. The forward Euler

(FE) method immediately comes to mind, for which Eq. (30) is written as:

fk+1 = fk + h0Dt (f
k). (31)

The purpose of the innermost integrator is to capture the fastest components in the numerical

solution of system (20) and to sufficiently damp these out. We only require the innermost

integrator to be stable for these components. Nevertheless, higher-order extensions of Eq. (31)

such as the Runge–Kutta methods of order 2 and 4 are possible. However, as observed in [38],

these higher-order methods bring forth severe stability restrictions on the projective integrator

wrapped around the innermost integrator, in particular on the number of innermost time steps

that is required per first level projective time step. Furthermore, the discretization error of the

full TPI method will be dominated by the error of the outermost integrator. Consequently,

we will not consider higher-order methods as innermost integrators in this work.

4.2 Projective (Outer) Levels

The telescopic projective integration method employs in general L nested projective levels

that are constructed around the innermost integrator as its fundamental building block. We

now provide the scheme of the method in a framework similar to that of classical projective

integration. Alternatively, the scheme can also be formulated recursively, see [20].

To keep track of the time instant at which the numerical solution is computed throughout

the TPI method and at the same time desiring a compact notation, in what follows we employ

superscript triplets of the form (ℓ, n, kℓ) where ℓ denotes the integrator level ranging from 0

(innermost) to L−1, n represents the index of the current outermost integrator time tn = nhL ,

and kℓ corresponds to the iteration index of the integrator on level ℓ. The numerical time on

each level ℓ is then defined as:

tℓ,n,kℓ = nhL +
L−1
∑

ℓ′=ℓ

kℓ′hℓ′ . (32)

Notice that this time requires the iteration indices kℓ′ of all outer integrators of a certain level

ℓ. Therefore, it incorporates a memory that keeps up with the current time instants at which

the outer integrators of a given level ℓ integrator have arrived at and is necessary to take into

account to correctly reflect the numerical time of the solution on each level ℓ.

Starting from a computed numerical solution fn at time tn = nhL , one first takes K0 + 1

steps of size h0 with the innermost integrator,

f0,n,k0+1 = S0(f
0,n,k0), 0 ≤ k0 ≤ K0, (33)

in which f0,n,k0 corresponds to the numerical solution at time t0,n,k0 calculated by the inner-

most integrator. Since all outer integrator iteration indices kℓ′ , ℓ′ = 1, . . . , L − 1 are zero in

Eq. (32), we have t0,n,k0 = nhL + k0h0. The repeated action of the innermost integrator is

depicted by small black arrows in the upper row of Fig. 3, for which we chose K0 = 2.

In the telescopic projective integration framework, the scheme is set up from the lowest

level up to the highest level. The aim is to obtain a discrete derivative to be used on each

level to eventually compute fn+1 = f0,n+1,0 via extrapolation in time. Using the innermost

integrator iterations (33), we perform the extrapolation by a projective integrator on level 1,

written as:

f1,n,1 = f0,n,K0+1 + (M0h0)
f0,n,K0+1 − f0,n,K0

h0
, (34)
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which corresponds to the projective forward Euler (PFE) method [19]. In Eq. (34), f1,n,1 repre-

sents the numerical solution at time t1,n,1 calculated by one iteration of the first level projective

integrator. Since k1 = 1 and all its outer integrator iteration indices kℓ′ , ℓ′ = 2, . . . , L − 1

are still zero in Eq. (32), we have t1,n,1 = nhL + h1. One such step of the first level integrator

is visualized by a large green arrow in the upper row of Fig. 3. We can repeat this idea and

construct a hierarchy of projective integrators on levels ℓ = 1, . . . , L − 1, given by:

fℓ,n,kℓ+1 = fℓ−1,n,Kℓ−1+1 + (Mℓ−1hℓ−1)
fℓ−1,n,Kℓ−1+1 − fℓ−1,n,Kℓ−1

hℓ−1
, 0 ≤ kℓ ≤ Kℓ.

(35)

where fℓ,n,kℓ denotes the numerical solution at time tℓ,n,kℓ calculated by projective integrator

on level ℓ. According to Eq. (32), this time depends on the values kℓ′ , ℓ′ = ℓ + 1, . . . , L − 1

of all of its outer integrators. For each level ℓ = 1, . . . , 3, these projective integrator steps

are shown in Fig. 3 by long arrows. Ultimately, the outermost integrator on level L computes

fn+1 as:

fn+1 = f L−1,n,KL−1+1 + (ML−1hL−1)
f L−1,n,KL−1+1 − f L−1,n,KL−1

hL−1
. (36)

Since the outermost integrator (36) also constitutes a PFE scheme, the telescopic method

resulting from the hierarchy of projective levels (35) and (36) is called telescopic projective

forward Euler (TPFE), and it is the simplest instantiation of this class of integration methods.

As shown in [37] and [38], it is straightforward to implement higher-order extensions

of the outermost integrator, such as the projective Runge–Kutta methods of order 2 and 4

in the telescopic case, leading to TPRK2 and TPRK4 methods. In general, the outermost

integrator in a TPRK method replaces each time derivative evaluation in a classical Runge–

Kutta method, denoted by ks , by KL−1 + 1 steps of its inner integrator on level L − 1. Using

Eq. (35) with ℓ = L − 1, the first stage in a TPRK method calculates the time derivative k1

as:

k1 = f L−1,n,KL−1+1 − f L−1,n,KL−1

hL−1
. (37)

Any other stage s ≥ 2 requires evaluating the time derivatives at intermediate times denoted

by tn+cs = (n + cs)hL . Similarly to Eq. (37), these are calculated as:

ks = f L−1,n+cs ,KL−1+1 − f L−1,n+cs ,KL−1

hL−1
. (38)

Since the numerical solution at tn+cs in Eq. (38) is not available, we use the integrator on

level L − 1 to approximate it as follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

f L−1,n+cs ,0 = f L−1,n,KL−1+1 + (cs hL − (KL−1 + 1)hL−1)

s−1
∑

m=1

as,m

cs

ks

f L−1,n+cs ,kL−1+1 = f L−2,n+cs ,KL−2+1 + (ML−2hL−2)
f L−2,n+cs ,KL−2+1 − f L−2,n+cs ,KL−2

hL−2
,

(39)
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Fig. 4 Butcher tableaux for Runge–Kutta methods. Left: general notation; middle: RK2 method (second

order); right: RK4 method (fourth order)

in which the last equation in (39) iterates over 0 ≤ kL−1 ≤ KL−1. Ultimately, the outermost

integrator of a TPRK method is written as:

fn+1 = f L−1,n,KL−1+1 + (ML−1hL−1)

S
∑

s=1

bsks . (40)

To ensure consistency, the RK matrix a = (as,m)S
s,m=1, weights b = (bs)

S
s=1, and nodes

c = (cs)
S
s=1 satisfy (see, e.g., [26]) the conditions 0 ≤ bs ≤ 1 and 0 ≤ cs ≤ 1, as well as

S
∑

s=1

bs = 1,

S−1
∑

m=1

as,m = cs, 1 ≤ s ≤ S. (41)

(Note that these assumptions imply that c1 = 0 using the convention that
∑0

1 · = 0.)

Then, the TPRK2 and TPRK4 methods are obtained by choosing their coefficients as

shown in the Butcher tableaux in Fig. 4. In the numerical experiments, we will specifically

use the projective Runge–Kutta method of order 4.

4.3 TPI Method Parameters and Speedup

In general, the level-L TPI method possesses a set of 3L+1 parameters corresponding to all of

its levels. The innermost integrator has only one parameter, its time step h0. The L projective

integrator levels which are built around the innermost integrator each contain 3 parameters.

For projective levels ℓ = 1, . . . , L these are: (1) the time step hℓ, (2) the number of lower

level integrator iterations Kℓ−1 that are needed to sufficiently damp the fast components at

level ℓ − 1, and (3) the extrapolation step size Mℓ−1hℓ−1 over which the integrator on level

ℓ−1 is applied in the ℓ-the level projective step. (Note that the parameter Mℓ−1 is the number

of steps at level ℓ − 1 that are skipped by the projective step.)

Notably, the innermost integrator time step h0 is the only real time step of a TPI method,

meaning that this is the only time step over which numerical integration is actually performed.

All higher level time steps are merely the consequence of the K - and M-values of the

extrapolation. Once h0 is known, the projective time step on level ℓ = 1, . . . , L satisfies the

following relation:

hℓ =
ℓ−1
∏

k=0

(Mk + Kk + 1)h0. (42)

This can also be seen in Fig. 3 for a level-3 TPI method in which we chose K = 2 constant

on all levels.
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Speedup If we assume, as in [20], that the overhead due to extrapolation is negligible and

timestepping with the innermost integrator is the dominant cost, the speedup SL realized by

the overall level-L TPI method compared to naive forward Euler timestepping is given by:

SL =
L
∏

ℓ=0

Mℓ + Kℓ + 1

Kℓ + 1
, (43)

that is, the ratio of the total number of naive forward Euler time steps that fits within one

outermost time step hL (see Eq. (42)) over the actual number of innermost steps in the TPI

method.

Remark 4.1 (On stiffness and efficiency) Telescopic projective integration is only a sensible

method to use if the underlying problem is highly stiff, such that there is a large gap between

the fastest time scale that dictates the choice of the innermost time step h0 and the slowest

time scale that dictates the choice of the outermost time step hL . As such, it only makes sense

to use it when the collision rate [given, for instance, by ν/ε in the semidiscretized Eq. (20)]

is of order 1/ε with ε ≪ 1, at least in part of the domain.

4.4 Stability of Telescopic Projective Integration

We now briefly discuss the main stability properties of the TPFE method which can be found

in more detail in [20]. To that end, we introduce the test equation and its corresponding

innermost integrator:

ẏ = λy, yk+1 = σ0(λh0)yk, λ ∈ C. (44)

As in [19], we call σ0(λh0) the amplification factor of the innermost integrator. (For instance,

if the innermost integrator is the forward Euler scheme, we have σ0(λh0) = 1 + λh0.) The

innermost integrator is stable if |σ0| ≤ 1. The question then is for which subset of these σ0-

values, which are also called σ0-eigenvalues, the TPFE method is also stable. Considering

the level-L TPFE method, it can easily be seen from Eqs. (35) and (36) that it is stable if

|σL(σ0)| =
∣

∣

∣

(

(ML−1 + 1)σL−1(σ0) − ML−1

)(

σL−1(σ0)
)KL−1

∣

∣

∣
≤ 1, (45)

in which σL denotes the outermost integrator amplification factor. Equation (45) needs to

hold for all eigenvalues σ0 of the innermost integrator.

Since we are interested in the limit ε → 0 for fixed �x , we look at the limiting stability

regions that arise when taking the limit h0 → 0, while keeping hℓ, ℓ = 1, . . . , L fixed. In

this regime, it was obtained in [18] that the level-L TPI method contains L + 1 (principal)

regions of stability around the real axis which depend on the choice of (possibly) different

Kℓ−1- and Mℓ−1-values at each projective level ℓ = 1, . . . , L and can be positioned to cover

the clusters of eigenvalues. Furthermore, there are a number of artefact stability regions due

to the value of Kℓ−1 which can not be tuned independently and are of no importance.

The TPI method allows for the accurate integration of solution modes within its dominant

(rightmost) stability region while maintaining stability for all other modes by matching its

stability regions around the eigenvalue clusters of the problem’s spectrum.
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5 Numerical Properties

In this section we describe the selection procedure of the level-L TPI method parameters

h0, Kℓ−1 and Mℓ−1 with ℓ = 1, . . . , L such that the TPI method is stable. This procedure

is based on the spectrum of the innermost integrator which is derived in Sect. 5.1. Then, we

explain the parameter selection procedure in case of a time-invariant relaxation profile ω(x)

containing a number of discrete ω-levels (Sect. 5.2). Here, the spectral study in Sect. 3.1

indicated that the spectrum consists of a known number of spectral clusters. It will turn out

that, in this case, one can choose one projective level corresponding to each of these clusters

to obtain an telescopic projective integration method with ε-independent computational cost.

We will consider the density-dependent relaxation time model with a time-varying spectrum

in Sect. 5.3. Here, we will be forced to use a [0, 1]-stable telescopic projective integration

method because we cannot be sure about the position of the spectrum as a function of time.

Hence, in this case, the computational cost of telescopic projective integration will grow

logarithmically with ε. In Sect. 6, we will show that, nevertheless, the computational cost is

acceptable.

5.1 Spectrum of the Innermost Integrator

Once the spectrum of the semi-discrete system (20) is known, the spectrum of the innermost

integrator can be derived by transforming its expression to the Fourier domain. For instance,

when choosing the forward Euler scheme (31) as innermost integrator, its expression in the

Fourier domain is given by:

F̂k+1 = S0 F̂k =
(

I + h0B̃
)

F̂k, (46)

with S0 the Fourier transform of the forward Euler time stepper S0. The matrix B̃ in Eq. (46)

is either given by Eq. (27) in case of a time-invariant collision frequency ν(x, t) = ω(x)

or by Eq. (28) when considering the time-varying case ν(x, t) = ρ(x, t). It is clear that the

amplification factors σ 0 =
(

σ
( j)
0

)J

j=1
of the forward Euler scheme, which are the eigenvalues

of S0, and the eigenvalues λ =
(

λ( j)
)J

j=1
of the matrix B̃ are related via

σ
( j)
0 = 1 + h0λ

( j), j = 1, . . . , J. (47)

By convention, we consider the dominant eigenvalue λ(1)(ω̄1) = λ(1) with λ(1)(ω̄1) given in

theorem 3.1.

5.2 Time-Invariant Collision Frequency

In this setting, the starting point is a given eigenvalue spectrum containing Lω + 1 eigen-

value clusters with Lω fast and 1 slow clusters, which are all located in the left half plane

of the complex λ-plane. In this case, the Lω fast clusters, which may or may not be clearly

separated, arise from Lω different ω̄lω -values, lω = 1, . . . , Lω in the piecewise constant

relaxation function ω(x). We label the eigenvalue cluster centers in the λ-plane such that

λ0 ≤ λ1 ≤ · · · ≤ λLω ≤ 0. This means that λ0 corresponds to the center of the fastest eigen-

value cluster whereas λLω represents the cluster center with dominant (slow) eigenvalues.

We only assume a clear spectral gap between the fastest and slow cluster, i.e., λ0 ≪ λLω ,

such that it is useful to implement a projective method. In what follows, we first elucidate the
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underlying idea of choosing the TPI method parameters. Afterwards, we provide a detailed

description.

For all levels ℓ from 0 to L − 1, which contain an integrator that serves an inner integrator

role, the purpose of the integrator on level ℓ is to bring the ℓth fast eigenvalue cluster to 0

(i.e., the integrator on level ℓ should damp all eigenvalues in the ℓth fast cluster). Notice

that we use {ℓ, L} for levels of the TPI method and {lω, Lω} for values in the relaxation

function ω(x) which are not necessarily the same (see later). The ℓ faster-than-the-current

eigenvalue clusters, which were already around 0 due to the application of the lower level

integrators, remain around 0 and are suppressed even more by the integrator on level ℓ.

The L − ℓ remaining eigenvalue clusters to the right of the current (ℓth) eigenvalue cluster

will shift somewhat more to the left (i.e., towards 0) since the integrator on level ℓ is also

(slightly) damping these eigenvalues. For stability reasons, we require that the ℓ clusters that

were already around 0 lie in the stability region of the integrator on level ℓ + 1. This can

be achieved by carefully selecting the value of Kℓ−1 on each level. It is clear that in the

above reasoning we only desire a stable numerical integration of the fast modes. However,

the dominant modes, which are the solution components of practical interest, need to be

integrated both in a stable and accurate way.

Below, we detail the general level-L TPI method construction, for which we always assume

the forward Euler method on levels ℓ = 0, . . . , L−1. The outermost (Lth level) integrator can

be any stable explicit method, depending on the required accuracy. We distinguish between

two cases. First, in Sect. 5.2.1, we assume that the eigenvalue clusters are clearly separated.

Afterwards, in Sect. 5.2.2, we comment on the situation when this assumption is not satisfied.

In both cases, we discuss the construction of TPI methods and illustrate with numerical results.

5.2.1 Spectrum with Spectral Gaps

As we proceed through the detailed construction procedure below we use the following

numerical experiment. We fix ε = 10−5 and discretize velocity space using J = 10 velocity

components obtained as the nodes of Gauss-Hermite quadrature for integration with respect to

the measure given in (12). We consider x ∈ [0, 1], together with periodic boundary conditions

and propose a piecewise constant relaxation profile ω(x) containing 2 well separated ω-

values: {1, 0.1} such that ω(x) = 1 (x ≤ 0.5) and ω(x) = 0.1 (x > 0.5). We use the

upwind scheme of order 1 with grid spacing �x = 0.01 as spatial discretization technique.

The resulting spectrum of system (20) in the λ-plane is shown by blue crosses in the top left

plot of Fig. 5. As can be seen, there are 2 fast clusters centered around the positions −1/ε

and −0.1/ε as formalized in Eq. (27). Since there are 2 clearly separated fast clusters, we

construct a level-2 TPI method. In general, given that we consider clearly separated clusters

in this section, we have L = Lω.

Innermost integrator The innermost integrator of the TPI method corresponds to a space–

time discretization of Eq. (7), in which we choose the simple first-order explicit forward Euler

time discretization with time step h0. As explained in the introduction of this section, we

fix h0 such that the fastest eigenvalue cluster with center λ0 is moved to 0 in the complex

σ0-plane. Using Eq. (47) and the result in Eq. (27), we obtain:

σ0(λ0) = 0 ⇒ h0 = 1

|λ0|
= ε

ω̄1
, (48)

This choice of the time step h0 defines a linear mapping of all eigenvalues λ to (zeroth

level) eigenvalues σ0, which can all be found in the σ0-plane within the interval [−η, 1] with

η ∈ R
+ close to zero.
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Spectrum and stability in case of ν(x, t) = ω(x): TPFE
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Fig. 5 Stability analysis for a level-2 TPFE method in case of a time-invariant spectrum with clear spectral

gaps. Blue crosses in each plane correspond to eigenvalues in that plane. Green regions represent the stability

regions of the full level-2 TPFE method with respect to every particular plane. The red dashed regions are the

stability regions of the next level projective integrator in a certain plane (Color figure online)

In the numerical example, given that ω̄1 = 1, Eq. (48) gives rise to h0 = ε. The corre-

sponding σ0-eigenvalues are visualized by blue crosses in the top right plot of Fig. 5.

Integrator on level ℓ For ℓ = 1, . . . , L − 1 the integrator on level ℓ is the projective forward

Euler (PFE) scheme, which extrapolates the solution of its inner integrator (i.e. the integrator

on level ℓ − 1) over a distance Mℓ−1hℓ−1. Its amplification factor σℓ in terms of its inner

integrator amplification factor σℓ−1 is given by:

σℓ(σℓ−1) =
(

(Mℓ−1 + 1)σℓ−1 − Mℓ−1

)

(σℓ−1)
Kℓ−1 . (49)

After applying the integrator on level ℓ − 1, there will be L + 2 − ℓ eigenvalue clusters

remaining in the σℓ−1-plane of which there are L + 1 − ℓ fast and 1 slow cluster, and ℓ

clusters will already have been moved to 0 by the lower level integrators turning these into

one big cluster around 0. We then demand that Mℓ−1 is chosen such that the fastest eigenvalue

cluster that is not yet around 0 in the σℓ−1-plane will be moved to 0 in the σℓ-plane. This cluster

is denoted by σℓ−1,ℓ, in which the notation σm,n = σm(λn) represents the transformation of

eigenvalue cluster λn to the σm-plane. Using expression (49) we find:

Mℓ−1 such that σℓ(σℓ−1,ℓ) = 0 ⇒ Mℓ−1 = σℓ−1,ℓ

1 − σℓ−1,ℓ

. (50)

Note that this choice of Mℓ−1 makes the integrator on level ℓ maximally damping at the

center of eigenvalue cluster σℓ−1,ℓ (i.e. it moves the center of cluster σℓ−1,ℓ exactly to 0).

We point out that the extrapolation step sizes Mℓ−1 in Eq. (50) only depend on the ratio of

two consecutive eigenvalue clusters in the λ-plane, and are thus independent of ε. This can

be shown by working out Eq. (50) employing the same Taylor expansion as in Eq. (56) and

using the result in Eq. (27) yielding:
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Mℓ−1 = σℓ−1,ℓ

1 − σℓ−1,ℓ

≈ 1 + hℓ−1λℓ

−hℓ−1λℓ

= ε

hℓ−1ω̄ℓ+1
− 1

≈ ω̄ℓ

ω̄ℓ+1
− 1, (51)

where we used in the last step that the time step hℓ−1 = O(ε/ω̄ℓ) commensurate with the

time scale of the previous eigenvalue cluster.

Once the value of Mℓ−1 is known, we fix the value of Kℓ−1 by demanding that all fast

eigenvalue clusters that are already around 0 in the σℓ−1-plane fall into the stability region of

the projective integrator on level ℓ around 0, which is given by D(0, (1/Mℓ−1)
1/Kℓ−1) [19]

where D(c, r) denotes the disk with center (c, 0) and radius r . We thus obtain:

σ̂ℓ−1 ≤
(

1

Mℓ−1

)1/Kℓ−1

⇒ Kℓ−1 =
⌈

log(1/Mℓ−1)

log(σ̂ℓ−1)

⌉

, (52)

in which σ̂ℓ−1 = maxk∈{0,1,...,ℓ−1} |σℓ−1,k | denotes the cluster that is farthest away from the

origin. Since the values Mℓ−1 are independent of ε, we find that the values Kℓ−1 in Eq. (52)

are also independent of ε.

In the numerical experiment, using Eqs. (50) and (52) we construct the first level PFE

method with parameters M0 = 9 and K0 = 1. The (asymptotic, M0 → ∞) stability regions

corresponding to this projective level integrator are indicated by red dashed circles in the top

right plot of Fig. 5. The eigenvalues transformed to the σ1-plane are shown by blue crosses

in the bottom left plot of Fig. 5.

Outermost integrator Finally, the integrator on level L or outermost integrator is designed

by ensuring that all eigenvalues belonging to the dominant eigenvalue cluster σL−1,L in the

σL−1-plane fall in the dominant stability region of the outermost integrator, which is given

by the region D(1 − 1/ML−1, 1/ML−1) [19]. This leads to the following inequality:

√

(

ℜ(σL−1,L) −
(

1 − 1

ML−1

))2

+
(

ℑ(σL−1,L)

)2
≤ 1

ML−1
. (53)

To calculate the value of ML−1 from (53), we examine how the expression of the dominant

eigenvalues σ0,L in the σ0-plane, which will remain the dominant eigenvalues in all other

σℓ-planes, ℓ = 1, . . . , L , transforms under application of the different level projective inte-

grators. Notice that this expression is already known in the σ0-plane using Eqs. (27) and (47),

and is of the following form:

σ0,L = σ0(λL) = 1 + h0λL . (54)

By plugging the expression for σ0,L in (54) into Eq. (49) we find that the first level PFE

integrator scheme transforms these dominant σ0-eigenvalues into dominant σ1-eigenvalues:

σ1,L ≈ 1 + h1λL . (55)

The expression for σ1,L is obtained by performing a Taylor series expansion for h0 → 0 and

using the time step relation given in Eq. (42). Repeating this line of thought for the next level

integrators, we find that for ℓ = 1, . . . , L − 1 the dominant eigenvalues transformed by the

integrator on level ℓ is written as follows:

σℓ,L ≈ 1 + hℓλL . (56)
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Using Eq. (56), we can now use the condition given in (53) to find the value of ML−1. To

this end, we will turn the inequality in (53) into an equality. Using Eqs. (25) and (26), the

corresponding (maximum allowed) value of ML−1 is given by

ML−1 = min
ζ

⎛

⎝

−2 〈α〉
hL−1

(

〈α〉2 + 〈βv〉2
)

⎞

⎠ . (57)

Once the value of ML−1 is known, we use Eq. (52) to determine the corresponding value of

KL−1.

From Eq. (57), we observe that the extrapolation step size ML−1 of the outermost inte-

grator, which bridges the gap between the last fast cluster and the dominant slow cluster, is

inversely proportional to hL−1. Given that the latter depends on ε, see Eq. (42), we conclude

that ML−1 is inversely proportional to ε as desired.

In the numerical example, using Eqs. (57) and (52), the parameters of the outermost PFE

integrator are given by M1 = 75.82 and K1 = 2. The CFL number for this choice of

parameters is 0.87. The (asymptotic, M1 → ∞) stability regions of the outermost projective

level are visualized by red dashed circles in the bottom left plot of Fig. 5. The σ2-eigenvalues

are depicted by blue crosses in the bottom right plot of Fig. 5. We also plotted the stability

domain of the full level-2 TPFE method in each complex plane using solid green lines. In

particular, notice that in the σ2-plane this stability domain coincides with the unit disc and

all σ2-eigenvalues lie within this region.

5.2.2 Spectrum Without Spectral Gaps

The given piecewise constant relaxation profile ω(x) consisting of Lω different values ω̄lω ,

lω = 1, . . . , Lω gives rise to Lω eigenvalue clusters. However, in general, a clear spectral gap

between two or more consecutive clusters does not necessarily exist. In that case, it makes

more sense to combine two or more such consecutive clusters into one big cluster. Since each

of these resulting big clusters introduces a projective level we relabel them by ℓ = 1, . . . , L

with L < Lω. The criterion used here to decide upon creating a big cluster is to require

a minimum value Mmin of Mℓ−1 in Eq. (50) on each level which serves as a measure for

spectral separation of clusters. Then, if Eq. (50) yields Mℓ−1 < Mmin, this implies that the

current and next cluster are too close to each other to be considered as two distinct clusters.

Consequently, the selection procedure skips the next cluster and moves on to the following

eigenvalue cluster instead. In the numerical experiments, we choose Mmin = 3.

We illustrate the construction process when there is no clear gap between every cluster.

We use the same parameters as in the previous experiment. We propose a relaxation profile

containing 6 ω-values {1, 0.9, 0.15, 0.1, 0.01, 0.001} which introduces 6 fast clusters in the

spectrum positioned at −ω̄lω/ε, lω = 1, . . . , 6. The eigenvalues are visualized by blue crosses

in the top left plot of Fig. 6. As explained above, we probe for distinct fast clusters by requiring

a minimal value Mmin of M on each level. When putting Mmin = 3 we only retrieve 2 true

fast clusters. Moreover, the algorithm detects that the clusters corresponding to the last two

ω-values should be understood as extra slow clusters since they appear rather close to the

true slow cluster around 0. Therefore, we have L = 2 < 6 = Lω. Running through the

TPI construction procedure, we now obtain a stable level-2 TPFE method with parameters

M = {5.67, 12.09}, K = {2, 3} and corresponding CFL number 0.14. The stability regions

of the level-2 TPFE method and eigenvalues are shown in each plane by solid green lines

and blue crosses, respectively. We observe that the first two stability regions each match two
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Fig. 6 Same setup as in Fig. 5. However, not all clusters are clearly separated now (Color figure online)

consecutive fast clusters in the λ- and σ0-planes. Furthermore, in these planes, we notice two

small artifact stability regions close to the leftmost stability region which are not used, see

Sect. 4.4. There is also a very small stability region around the slow clusters which is hard

to discern in the λ- and σ0-planes due to the scaling used.

As a last result, we consider ε = 10−6 and choose 4 well separated ω-levels

{1, 0.2, 0.01, 0.002}. The resulting spectrum in the λ-plane, consisting of 4 fast eigenvalue

clusters with clear spectral gaps and 1 slow cluster, is shown by blue crosses in the top left

plot of Fig. 7. Now, we select the PFE method on each level and choose the PRK4 method as

outermost integrator. As explained in [38], suitable parameters for PFE will also be suitable

for higher-order PRK methods. Therefore, we determine the parameters of the outermost

PRK4 integrator based on those of the PFE method. Since L = Lω = 4, we construct a

level-4 TPRK4 method. The parameters are determined as M = {4.00, 15.81, 3.74, 13.88},
K = {1, 1, 1, 4} and the CFL number is 1.16. The results can be seen in Fig. 7. We observe

that the constructed level-4 TPRK4 method has 5 stability regions that match the 4 fast and

1 dominant cluster.

We conclude that, in case of a time-invariant spectrum, the TPI method cost is completely

independent of ε and can be bounded from above by the number of ω-levels. To illustrate this

claim, consider a spectrum in the λ-plane for fixed ε based on Lω ω-levels in which some

fast cluster centers ω̄lω/ε lie close to the dominant cluster (i.e., ω̄lω = O(ε) for some lω).

Such fast clusters are regarded as extra slow clusters and are required to lie in the dominant

stability region of the TPI method. Consequently, these extra slow clusters do not introduce

additional projective levels and we have L < Lω. When lowering the value of ε using the
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Spectrum and stability in case of ν(x, t) = ω(x): TPRK4
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Fig. 7 Stability analysis for a level-4 TPRK4 method in case of spectrum with clear spectral gaps. The same

plotting style as in Fig. 5 is used (Color figure online)

same ω-profile, these extra slow clusters shift to the left one by one in the λ-plane, thus

becoming true fast clusters. Each such newly obtained fast cluster requires an additional

projective level to generate an additional stability region around this cluster. As soon as all

extra slow clusters became fast clusters, the number of projective levels remains constant for

ε → 0 yielding L = Lω. Therefore, the cost initially behaves as log(1/ε) and is bounded

from above by the number of ω-levels which is constant and independent of ε.

5.3 Time-Varying Collision Frequency

In case of a time-varying collision frequency ν(x, t) = ρ(x, t) the spectrum varies in principle

continuously on the negative real axis. Even though the collision frequency is discretized in

space we are required to take into account a continuous range of eigenvalues due to the

time dependence of the collision frequency and the resulting spectrum, see Eq. (28). In what

follows, we require that the proposed numerical methods obey a maximum principle, meaning

that for all discrete times tn we have:

0 ≤ min
1≤i≤I

ρn
i , max

1≤i≤I
ρn

i ≤ max
x

ρ(x, 0), (58)

where ρn
i is the numerical approximation of the particle density at time tn on grid point

xi . This maximum principle guarantees that (1) eigenvalues never cross from the left to the

right side of the complex plane leading to an unstable system (left inequality), and (2) time

integration does not generate eigenvalues that become more negative than the initial fastest

eigenvalue cluster (right inequality).
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Spectrum and stability in case of ν(x, t) = ρ(x, t): TPFE
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Fig. 8 Stability analysis for a level-2 TPFE method in case of a collision frequency ν(x, t) = ρ(x, t). Blue

crosses in each plane correspond to eigenvalues in that plane. Green regions represent the stability regions of

the full level-2 TPFE method with respect to the plane under study. Clearly, the eigenvalues are distributed

along the negative axis. Consequently, the stability region is not allowed to split into multiple disks (Color

figure online)

As set out in the introduction (Sect. 1), the TPI method parameters can be designed such

that its stability region does not split up and covers a continuous range of eigenvalues with a

bigger speedup than classical projective integration.

As in Sect. 5.2, we numerically demonstrate the method construction steps outlined below

using the same setup as before. However, since the density ρ(x, t) changes in time, we

only visualize the spectrum corresponding to the initial condition, for which we choose the

following continuous Gaussian function:

ρ(x, 0) = exp(−100(x − 0.5)2). (59)

The eigenvalues in the λ-plane are shown by blue crosses in the top left plot of Fig. 8.

Given that we use the first-order upwind scheme which satisfies both conditions in (58)

we are assured that when applying the TPI construction procedure below based on the initial

density in Eq. (59) we obtain a stable TPI method that remains stable for all times.

Innermost integrator We again consider the simple first-order explicit forward Euler scheme

with time step h0 as innermost integrator. The requirement for choosing h0 remains the same

as before: it is selected such that the fastest eigenvalue in the λ-plane is moved to 0 in the

σ0-plane. In case of a continuously varying spectrum, this is done by exploiting the maximum

principle (58) which guarantees that no faster cluster than the fastest cluster resulting from

the initial particle density can appear during time integration. Using Eqs. (28) and (47), this

yields:
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Table 1 Maximum value of M for a given value of K for a [0, 1]-stable TPI method

K 1 2 3 4 5 6 7 8 9 10

M 2 3 6.66 8.32 12.21 14.24 18.21 20.48 24.48 26.91

h0 = ε

max
1≤i≤I

ρ(xi , 0)
. (60)

Using Eq. (60) we calculate the innermost integrator time step h0 in the numerical experiment

as h0 = ε. The eigenvalues in the σ0-plane can be seen by blue crosses in the top right plot

of Fig. 8.

As numerical diffusion may appear, this fixed choice of h0 in Eq. (60) may become too

restrictive for larger times tn but nevertheless is needed to integrate the first steps in a stable

way. A possible extension would be to adaptively select h0 depending on the maximal particle

density obtained with the numerical scheme.

Outer integrators Wrapped around the innermost integrator we construct L outer integrators.

Here, we always choose the projective forward Euler (PFE) scheme as outer integrator except

for the outermost integrator which can be any explicit integrator as discussed before. Since we

need to take care of a continuous range of eigenvalues, we calculate the method parameters

Mℓ−1 and Kℓ−1 such that each outer integrator on level ℓ = 1, . . . , L is [0, 1]-stable in

the σℓ−1-plane, meaning that its stability region does not split up into two disks but instead

always covers the interval [0, 1] in that plane.

First, the required number L of outer integrators is obtained by expressing that the out-

ermost time step hL defined in Eq. (42) is limited by the expected CFL stability constraint

hL = C�x for the limiting Eq. (13). Assuming constant values M and K on each level, we

obtain:

(M + K + 1)L h0 ≤ C�x . (61)

Consequently, the required number of projective levels is calculated as [20]:

L ≈ log(C�x) + log(1/h0)

log(M + K + 1)
. (62)

Next, we fix the value of K which is considered to be the same on each level. From the chosen

value of K we calculate the maximal value of M needed for a [0, 1]-stable outer integrator

on each level which are listed in Table 1 for K = 1, . . . , 10. The interested reader is referred

to [20] for technical details on how to calculate these maximal values.

Remark 5.1 Typically, we desire to fix the outermost time step hL = C�x rather than

choosing constant values M on each level. This allows us to easily control the time instants

at which the numerical solution is calculated. In that case, we first determine L from Eq. (62)

using a fixed value of K and selecting the corresponding maximal value of M from Table 1

as before. However, in general, for these values of K and M Eq. (42) will not be equal to the

chosen value hL . To that end, we choose the value of ML−1 on the outermost level as:

ML−1 = hL

hL−1
− K − 1, if

hL

hL−1
≥ K + 2, (63)

where the inequality on the right ensures that ML−1 ≥ 1. However, when the chosen time

step hL yields a value of ML−1 in Eq. (63) less than 1 (or even negative), we decrease the
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Fig. 9 Stability analysis for a level-4 TPI method. Blue crosses in each plane correspond to eigenvalues in

that plane. Green regions represent the stability regions of the full level-4 TPI method with respect to the plane

under study. The red dashed regions are the stability regions of a classical projective integration method of the

next level integrator in a certain plane (Color figure online)

value of M on the lower levels, starting from the outermost to the innermost levels, until we

find ML−1 ≥ 1.

When considering the time-varying spectrum case, we clearly find that both M and K are

independent of ε. However, Eq. (62) shows that the number of projective levels required for a

[0, 1]-stable TPI method increases as O(log(1/ε)) given that h0 = O(ε), see Eq. (60). There-

fore, the [0, 1]-stable TPI method cost is not completely ε-independent but the dependence

is rather modest.

In the numerical example, we choose a constant value K = 6 on all projective levels. From

Table 1, we deduce that the corresponding maximal value of M on each projective level to

obtain a [0, 1]-stable TPFE method is 14.24. The required number of projective levels L result-

ing from Eq. (62) is 2. When choosing the outermost time step as h2 = 0.4�x , the adapted

values of M of the [0, 1]-stable level-2 TPFE method are found as M = {14.24, 11.79}, see

Remark 5.1. The spectrum and stability region in each plane are shown in Fig. 8. Notice

that, in every plane, the spectrum is not clustered anymore and is spread along the negative

real axis. In addition, the stability region of the level-2 TPFE method does not split up into

multiple disks such that it is indeed [0, 1]-stable.

Next, we repeat the same construction process for PRK4 as outermost integrator. As

explained at the end of Sect. 5.2, the parameters of PRK4 are based on those of PFE as

outermost integrator. We consider ε = 10−6 and fix K = 3 on all projective levels. Then,

the maximal value of M is 6.66 and the required number of levels is L = 4. When choosing

the outermost time step as h4 = 0.4�x , the corrected values of M of [0, 1]-stable the level-4

TPRK4 method are M = {6.66, 6.26, 2.06, 2.03}. The results can be seen in Fig. 9. We
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conclude that the TPI construction procedure described in Sect. 5.3 successfully results in a

level-4 TPRK4 method for which the stability region does not split up.

6 Numerical Experiments

We now examine the time stepping capabilities of the TPI method for equations of the form

(2) with ν(x, t) = ρ(x, t). We provide TPI construction and simulation test cases in 1D and

2D. As already pointed out in Remark 4.1, telescopic projective integration is only useful

when there is a large time-scale separation present in the problem, at least in part of the

spatial domain. This implies that we will only consider small values of ε in the numerical

experiments, keeping in mind that the space-dependent coefficient ν(x, t) will be chosen

such that both the kinetic and hyperbolic regime are present in the test cases.

One-dimensional case (D = 1) First, we look at the one-dimensional kinetic Eq. (7) with

linear Maxwellian given in Eq. (11). In that case, the limiting (ε → 0) dynamics of Eq. (7)

corresponds to the linear advection equation, given in Eq. (13). We compute the solution for

t ∈ [0, 1] and x ∈ [0, 1]. We impose periodic boundary conditions and choose a discontinuous

initial density given by:

ρ(x, 0) =

⎧

⎨

⎩

1 0.2 ≤ x < 0.4

0.5 0.6 ≤ x < 0.8

0.1 otherwise

. (64)

The initial distribution f (x, v, 0) is then chosen as the linearized Maxwellian given in Eq. (11)

corresponding to the initial density in (64). We discretize velocity space using J = 10 discrete

velocity components obtained as the nodes of Gauss-Hermite quadrature with respect to the

measure (12). The innermost integrator is the forward Euler scheme with time step h0 = ε

and ε = 10−5. Since the initial density is sufficiently far from 0, we approximate the (linear)

flux in Eq. (7) by the standard upwind differences of order 1, 2 and 3 with grid spacing

�x = 5 × 10−3. We construct a [0, 1]-stable TPRK4 method consisting of L = 2 projective

levels with constant K = 5 and outermost time step hL = 0.5�x . The values of M on each

level are calculated as M = {12.21, 7.73}. Using Eq. (43), we find that the method gives rise

to a speedup by a factor S2 = 7 compared to forward Euler timestepping.

The numerical solution at t = 1 for different orders of the upwind scheme is shown in

the left plot of Fig. 10. We also plotted the exact solution of the limiting linear advection

equation in black. As can be seen, the first order upwind method is too diffusive and its

higher-order versions produce spurious oscillations around discontinuities. To counter this

undesired result, we implemented a Weighted Essentially Non-oscillatory (WENO) scheme

[49] which uses a weighted linear combination of all possible stencils for each grid point

for a given spatial order of accuracy giving more weight to smooth stencils. The results for

WENO2 and WENO3 are depicted by cyan and purple lines, respectively, on the right plot

of Fig. 10. In this case, we obtain a high order approximation without oscillations.

Two-dimensional case (D = 2) Next, we examine the two-dimensional Eq. (14) with linear

Maxwellian given in (15). Now, the limiting (ε → 0) dynamics corresponds to the two-

dimensional linear advection equation as shown in (17). We again compute the solution

for t ∈ [0, 1] and consider a rectangular spatial domain (x, y) ∈ [0, 1] × [0, 1]. We impose

periodic boundary conditions and choose a smooth initial density given by a domain-centered

Gaussian function:

ρ(x, 0) = exp
(

−100|x − 0.5|2
)

. (65)
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Fig. 10 Simulation results (density) at t = 1 of Eq. (7) with ν(x, t) = ρ(x, t) using a level-2 TPRK4 method

with time step h2 = 0.5�x and �x = 5 × 10−3. We compare two different spatial discretization techniques.

Left: upwind differences of order 1 (blue), 2 (red) and 3 (green). Right: WENO2 (cyan) and WENO3 (purple).

The black dashed curve in both plots corresponds to the exact solution of the linear advection Eq. (13) (Color

figure online)
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Fig. 11 Simulation results (density) at t = 1 of Eq. (14) with ν(x, t) = ρ(x, t) using a level-3 TPRK4 method

with time step h2 = 0.5�x and �x = �y = 0.02. We compare three spatial discretization techniques: first-

order upwind (left), WENO2 (middle) and WENO3 (right)

We discretize velocity space (vx , vy) ⊂ R
2 using 10 × 10 discrete velocity components

obtained as the nodes of Gauss-Hermite quadrature with respect to the two-dimensional

measure (16). In the TPI framework, we choose the forward Euler scheme with time step

h0 = ε and ε = 10−5 as innermost integrator. The spatial domain is discretized by choosing

a rectangular grid with grid spacing �x = �y = 0.02. Then, the (linear) fluxes in Eq. (14)

are approximated by first order upwind differences. We construct a [0, 1]-stable TPRK4

method consisting of L = 3 projective levels with constant K = 3 and outermost time step

hL = 0.5�x . The values of M on each level are calculated as M = {6.66, 6.66, 4.81} and

the speedup is computed as S3 = 15.6. The result is shown in the left plot of Fig. 11.

Clearly, the first-order upwind method again introduces very strong numerical diffusion.

Therefore, we turn towards higher-order spatial discretization techniques. The obvious choice

of higher-order upwind methods is inappropriate for the considered initial solution, since

these inevitably generate under- and overshoots in the numerical solution causing a potential

loss of stability in finite time, see Eq. (58). However, we can obtain higher-order solutions

by applying the WENO scheme. The result for WENO2 and WENO3 is visualized in the

middle and right plots, respectively, of Fig. 11.

123



724 J Sci Comput (2018) 76:697–726

7 Conclusions

We presented a general, higher-order, fully explicit integration method for kinetic equations

with BGK-like source term containing a collision frequency leading to multiple relaxation

times. The method uses a hierarchy of projective integrators, leading to telescopic projective

integration methods. The number of levels, as well as the size and number of the time-

steps at each level, can be derived based on the problem’s spectrum. Unlike other methods

based on relaxation [2,31], the telescopic projective integration method does not rely on a

splitting technique, but only on an appropriate selection of time steps using a naive explicit

discretization method at its core. Its main advantage is its generality and ease of use.

We showed that, with an appropriate choice of the inner time step, the time step restriction

on the outer time step is independent of the small-scale parameter. Moreover, the number

of inner integrator iterations and the projective step size are independent of the scaling

parameter. By contrast, the required number of projective levels depends on this parameter, be

it only logarithmically. We analyzed stability and provided numerical results on the method

construction procedure. We applied the method both to one- and two-dimensional kinetic

equations.

In future work, we foresee to construct stable telescopic projective integration methods

for the nonlinear BGK kinetic equation without linearizing the Maxwellian distribution. Fol-

lowing that, an ambitious goal is to apply these methods to the full Boltzmann equation, for

which the spectrum of the corresponding linearized collision operator is known to consist

of a number of separated eigenvalue clusters, see [15,47]. However, a more precise charac-

terization of the location and size of these clusters is required to determine suitable method

parameters.
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