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Abstract

In this paper, we present Telex, a new approach to

resisting state-level Internet censorship. Rather than at-

tempting to win the cat-and-mouse game of finding open

proxies, we leverage censors’ unwillingness to completely

block day-to-day Internet access. In effect, Telex converts

innocuous, unblocked websites into proxies, without their

explicit collaboration. We envision that friendly ISPs

would deploy Telex stations on paths between censors’

networks and popular, uncensored Internet destinations.

Telex stations would monitor seemingly innocuous flows

for a special “tag” and transparently divert them to a for-

bidden website or service instead. We propose a new

cryptographic scheme based on elliptic curves for tagging

TLS handshakes such that the tag is visible to a Telex

station but not to a censor. In addition, we use our tagging

scheme to build a protocol that allows clients to connect

to Telex stations while resisting both passive and active at-

tacks. We also present a proof-of-concept implementation

that demonstrates the feasibility of our system.

1 Introduction

The events of the Arab Spring have vividly demonstrated

the Internet’s power to catalyze social change through

the free exchange of ideas, news, and other information.

The Internet poses such an existential threat to repressive

regimes that some have completely disconnected from

the global network during periods of intense political un-

rest, and many regimes are pursuing aggressive programs

of Internet censorship using increasingly sophisticated

techniques.

Today, the most widely-used tools for circumventing

Internet censorship take the form of encrypted tunnels

and proxies, such as Dynaweb [12], Instasurf [30], and

Tor [10]. While these designs can be quite effective at

sneaking client connections past the censor, these systems

inevitably lead to a cat-and-mouse game in which the

censor attempts to discover and block the services’ IP

addresses. For example, Tor has recently observed the

blocking of entry nodes and directory servers in China

and Iran [28]. Though Tor is used to skirt Internet censors

in these countries, it was not originally designed for that

application. While it may certainly achieve its original

goal of anonymity for its users, it appears that Tor and

proxies like it are ultimately not enough to circumvent

aggressive censorship.

To overcome this problem, we proposeTelex: an “end-

to-middle” proxy with no IP address, located within the

network infrastructure. Clients invoke the proxy by using

public-key steganography to “tag” otherwise ordinary

TLS sessions destined for uncensored websites. Its design

is unique in several respects:

Architecture Previous designs have assumed that anti-

censorship services would be provided by hosts at the

edge of the network, as the end-to-end principle requires.

We propose instead to provide these services in the core

infrastructure of the Internet, along paths between the

censor’s network and popular, nonblocked destinations.

We argue that this will provide both lower latency and

increased resistance to blocking.

Deployment Many systems attempt to combat state-

level censorship using resources provided primarily by

volunteers. Instead, we investigate a government-scale

response based on the view that state-level censorship

needs to be combated by state-level anticensorship.

Construction We show how a technique that the security

and privacy literature most frequently associates with

government surveillance—deep-packet inspection—can

provide the foundation for a robust anticensorship system.

We expect that these design choices will be somewhat

controversial, and we hope that they will lead to discus-

sion about the future development of anticensorship sys-

tems.



Contributions and roadmap We propose using “end-

to-middle” proxies built into the Internet’s network in-

frastructure as a novel approach to resisting state-level

censorship. We elaborate on this concept and sketch the

design of our system in Section 2, and we discuss its

relation to previous work in Section 3.

We develop a new steganographic tagging scheme

based on elliptic curve cryptography, and we use it to

construct a modified version of the TLS protocol that

allows clients to connect to our proxy. We describe the

tagging scheme in Section 4 and the protocol in Section 5.

We analyze the protocol’s security in Section 6.

We present a proof-of-concept implementation of our

approach and protocols, and we support its feasibility

through laboratory experiments and real-world tests. We

describe our implementation in Section 7, and we evaluate

its performance in Section 8.

Online resources For the most recent version of this

paper, prototype source code, and a live demonstration,

visit https://telex.cc.

2 Concept

Telex operates as what we term an “end-to-middle” proxy.

Whereas in traditional end-to-end proxying the client con-

nects to a server that relays data to a specified host, in

end-to-middle proxying an intermediary along the path

to a server redirects part of the connection payload to

an alternative destination. One example of this mode of

operation is Tor’s leaky-pipe circuit topology [10] fea-

ture, which allows traffic to exit from the middle of a

constructed Tor circuit rather than the end.

The Telex concept is to build end-to-middle proxying

capabilities into the Internet’s routing infrastructure. This

would let clients invoke proxying by establishing connec-

tions to normal, pre-existing servers. By applying this

idea to a widely used encrypted transport, such as TLS,

and carefully avoiding observable deviations from the

behavior of nonproxied connections, we can construct a

service that allows users to robustly bypass network-level

censorship without being detected.

In the remainder of this section, we define a threat

model and goals for the Telex system. We then give a

sketch of the design and discuss several practical consid-

erations.

2.1 Threat model

Our adversary, “the censor”, is a repressive state-level au-

thority that desires to inhibit online access to information

and communication of certain ideas. These desires are

realized by IP and DNS blacklists as well as heuristics for

blocking connections based on their observed content.

We note that the censor has some motivation for con-

necting to the Internet at all, such as the economic and

social benefits of connectivity. Thus, the censor bears

some cost from over-blocking. We assume that the cen-

sor follows a blacklist approach rather than a whitelist

approach in blocking, allowing traffic to pass through

unchanged unless it is explicitly banned.

Furthermore, we assume that the censor generally per-

mits widespread cryptographic protocols, such as TLS, ex-

cept when it has reason to believe a particular connection

is being used for skirting censorship. We further assume

that the censor is not subverting such protocols on a wide

scale, such as by requiring a cryptographic backdoor or

by issuing false TLS certificates using a country-wide CA.

We believe this is reasonable, as blocking or subverting

TLS on a wide scale would render most modern websites

unusably insecure. Subversion in particular would result

in an increased risk of large-scale fraud if the back door

were compromised or abused by corrupt insiders.

The censor controls the infrastructure of the network

within its jurisdiction (“the censor’s network”), and it

can potentially monitor, block, alter, and inject traffic

anywhere within this region. However, these abilities

are subject to realistic technical, economic, and political

constraints.

In general, the censor does not control end hosts within

its network, which operate under the direction of their

users. We believe this assumption is reasonable based

on the failure of recent attempts by national governments

to mandate client-side filtering software, such as China’s

Green Dam Youth Escort [33]. The censor might target

a small subset of users and seize control of their devices,

either through overt compulsion or covert technical at-

tacks. Protecting these users is beyond the scope of our

system. However, the censor’s targeting users on a wide

scale might have unacceptable political costs.

The censor has very limited abilities outside its network.

It does not control any external network infrastructure or

any popular external websites the client may use when

communicating with Telex stations. The censor can, of

course, buy or rent hosting outside its network, but its

use is largely subject to the policies of the provider and

jurisdiction.

Some governments may choose to deny their citizens

Internet connectivity altogether, or disconnect entirely

in times of crisis. These are outside our threat model;

the best approaches to censors like these likely involve

different approaches than ours, and entail much steeper

performance trade-offs. Instead, our goal is to make ac-

cess to any part of the global Internet sufficient to access

every part of it. In other words, we aim to make connect-

ing to the global Internet an all-or-nothing proposition for

national governments.

https://telex.cc
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Figure 1: Telex Concept — This figure shows an example user connecting to Telex. The client makes a tagged

connection to NotBlocked.com, which is passed by the censor’s filter. When the request reaches a friendly on-path

ISP, one of the ISP’s routers forwards the request to the Telex station connected to its tap interface. Telex deciphers

the tag, instructs the router to block the connection to NotBlocked.com. and diverts the connection to Blocked.com,

as the user secretly requested. If the connection were not tagged, Telex would not intervene, and it would proceed to

NotBlocked.com as normal.

2.2 Goals

Telex should satisfy the following properties:

Unblockable The censor should not be able to deny

service to Telex without incurring unacceptable costs. In

particular, we require that the censor cannot block Telex

without blocking a large, primarily legitimate category of

Internet traffic.

Confidential The censor should not be able to deter-

mine whether a user is using Telex or what content the

user is accessing through the system.

Easy to deploy The consequences of system failure

(or even normal operation) must not interfere with normal

network operation (e.g., non-Telex connections) in order

for deployment to be palatable to ISPs.

Transparent to users Using Telex should, possibly

after a small startup procedure, closely resemble using an

unfiltered Internet connection.

2.3 Design

To meet our goals and the constraints imposed by our

threat model, we propose the design shown in Figure 1.

As illustrated in the figure, a Telex connection proceeds

as follows:

1. The user’s client selects an appropriate website that

is not on the censor’s blacklist and unlikely to at-

tract attention, which we represent by the domain

NotBlocked.com.

2. The user connects to NotBlocked.com via HTTPS.

Her Telex client1 includes an invisible “tag,” which

looks like an expected random nonce to the censor,

but can be cryptographically verified by the Telex

station using its private key.

3. Somewhere along the route between the client and

NotBlocked.com, the connection traverses an ISP

that has agreed to attach a Telex station to one of its

routers. The connection is forwarded to the station

via a dedicated tap interface.

4. The station detects the tag and instructs the router to

block the connection from passing through it, while

still forwarding packets to the station through its

dedicated tap. (Unlike a deployment based on trans-

parent proxying, this configuration fails open: it

tolerates the failure of the entire Telex system and so

meets our goal of being easy to deploy.)

5. The Telex station diverts the flow to Blocked.com as

1We anticipate that client software will be distributed out of band,

perhaps by sneakernet, among mutually trusting individuals within the

censor’s domain.



the user requested; it continues to actively forward

packets from the client to Blocked.com and vice

versa until one side terminates the connection. If the

connection were untagged, it would pass through the

ISP’s router as normal.

We simplified the discussion above in an important

point: we need to specify what protocol is to be used over

the encrypted tunnel between the Telex client and the

Telex station and how the client communicates its choice

of Blocked.com. Layering IP atop the tunnel might seem

to be a natural choice, yielding a country-wide VPN of

sorts, but even a passive attacker may be able to differen-

tiate VPN traffic patterns from those of a normal HTTPS

connection. As a result, we primarily envision using Telex

for protocols whose session behavior resembles that of

HTTPS. For example, an HTTP or SOCKS proxy would

be a useful application, or perhaps even a simple server

that presented a list of entry points for another anticen-

sorship system such as Tor [10]. In the remainder of this

paper, we assume that the application is an HTTP proxy.

The precise placement of Telex stations is a second

issue. Clearly, a chief objective of deployment is to cover

as many paths between the censor and popular Internet

destinations as possible so as to provide a large selection

of sites to play the role of NotBlocked.com. We might ac-

complish this either by surrounding the censor with Telex

stations or by placing them close to clusters of popular

uncensored destinations. In the latter case, care should

be taken not to reduce the size of the cluster such that the

censor would only need to block a small number of other-

wise desirable sites to render the station useless. Which

precise method of deployment would be most effective

and efficient is, in part, a geopolitical question.

A problem faced by existing anticensorship systems

is providing sufficient incentives for deployment [6].

Whereas systems that require cooperation of uncensored

websites create a risk that such sites might be blocked

by censors in retaliation, our system requires no such

participation. We envision that ISPs will willingly deploy

Telex stations for a number of reasons, including idealism,

goodwill, public relations, or financial incentives (e.g.,

tax credits) provided by governments. At worst, the con-

sequences to ISPs for participation would be depeering,

but depeering a large ISP would have a greater impact

on overall network performance than blocking a single

website.

Discovery of Telex stations is a third issue. With wide

enough deployment, clients could pick HTTPS servers

at random. However, this behavior might divulge clients’

usage of Telex, because real users don’t actually visit

HTTPS sites randomly. A better approach would be to

opportunistically discover Telex stations by tagging flows

during the course of the user’s normal browsing. When a

station is eventually discovered, it could provide a more

comprehensive map of popular sites (where popularity is

as measured with data from other Telex users) such that a

Telex station is likely to be on the path between the user

and the site. Even with only partial deployment, users

would almost certainly discover a Telex station eventually.

3 Previous Work

There is a rich literature on anonymous and censorship-

resistant communication, going back three decades [7].

One of the first systems explicitly proposed for combating

wide-scale censorship was Infranet [13], where participat-

ing websites would discreetly provide censored content in

response to steganographic requests. Infranet’s designers

dismissed the use of TLS because, at the time, it was not

widely deployed and would be easily blocked. We observe

that this aspect of Internet use has substantially changed

since 2002. Unlike Infranet, Telex does not require the

cooperation of unblocked websites—a significant imped-

iment to deployment—which participate in our system

only as oblivious cover destinations.

A variety of systems provide low-latency censorship

resistance through VPNs or encrypted tunnels to proxies.

These systems rely on servers at the edge of the network,

which censors constantly try to find and block (via IP). By

far, the best studied of these systems is Tor [10], which

also attempts to make strong anonymity guarantees by

establishing a multi-hop encrypted tunnel. Traditionally,

users connect to Tor via a limited set of “entry nodes,”

which provide an obvious target for censors. In response,

Tor has implemented bridges [27], which are a variation

on Feamster et al.’s keyspace hopping [14], in which each

client is told only a small subset of addresses of available

proxies. While bridges provide an extra layer of protec-

tion, the arms race remains: Chinese censors now learn

and block a large fraction of bridge nodes [9], possibly by

using a Sybil attack [11] against the bridge address distri-

bution system. Like Telex, Tor adopts a pragmatic threat

model that emphasizes performance; it wraps connections

using TLS and does not strongly protect against traffic

analysis and end-to-end timing attacks [22]. Unlike Tor,

we separate the problem of censorship resistance from

that of anonymous communication and concentrate on re-

sisting blocking; users who require increased anonymity

can use Telex as a gateway to the Tor network.

The most widely-used anticensorship tools today are

also among those that make the fewest security promises.

Pragmatic systems such as Dynaweb [12] and Ultra-

surf [30] that employ simple encrypted tunnels with large

numbers of entry points are popular, and, so far, have man-

aged to stay one step ahead of many censors. However,

we worry that such systems will not be able to withstand

continued research and development on the part of cen-

sors (e.g., Sybil attacks for proxy IP discovery). We aim



Public: g0,α0 = gr
0,g1,α1 = gr

1
Context: χ

Randomly pick s,b
Output gs

b‖H1(α
s
b‖χ)

key← H2(α
s
b‖χ)

Output a uniformly

random string

Private: r

Input β‖h
If h

?
= H1(β

r‖χ):
key← H2(β

r‖χ)
tagged

else:

not tagged

Normal TLS ClientTelex Client

Telex Station

Figure 2: Tag creation and detection — Telex intercepts TLS connections that contain a steganographic tag in the

ClientHello message’s nonce field (normally a uniformly random string). The Telex client generates the tag using public

parameters (shown above), but it can only be recognized by using the private key r embedded in the Telex station.

to provide similar or better performance by adopting a

single-hop tunnel and locating proxies in the middle of

the network, where they are not susceptible to IP-based

blocking.

4 Tagging

In this section, we describe how we implement the invis-

ible tag for TLS connections, which only Telex stations

can recognize. We present an overview here, while the

details and a security argument appear in Appendix A.

Figure 2 depicts the tagging scheme.

Our tags must have two properties: they must be short,

and they must be indistinguishable from a uniformly ran-

dom string to anyone without the private key. Someone

with the private key should be able to examine a random-

looking value and efficiently decide whether the tag is

present; if so, a shared secret key is derived for use later

in the protocol.

The structure of the Telex tagging system is based on

Diffie-Hellman: there is a generator g of a group of prime

order. Telex has a private key r and publishes a pub-

lic key α = gr. The system uses two cryptographically

secure hash functions H1 and H2, each salted by the cur-

rent context string χ (see Section 5). To construct a tag,

the client picks a random private key s, and computes

gs and αs = grs. If ‖ denotes concatenation, the tag is

then gs‖H1(g
rs‖χ), and the derived shared secret key is

H2(g
rs‖χ).

Diffie-Hellman can be implemented in many different

groups, but in order to keep the tags both short and secure,

we must use elliptic curve groups. Then we must ensure

that, in whatever bit representation we use to transmit

group elements gs, they are indistinguishable from uni-

formly random strings of the same size. This turns out to

be quite tricky, for three reasons:

• First, it is easy to tell whether a given (x,y) is a point

on a (public) elliptic curve. Most random strings will

not appear to be such a point. To work around this,

we only transmit the x-coordinates of the elliptic

curve points.

• Second, it is the case that these x-coordinates are

taken modulo a prime p. Valid tags will never con-

tain an x-coordinate larger than p, so we must ensure

that random strings of the same length as p are ex-

tremely unlikely to represent a value larger than p.

To accomplish this, we select a value of p that is

only slightly less than a power of 2.

• Finally, it turns out that for any given elliptic

curve, only about half of the numbers mod p are

x-coordinates of points on the curve. This is unde-

sirable, as no purported tag with an x-coordinate not

corresponding to a curve point can possibly be valid.

(Conversely, if a given client is observed using only

x-coordinates corresponding to curve points, it is

very likely using Telex.) To solve this, we use two

elliptic curves: the original curve and a related one

called the “twist”. These curves have the property

that every number mod p is the x-coordinate of a

point on either the original curve or the twist. We

will now need two generators: g0 for the original

curve, and g1 for the twist, along with the corre-

sponding public keys α0 = gr
0 and α1 = gr

1. Clients

pick one pair (gb,αb) uniformly at random when

constructing tags.

When Telex receives a candidate tag, it divides it into

two parts as β‖h, according to the fixed lengths of group

elements and hashes. It also determines the current con-
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Figure 3: TLS Handshake — The client and server ex-

change messages to establish a shared master_secret, from

which they derive cipher and MAC keys. The handshake

ends with each side sending a Finished message, en-

crypted with the negotiated keys, that includes an integrity

check on the entire handshake. The ServerKeyExchange

message may be omitted, depending on the key exchange

method in use.

text string χ . If this is a valid tag, β will be gs
b and h

will be H1(g
rs
b ‖χ) for some s and b. If this is not a valid

tag, β and h will both be random. Thus, Telex simply

checks whether h
?
= H1(β

r‖χ). This will always be true

for valid tags, and will be true only with probability 2−ℓH1

for invalid tags, where ℓH1
is the bit length of the outputs

of H1. If it is true, Telex computes the shared secret key

as H2(β
r‖χ).

5 Protocol

In this section, we briefly describe the Transport Layer

Security (TLS) protocol [8] and then we explain our mod-

ifications to it.

5.1 Overview of TLS

TLS provides a secure channel between a client and a

server, and consists of two sub-protocols: the handshake

protocol and the record protocol. The handshake protocol

provides a mechanism for establishing a secure channel

and its parameters, including shared secret generation

and authentication. The record protocol provides a se-

cure channel based on parameters established from the

handshake protocol.

During the TLS handshake, the client and server agree

on a cipher suite they will use to communicate, the server

authenticates itself to the client using asymmetric certifi-

cates (such as RSA), and cryptographic parameters are

shared between the server and client by means of a key

exchange algorithm. While TLS supports several key

exchange algorithms, in this paper, we will focus on the

Diffie-Hellman key exchange.

Figure 3 provides an outline of the TLS handshake. We

describe each of these messages in detail below:

ClientHello contains a 32-byte nonce, a session identifier

(0 if a session is not being resumed), and a list of sup-

ported cipher suites. The nonce consists of a 4-byte Unix

timestamp, followed by a 28-byte random value.

ServerHello contains a 32-byte nonce formed identically

to that in the ClientHello as well as the server’s choice of

one of the client’s listed cipher suites.

Certificate contains the X.509 certificate chain of the

server, and authenticates the server to the client.

ServerKeyExchange provides the parameters for the

Diffie-Hellman key exchange. These parameters include

a generator g, a large prime modulus pDH , a server pub-

lic key, and a signature. As per the Diffie-Hellman key

exchange, the server public key is generated by comput-

ing gspriv mod pDH , where spriv is a large random number

generated by the server. The signature consists of the

RSA signature (using the server’s certificate private key)

over the MD5 and SHA-1 hashes of the client and server

nonces, and previous Diffie-Hellman parameters.

ServerHelloDone is an empty record, used to update the

TLS state on the receiving (i.e., client) end.

ClientKeyExchange contains the client’s Diffie-Hellman

parameter (the client public key generated by gcpriv mod

pDH ).

ChangeCipherSpec alerts the server that the client’s

records will now be encrypted using the agreed upon

shared secret. The client finishes its half of the handshake

protocol with an encrypted Finished message, which veri-

fies the cipher spec change worked by encrypting a hash

of all previous handshake messages.

5.2 Telex handshake

The Telex handshake has two main goals: first, the censor

should not be able to distinguish it from a normal TLS

handshake; second, it should position the Telex station as

a man-in-the-middle on the secure channel. We now de-

scribe how the Telex handshake deviates from a standard

TLS handshake.

Client setup The client selects an uncensored HTTPS

server located outside the censor’s network (canonically,

https://NotBlocked.com) and resolves its hostname to find

server_ip. This server may be completely oblivious to

the anticensorship system. The client refers to its database

of Telex stations’ public keys to select the appropriate key

P = (α0,α1) for this session. We leave the details of

selecting the server and public key for future work.

ClientHello message The client generates a fresh

tag τ by applying the algorithm specified in Section 4,

using public key P and a context string composed

of server_ip‖UNIX_timestamp‖TLS_session_id.



This yields a 224-bit tag τ and a 128-bit shared secret key

ksh. The client initiates a TCP connection to server_ip

and starts the TLS handshake. As in normal TLS, the

client sends a ClientHello message, but, in place of the

224-bit random value, it sends τ .

(Briefly, the tag construction ensures that the Telex

station can use its private key to efficiently recognize τ
as a valid tag and derive the shared secret key ksh, and

that, without the private key, the distribution of τ values

is indistinguishable from uniform; see Section 4.)

If the path from the client to server_ip passes through

a link that a Telex station is monitoring, the station ob-

serves the TCP handshake and ClientHello message. It

extracts the nonce and applies the tag detection algorithm

specified in Section 4 using the same context string and

its private key. If the nonce is a genuine tag created with

the correct key and context string, the Telex station learns

ksh and continues to monitor the handshake. Otherwise,

with overwhelming probability, it rejects the tag and stops

observing the connection.

Certificate validation The server responds by send-

ing its X.509 certificate and, if necessary, key exchange

values. The client verifies the certificate using the CA

certificates trusted by the user’s browser. It addition-

ally checks the CA at the root of the certificate chain

against a whitelist of CAs trusted by the anticensorship

service. If the certificate is invalid or the root CA is not on

the whitelist, the client proceeds with the handshake but

aborts its Telex invocation by strictly following the TLS

specification and sending an innocuous application-layer

request (e.g., GET / HTTP/1.1 for HTTPS).2

Key exchange At this point in the handshake, the client

participates in the key exchange to compute a master se-

cret shared with the server. We modify the key exchange

in order to “leak” the negotiated key to the Telex station.

Several key exchange algorithms are available. For exam-

ple, in RSA key exchange, the client generates a random

46-byte master key and encrypts it using the server’s pub-

lic key. Alternatively, the client and server can participate

in a Diffie-Hellman key exchange to derive the master

secret.

The Telex client, rather than generating its key ex-

change values at random, seeds a secure PRG with ksh

and uses its output for whatever randomness is required

in the key exchange algorithm (e.g., the Diffie-Hellman

exponent). If a Telex station has been monitoring the

connection to this point, it will know all the inputs to the

client’s key exchange procedure: it will have observed

the server’s key exchange parameter and computed the

client’s PRG seed ksh. Using this information, the Telex

2Both the additional root CA whitelist and the browser list need to be

checked; the censor may control a CA that is commonly whitelisted by

browsers, and the root CA whitelist may contain entries that are trusted

by one browser but not another.

station simulates the client and simultaneously derives the

same master secret.

Handshake completion If a Telex station is listening,

it attempts to decrypt each side’s Finished message. The

station should be able to use the master secret to decrypt

them correctly and verify that the hashes match its obser-

vations of the handshake. If either hash is incorrect, the

Telex station stops observing the connection. Otherwise,

it switches roles from a passive observer to a man-in-the-

middle. It forges a TCP RST packet from the client to

NotBlocked.com, blocks subsequent messages from ei-

ther side from reaching the remote end of the connection,

and assumes the server’s role in the unbroken TCP/TLS

connection with the client.

Session resumption Once a client and server have es-

tablished a session, TLS allows them to quickly resume

or duplicate the connection using an abbreviated hand-

shake. Our protocol can support this too, allowing the

Telex station to continue its role as a man-in-the-middle.

The station remembers key and session_id by the

server, for sessions it successfully joined. A client at-

tempts to resume the session on a new connection by send-

ing a ClientHello message containing the session_id

and a fresh tag τ ′, which Telex can observe and verify if

it is present. If the server agrees to resume the session,

it responds with a ServerHello message and a Finished

message encrypted with the original master secret. The

client then sends its own Finished message encrypted in

the same way, which confirms that it knows the original

master secret. The Telex station checks that it can decrypt

and verify these messages correctly, then switches into a

man-in-the-middle role again.

6 Security Analysis

In this section, we analyze Telex’s security under the

threat model described in Section 2.1.

6.1 Passive attacks

First, we consider a passive censor who is able to ob-

serve arbitrary traffic within its network. For this censor

to detect that a client is using Telex, it must be able to

distinguish normal TLS flows from Telex flows.

Telex deviates from a normal TLS handshake in the

client’s nonce (sent in the ClientHello message) and in

the client’s key exchange parameters. In Section 4, we

showed that an attacker cannot distinguish a Telex tag

from a truly random string with more than a negligible

advantage. This means that a client’s tagged nonce (using

Telex) is indistinguishable from a normal TLS random

nonce. Likewise, the Telex-generated key exchange pa-

rameters are the output of a secure PRG; they are not



distinguishable from truly random strings as a direct re-

sult of the security of the PRG.

During the TLS record protocol, symmetric cryptogra-

phy is used between the Telex station and the client. A

censor will be unable to determine the contents of this

encrypted channel, as in normal TLS, and will thus be un-

able to distinguish between a Telex session and a normal

TLS session from the cryptographic payload alone.

Stream cipher weakness TLS supports several stream

cipher modes for encrypting data sent over the connec-

tion. Normally, the key stream is used once per session, to

avoid vulnerability to a reused key attack. However, the

Telex station and NotBlocked.com use the same shared

secret when sending data to the client, so the same key

stream is used to encrypt two different plaintexts. An

attacker (possibly different from the censor) with the abil-

ity to receive both of the resulting ciphertexts can simply

XOR them together to obtain the equivalent of the plain-

texts XORed together. To mitigate this issue, Telex sends

a TCP RST to NotBlocked.com to quickly stop it from

returning data. In addition, our implementation uses a

block cipher in CBC mode, for which TLS helps mitigate

these issues further by providing for the communication

of a random per-record IV.

We note that an adversary in position to carry out this

attack (such as one surrounding the Telex station) already

has the ability to detect the client’s usage of Telex, as

well as the contents of the connection from Telex to

Blocked.com.

Traffic analysis A sophisticated adversary might at-

tempt to detect a use of Telex by detecting anomalous

patterns in connection count, packet size, and timing. Pre-

vious work shows how these characteristics can be used to

fingerprint and identify specific websites being retrieved

over TLS [18]. However, this kind of attack would be

well beyond the level of sophistication observed in current

censors [16]. We outline a possible defense against traffic

analysis in Section 9.

6.2 Active attacks

Our threat model also allows the censor to attempt a vari-

ety of active attacks against Telex. The system provides

strong defenses against the most practical of these attacks.

Traffic manipulation The censor might attempt to

modify messages between the client and the Telex sta-

tion, but Telex inherits defenses against this from TLS.

For example, if the attacker modifies any of the param-

eters in the handshake messages, the client and Telex

station will each detect this when they check the MACs in

the Finished messages, which are protected by the shared

secret of the TLS connection. Telex will then not intercept

the connection, and the NotBlocked.com server will re-

spond with a TLS error. Widescale manipulation of TLS

handshakes or payloads would disrupt Telex; however, it

would also interfere with the normal operation of TLS

websites.

Tag replay The censor might attempt to use various

replay attacks to detect Telex usage. The most basic of

these attacks is for the censor to initiate its own Telex

connection and reuse the nonce from a suspect connec-

tion; if this connection receives Telex service, the censor

can conclude that the nonce was tagged and the original

connection was a Telex request.

Our protocol prevents this by requiring the client to

prove to the Telex station that it knows the shared secret

associated with the tagged nonce. We achieve this by

using the shared secret to derive the key exchange param-

eter, as described in Section 5. In particular, consider

the encrypted Finished message that terminates the TLS

handshake. This message must be encrypted using the

freshly negotiated key (or else the TLS server will hang

up), so it cannot simply be replayed. Second, the key

exchange parameter in use must match the shared secret

in the tagged nonce, or the Telex station will not be able

to verify the MAC on the Finished message. Together,

these requirements imply that the client must know the

shared secret.

Handshake replay This property of proving knowl-

edge of the shared secret is only valid if the server pro-

vides fresh key exchange parameters. An attacker may

circumvent this protection by replaying traffic in both di-

rections across the Telex station. This attack will cause a

visible difference in the first ApplicationData message re-

ceived at the client, provided that either 1) Blocked.com’s

response is not completely static (e.g., it sets a session

cookie) or 2) the original connection being replayed was

an unsuccessful Telex connection. In either case, the

new ApplicationData message will be fresh data from

Blocked.com.

A partial defense against this attack is to enforce fresh-

ness of the timestamps used in both halves of the TLS

handshake and prohibit nonce reuse within the window

of acceptable timestamps. However, this defense fails

in the case where the original connection being replayed

was an unsuccessful attempt to initiate a Telex connec-

tion, because the Telex station did not see the first use

of the nonce. As a further defense, we note that Not-

Blocked.com will likely not accept replayed packets, and

the Telex station can implement measures to detect at-

tempts to prevent replayed packets from reaching Not-

Blocked.com.

Ciphertext comparison The attacker is able to detect

the use of Telex if they are able to receive the unaltered

traffic from NotBlocked.com, in addition to the traffic

they forward to the client. Though they will not be able

to decrypt either of the messages, they will be able to see



that the ciphertexts differ, and from this conclude that a

client is using Telex. Normally, Telex blocks the traffic

between NotBlocked.com and the client after the TLS

handshake to prevent this type of attack.

However, it is possible for an attacker to use DNS hi-

jacking for this purpose. The attacker hijacks the DNS en-

try for NotBlocked.com to point to an attacker-controlled

host. The client’s path to this host passes through Telex,

and the attacker simply forwards traffic from this host to

NotBlocked.com. Thus, the attacker is able to observe the

ciphertext traffic on both sides of the Telex station, and

therefore able to determine when it modifies the traffic.

Should censors actually implement this attack, we can

modify Telex stations in the following way to help detect

DNS hijacking until DNSSEC is widely adopted. When

it observes a tagged connection to a particular server IP,

the station performs a DNS lookup based on the common

name observed in the X.509 certificate. This DNS lookup

returns a list of IP addresses. If the server IP for the

tagged connection appears in this list, the Telex station

will respond to the client and proxy the connection. Oth-

erwise, the station will not deviate from the TLS protocol,

as it is possible that the censor is hijacking DNS. This

may lead to false negatives, as DNS is not globally con-

sistent for many sites, but as long as the censor has not

compromised the DNS chain that the station uses, there

will be no false positives. For popular sites, we could also

add a whitelisted cache of IP addresses.

Since the censor controls part of the network between

the client and the Telex station, it could also try to redirect

the connection by other means, such as transparently prox-

ying the connection to a censor-controlled host. In these

cases, the destination IP address observed by Telex will

be different from the one specified by the client. Thus,

the context strings constructed by the client and Telex

will differ, and Telex will not recognize the connection

as tagged. This attack offers the adversary an expensive

denial of service attack, but it does not allow the attacker

to detect attempted use of Telex.

Denial of service A censor may attempt to deny service

from Telex in two ways. First, it may attempt to exhaust

Telex’s bandwidth to proxy to Blocked.com. Second, it

may attempt to exhaust a Telex station’s tag detection

capabilities by creating a large amount of ClientHello

messages for the station to check. Both methods are overt

attacks that may cause unwanted political backlash on the

censor or even provoke an international incident. To com-

bat the first attack, we can implement a client puzzle [20],

where Telex issues a computationally intensive puzzle

the client must solve before we allow proxy service. The

client puzzle should be outsourced [32] to avoid addi-

tional latency that might distinguish Telex handshakes

from normal TLS handshakes. To combat the second

attack, we can implement our tag checking in hardware

to increase throughput if necessary.

7 Implementation

To demonstrate the feasibility of Telex, we implemented

a proof-of-concept client and station. While we believe

these prototypes are useful models for research and exper-

imentation, we emphasize that they may not provide the

performance or security of a more polished production

implementation, and should be used accordingly.

7.1 Client

Our prototype client program, which we refer to as

telex_client, is designed to allow any program that

uses TCP sockets to connect to the Telex service without

modification. It is written in approximately 1200 lines of

C (including 500 lines of shared TLS utility code) and

uses libevent to manage multiple connections. The user

initializes telex_client by specifying a local port and

a remote TLS server that is not blocked by the censor (e.g.

NotBlocked.com). Once telex_client launches, it be-

gins by listening on the specified local TCP socket. Each

time a program connects to this socket, telex_client

initiates a TLS connection to the unblocked server spec-

ified previously. Following the Telex-TLS handshake

protocol (see Section 5.2), telex_client inserts a tag,

generated using the scheme described in Section 4, into

the ClientHello nonce. We modified OpenSSL to accept

supplied values for the nonce as well as the client’s Diffie-

Hellman exponent. We supply this 1024-bit value as the

output of a secure pseudorandom generator with input

ksh associated with the previously generated tag. These

changes required us to modify fewer than 20 lines of code

in OpenSSL 1.0.0.

7.2 Station

Our prototype Telex station uses a modular design to pro-

vide a basis for scaling the system to high-speed links and

to ensure reliability. In particular, it fails safely: simple

failures of the components will not impact non-Telex TLS

traffic. The implementation is divided into three compo-

nents, which are responsible for diversion, recognition,

and proxying of network flows.

Diversion The first component consists of a router at

the ISP hosting the Telex station. It is configured to allow

the Telex station to passively monitor TLS packets (e.g.,

TCP port 443) via a tap interface. Normally, the router

will also forward the packets towards their destination,

but the recognition and relay components can selectively

command it to not forward traffic for particular flows.

This allows the other components to selectively manipu-

late packets and then reinject them into the network. In



our implementation, the router is a Linux system that uses

the iptables and ipset [19] utilities for flow blocking.

Recognition During the TLS handshake, the Telex

station recognizes tagged connections by inspecting the

ClientHello nonces. In our implementation, the recog-

nition subsystem reconstructs the TCP connection using

the Bro Network Intrusion Detection System [23]. Bro

reconstructs the application-layer stream and provides

an event-based framework for processing packets. We

used the Bro scripting language for packet processing

(approximately 300 lines), and we added new Bro built-in

functions using C++ (approximately 450 lines).

When the Bro script recognizes a TLS ClientHello

message, it checks the client nonce to see whether it is

tagged. (The tag checking logic is a C implementation

of the algorithm described in Section 4.) If the nonce

is tagged, we extract the shared secret associated with

the tag and create an entry for the connection in a table

indexed by flow. All future event handlers test whether

the flow triggering the event is contained in this table, and

do nothing if it is not.

The Bro script then instructs the diversion component

(via a persistent TCP connection) to block the associated

flow. As this does not affect the tap, our script still re-

ceives the associated packets, and the script is responsible

for actively forwarding them until the TLS Finished mes-

sages are observed. This allows the Bro script to inspect

each packet before forwarding it, while ensuring that any

delays in processing will not cause a packet that should

be blocked to make it through the router (e.g., a TLS Ap-

plicationData packet from NotBlocked.com to the client).

To derive the TLS shared secret from the key exchange,

our Bro script also stores the necessary parameters from

the TLS ServerKeyExchange message in the connection

table.

Once it observes the server’s TLS Finished handshake

message, our Bro script stops forwarding packets between

the client and the server (thus atomically severing traf-

fic flow between them) and sends the connection state,

which includes the TCP-level state (sequence number,

TCP options, windows, etc.), the key exchange parame-

ters, and the shared secret ksh to the proxy service compo-

nent. Our proof-of-concept implementation handles only

the TCP timestamp, selective acknowledgements (SACK),

and window scaling options, but other options could be

handled similarly. Likewise, we currently only support

TLS’s Diffie-Hellman key exchange, but RSA and other

key exchange methods could also be supported.

Proxy service The proxy service component plays the

role of the TLS server and connects the client to blocked

websites. Our implementation consists of a user space

process called telex_relay and an associated kernel

module, which are responsible for decapsulating TLS

connection data and passing it to a local Squid proxy [25].

The telex_relay process is responsible for relaying

data from the client to the Squid proxy, in effect spoofing

the server side of the connection. We defer forwarding

of the last TLS Finished message until telex_relay has

initialized its connection state in order to ensure that all

application data is observed. We implement this delay by

including the packet containing TLS Finished message in

the state sent from our Bro script and leaving the task of

forwarding the packet to its destination to telex_relay,

thus avoiding further synchronization between the com-

ponents.

Similarly to telex_client, telex_relay is written

in about 1250 lines of C (again including shared TLS

utility code) and uses libevent to manage multiple connec-

tions. It reuses our modifications to OpenSSL in order to

substitute our shared secret for OpenSSL’s shared secret.

We implement relaying of packets between the client and

the Telex service straightforwardly, by registering event

handlers to read from one party and write to the other

using the usual send and recv system calls on the one

hand and SSL_read and SSL_write on the other.

To avoid easy detection, the relay’s TCP implementa-

tion must appear similar to that of the original TLS server.

Ideally, telex_relay would simply bind(2) to the ad-

dress of the original server and set the IP_TRANSPARENT

socket option, which, in conjunction with appropriate

firewall and routing rules for transparent proxying [29],

would cause its socket to function normally despite be-

ing bound to a non-local address. This would cause the

relay’s TCP implementation to be identical to that of the

operating system that hosts it. However, the TCP hand-

shake has already happened by the time our Bro script

redirects the connection to telex_relay, so we need a

method of communicating the state negotiated during the

handshake to the TCP implementation. Accordingly, we

modified the Linux 2.6.37 kernel to add a fake_accept

ioctl that allows a userspace application to create a seem-

ingly connected socket with arbitrary TCP state, including

endpoint addresses, ports, sequence numbers, timestamps,

and windows.

8 Evaluation

In this section, we evaluate the feasibility of our Telex

proxy prototype based on measurements of its perfor-

mance.

8.1 Model deployment

We used a small model deployment consisting of three

machines connected in a hub-and-spoke topology. Our

simulated router is the hub of our deployment, and the

two machines connected are the Telex station, and a web

server serving pages over HTTPS and HTTP. The Telex
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Figure 4: Client Request Throughput — We measured

the rate at which two client machines could complete

HTTP requests for a 1 kB page over a laboratory network,

using either TLS or our Telex prototype. The prototype’s

performance was competitive with that of unmodified

TLS.

station has a 2.93 GHz Intel Core 2 Duo E7500 processor

and 2 GB of RAM. The server has a 4-core, 2.26 GHz

Intel Xeon E55200 processor and 11 GB of RAM. The

router has a 3.40 GHz Intel Pentium D processor and 1 GB

of RAM. All of the machines in our deployment and tests

are running Ubuntu Server 10.10 and are interconnected

using Gigabit Ethernet.

8.2 Tagging performance

We evaluated our tagging implementation by generating

and verifying tags in bulk using a single CPU core on

the Telex station. We performed ten trials, each of which

processed a batch of 100,000 tags. The mean time to gen-

erate a batch was 18.24 seconds with a standard deviation

of 0.016 seconds, and the mean time to verify a batch was

9.03 seconds with a standard deviation of 0.0083 seconds.

This corresponds to a throughput of approximately 5482

tags generated per second and 11074 tags verified per

second. As our TLS throughput experiments show, tag

verification appears very unlikely to be a bottleneck in

our system.

8.3 Telex-TLS performance

To compare the overhead of Telex, we used our model

deployment with two additional clients connected to the

router. Our primary client machine (client A) has a 2.93

GHz Intel Core 2 Duo E7500 processor and 2 GB of

RAM. The secondary client machine (client B) has a 3.40

GHz Intel Pentium D processor and 2 GB of RAM. For

our control, we used the Apache benchmark ab [1] to

have each of the clients simultaneously download a static

1-kilobyte page over HTTPS. To compare to Telex, we

then configured ab to download the same page through

the telex_client. Because the Telex tunnel itself is

encrypted with TLS, we configured ab to use HTTP,

not HTTPS, in this latter case. For the NotBlocked.com

used by telex_client, we used our server on port 443

(HTTPS) and for Blocked.com, we used our same server

on port 80 (HTTP).

We modified ab to ensure that only successful connec-

tions were counted in throughput numbers and to override

its use of OpenSSL’s SSL_OP_ALL option. This option

originally caused ab to send fewer packets than a default

configuration of OpenSSL, allowing the TLS control to

perform artificially better at the cost of decreased security.

We used ab to perform batches of 1000 connections

(ab -n 1000); in each batch, we configured it to use a

variable number of concurrent connections. We repeated

each trial on our two clients (client A and client B) to get

a mean connection throughput for each client.

The results are shown in Figure 4; the performance

of the Telex tunnel lags behind that of TLS at low con-

currency, but catches up at higher concurrencies. The

observered performance is consistent with Telex introduc-

ing higher latency but similar throughput, which we posit

is due to Telex’s additional processing and network delay

(e.g., execution of the fake_accept ioctl). Both Telex

and TLS exhibit diminishing returns from more than 10

concurrent requests, and both start to plateau at 30 con-

current requests. Manual inspection of client machines’

CPU utilization confirms that the tests are CPU bound by

50 concurrent connections.

8.4 Real-world experience

To test functionality on a real censor’s network, we ran a

Telex client on a PlanetLab [24] node located in Beijing

and attempted connections to each of the Alexa top 100

websites [2] using our model Telex station located at the

University of Michigan. As a control, we first loaded these

sites without using Telex and noted apparent censorship

behavior for 17 of them, including 4 from the top 10: face-

book.com, youtube.com, blogspot.com and twitter.com.

The blocking techniques we observed included forged

RST packets, false DNS results, and destination IP black

holes, which are consistent with previous findings [15].

We successfully loaded all 100 sites using Telex. We also

compared the time taken to load the 83 unblocked sites

with and without Telex. While this metric was difficult

to measure accurately due to varying network conditions,

we observed a median overhead of approximately 60%.

To approximate the user experience of a client in China,

we configured a web browser on a machine in Michigan



to proxy its connections over an SSH tunnel to our Telex

client running in Beijing. Though each request traveled

from Ann Arbor to China and back before being for-

warded to its destination website (a detour of at least

32,000 km), we were able to browse the Internet uncen-

sored, and even to watch streaming YouTube videos.

Anecdotally, three of the authors have used Telex for

their daily Web browsing for about two months, from

various locations in the United States, with acceptable

stability and little noticeable performance degradation.

The system received additional stress testing because an

early version of the Telex client did not restrict incom-

ing connections to the local host, and, as a result, one

of the authors’ computers was enlisted by others as an

open proxy. Given the amount of malicious activity we

observed before the issue was corrected, our prototype

deployment appears to be robust enough to handle small-

scale everyday use.

9 Future Work

Maturing Telex from our current proof-of-concept to a

large-scale production deployment will require substantial

work. In this section, we identify four areas for future

improvement.

Traffic shaping An advanced censor may be able to

distinguish Telex activity from normal TLS connections

by analyzing traffic characteristics such as the packet and

document sizes and packet timing. We conjecture that this

would be difficult to do on a large scale due to the large

variety of sites that can serve as NotBlocked and the dis-

ruptive impact of false positives. Nevertheless, in future

work we plan to adapt techniques from prior work [18]

to defend Telex against such analysis. In particular, we

anticipate using a dynamic padding scheme to mimic the

traffic characteristics of NotBlocked.com. Briefly, for

every client request meant for Blocked.com, the Telex

station would generate a real request to NotBlocked.com

and use the reply from NotBlocked.com to restrict the

timing and length of the reply from Blocked.com (as-

suming the Blocked.com reply arrived earlier). If the

NotBlocked.com data arrived first, the station would send

padding as a reply to the client, including a command to

send a second “request” if necessary to ensure that the

apparent document length, packet size, and round trip

time remained consistent with that of NotBlocked.com.

Server mimicry Different service implementations

and TCP stacks are easily distinguished by their observ-

able behavior [21, Chapter 8]. This presents a substantial

challenge for Telex: to avoid detection when the Not-

Blocked.com server and the Telex station run different

software, a production implementation of Telex would

need to accurately mimic the characteristics of many com-

mon server configurations. Our prototype implementation

does not attempt this, and we have noted a variety of ways

that it deviates from TLS servers we have tested. These

deviations include properties at the IP layer (e.g. stale IP

ID fields), the TCP layer (e.g. incorrect congestion win-

dows, which is detectable by early acknowledgements),

and the TLS layer (e.g. different compression methods

and extensions provided by our more recent OpenSSL

version). While these specific examples may themselves

be trivial to fix, convincingly mimicking a diverse popu-

lation of sites will likely require substantial engineering

effort. One approach would be for the Telex station to

maintain a set of userspace implementations of popular

TCP stacks and use the appropriate one to masquerade as

NotBlocked.com.

Station scalability Widescale Telex deployment will

likely require Telex stations to scale to thousands of con-

current connections, which is beyond the capacity of our

prototype. We plan to investigate techniques for adapt-

ing station components to run on multiple distributed

machines. Clustering techniques [31] developed for in-

creasing the scalability of the Bro IDS may be applicable.

Station placement Telex raises a number of questions

related to Internet topography. How many ISPs would

need to participate to provide global coverage? Short of

this, where should stations be placed to optimally cover a

particular censor’s network? We leave accurate deploy-

ment modelling for future work.

Furthermore, we currently make the optimistic assump-

tion that all packets for the client’s connection to Not-

Blocked.com pass through some particular Telex station,

but this might not be the case if there are asymmetric

routes or other complications. Does this assumption hold

widely enough for Telex to be practically deployed? If

not, the system could be enhanced in future work to sup-

port cooperation among Telex stations on different paths,

or to support multi-headed stations consisting of several

routers in different locations diverting traffic to common

recognition and relay components.

10 Conclusion

In this paper, we introduced Telex, a new concept in

censorship resistance. By moving anticensorship service

from the edge of the network into the core network infras-

tructure, Telex has the potential to provide both greater

resistance to blocking and higher performance than ex-

isting approaches. We proposed a protocol for stegano-

graphically implementing Telex on top of TLS, and we

supported its feasibility with a proof-of-concept imple-

mentation. Scaling up to a production implementation

will require substantial engineering effort and close part-

nerships with ISPs, and we acknowledge that worldwide



deployment seems unlikely without government partici-

pation. However, Internet access increasingly promises to

empower citizens of repressive governments like never be-

fore, and we expect censorship-resistant communication

to play a growing part in foreign policy.
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the non-zero elements mod p are quadratic residues, and

half are nonresidues.) Let ℓp be the bit length of p, and

ensure that 2ℓp − p <
√

p. The curve E is defined by the

equation y2 = x3−3x+b mod p for a particular value of

b.

For some values of x ∈ Fp, z = x3− 3x+ b will be a

quadratic residue mod p; for those values, y = z
p+1

4 will

be a square root of z and (x,y) will be on the elliptic curve

E.

The other values of x will never occur as the x-

coordinate of a point on the elliptic curve E; however, for

those values of x, −z will be a quadratic residue, y = z
p+1

4

will be a square root of −z, and (x,y) will be a point on

the “twist” curve E ′ defined by −y2 = x3− 3x+ b. We

choose a value of b such that both E and E ′ have prime

order over Fp. It is a fact about elliptic curves that the

orders o and o′ of E and E ′ will satisfy o = p+1− t and

o′ = p+1+ t, for some |t| ≤ 2
√

p.

Define a function φ : {0,1}ℓp × {0,1}ℓp → {0,1}ℓp ,

such that φ(r,x) is the point multiplication on the ellip-

tic curve (E or E ′) which contains a point X with x-

coordinate x. To compute φ(r,x), consider r and x as

integers expressed as little-endian strings. x will be the x-

coordinate of a point X = (x,y) on one of the curves. On

that curve, compute R = r ·X , and output the x-coordinate

of R, expressed as a little-endian string. If R is the point

at infinity (which happens if and only if r is a multiple of

the curve order), φ(r,x) is undefined. We note that this

is the same function (albeit over different curves) as was

used by Bernstein in Curve25519 [3].

The tagging protocol is as follows:

Setup Telex selects arbitrary generators of E and E ′

and publishes their x-coordinates as little-endian strings

g0 and g1. Since E and E ′ have prime order, any non-

identity element is a generator of those groups. Telex

selects a random private key r ∈ {0,1}ℓp , and publishes

α0 = φ(r,g0) and α1 = φ(r,g1). If either of those val-

ues is undefined because r is a multiple of either group

order (this happens with probability less than 22−ℓp), a

different value for r can be selected. Telex also pub-

lishes hash functions H1 : {0,1}∗ → {0,1}ℓH1 and H2 :

{0,1}∗→{0,1}ℓH2 .

Client tag generation Given a context string χ , the

client selects a random s ∈ {0,1}ℓp and a random bit

b ∈ {0,1}. The client computes β = φ(s,gb) and k =
φ(s,αb). (The bit b selects whether the client will be us-

ing E or E ′.) In the extremely unlikely event (probability

approximately 21−ℓp) that s is a multiple of the group

order, φ(s,αb) will be undefined, and the client can select

a different s. The client publishes the tag β‖H1(k‖χ) and

stores the shared secret key H2(k‖χ) for later use. Again

viewing φ as point multiplication, we can see that the gen-

eration of the value k is just elliptic curve Diffie-Hellman;

we will exploit this fact in the security argument below.

Telex tag inspection Given a context string χ and a

purported (ℓp + ℓH1
)-bit tag, the Telex station parses the

tag as β‖h where β is ℓp bits and h is ℓH1
bits. It computes

k′= φ(r,β ) and h′=H1(k
′‖χ). If h= h′, the Telex station

accepts the tag as valid, and outputs H2(k
′‖χ) as the

shared secret key for later use. Otherwise, it rejects the

tag as invalid.

A.1 Parameter selection

In our implementation, we use p = 2168−28−1 (and so

ℓp = 168). Using sage version 4.5.2 [26], we searched

for an appropriate value of b by randomly selecting can-

didate values of b until the orders of E and E ′ both

turned out to be prime. This search took only a few

minutes on an 8-core computer, and yielded the value b =
114301813541519167821195403070898020343878856329174. The

curve E has order p + 1 − t and the twist E ′ has

order p + 1 + t (both of which are prime) for t =
−25904187505858679946718103. g0 is the 168-bit

little-endian representation of the number 2, and g1 is

likewise of the number 0. The hash functions H1 and

H2 are both based on the SHA256 hash function; we se-

lect ℓH1
= 56 and ℓH2

= 128, and set H1 to be the first

56 bits of the SHA256 output, and H2 to be the last 128

bits of the SHA256 output. The resulting tag length is

ℓp + ℓH1
= 224 bits, which is the size of the random por-

tion of a TLS ClientHello message.

Choosing ℓp = 168 requires an adversary (under the

usual security assumptions for elliptic curves) to perform

284 computations in order to break the tagging scheme by

recovering the private key from the public key (and thus

violating the DDH assumption below). While we believe

this is sufficient, there are a number of methods we can use

to guard against even more powerful adversaries. The first

is that the key strength (2ℓp/2) can be traded off against

the rate of false positives (2−ℓH1 ) under the restriction that

ℓp + ℓH1
= 224. There are also other places [17] one can

hide random-looking bits in a TLS session, to increase

from the 224 bits we use to hide our tag. Next, we can

limit the utility of expending massive effort to recover

the Telex private key by having multiple keys that may

correspond to time, source, and/or destination. These

public keys could be bundled with the Telex client code.

Depending on the duration each public key is used, time-

based keys would have to be refetched periodically. As an

example, a system that switches public keys every hour

could bundle 1 million keys, enough to last for over 114

years, in only 42 MB of space.

A.2 Security argument

We must argue that an adversary, given g0, g1, α0, α1,

and a candidate tag τ , cannot determine whether τ was



an output from the above client tag generation algorithm

or was just a (ℓp + ℓH1
)-bit string generated uniformly at

random by a standard TLS client. Parsing τ as β‖h, we

claim that the distribution of β values is only negligibly

different from a uniform distribution of ℓp-bit values, and

also that, under reasonable cryptographic assumptions,

given β , an adversary cannot distinguish the correct value

of h that would appear in a valid tag from a random ℓH1
-bit

value.

To see the former, consider the distribution of possible

values of β = φ(s,g0) as s ranges over {0,1}ℓp . Treating

s as a number, this distribution is only negligibly differ-

ent from that resulting from the range 1≤ s < o, where

o is the order of E. The latter is the distribution of x-

coordinates of a uniformly selected (non-infinity) point of

E. Let L0 be the set of values x ∈ Fp such that x3−3x+b

is a quadratic residue. Then every value in L0 appears as

the x-coordinate of two points of E, except possibly for

up to 3 points whose y-coordinates are 0, which appear

only once each. The previous distribution is then only

negligibly different from the uniform distribution on L0.

If L1 is the set of values x ∈ Fp such that x3− 3x+ b is

a quadratic nonresidue, then the same argument shows

that the distribution of possible values of β = φ(s,g1)
is only negligibly different from a uniform distribution

on L1. The required distribution of β is then negligibly

different from the result of selecting a uniform element of

Lb where b is a uniform random bit. Since the sizes of L0

and L1 are negligibly different, and L0 and L1 are disjoint,

and the size of L0∪L1 is p, which is negligibly different

from 2ℓp (as we chose p to be only slightly smaller than a

power of 2), our result follows.

To see the latter, we require the Decision (Co-)Diffie-

Hellman (DDH and DCoDH) assumptions [4, 5]: that

no adversary, given the points P and rP, can distin-

guish the distributions {(Q,rQ)} and {(Q,r′Q)} with

non-negligible advantage, where P and Q are points on ei-

ther E or E ′ and r and r′ are selected uniformly at random

from their respective domains (or, as above, from [0,2ℓp)).
If P are Q are on the same curve, this is DDH; if one is

on E and one on E ′, this is DCoDH. We also need an

assumption on the properties of H1; namely, that for any

χ and any bit b, the distribution {H1(φ(s,αb)‖χ)} over

all s is indistinguishable from the uniform distribution on

ℓH1
-bit strings. (This is of course true if H1 is modelled

as a random oracle, but seems likely to be true for our

SHA256-based H1 as well.)

An adversary that can distinguish

{(φ(s,gb),H1(φ(s,αb)‖χ))} from {(φ(s,gb),$}
(where $ are uniform ℓH1

-bit values) can also

distinguish {(φ(s,gb),H1(φ(s,αb)‖χ))} from

{(φ(s,gb),H1(φ(s
′,αb)‖χ))} by our assumption

on H1. He can then distinguish {(φ(s,gb),φ(s,αb))}
from {(φ(s,gb),φ(s

′,αb))} by taking hashes, and
{(sGb,sAb)} from {(sGb,s

′Ab)} by taking x-coordinates,

where Gb is the elliptic curve point with x-coordinate

gb and Ab is the elliptic curve point with x-coordinate

αb. Writing Q = sGb and r′ = s′s−1, and noting

that Ab = rGb, this is the same as distinguishing the

distributions {(Q,rQ)} and {(Q,r′Q)}, given Gb and

Ab = rGb, which is impossible by the DDH assumption.

Care must also be taken to ensure that the adversary’s

knowledge of (G1−b,A1−b) does not aid him, but this can

also be seen to be true by DCoDH.

In summary, under the DDH and DCoDH assumptions

on E and E ′ and a random-looking-output assumption

on H1, an adversary who does not know Telex’s private

key r cannot distinguish valid tags from uniformly gen-

erated (ℓp + ℓH1
)-bit strings with more than a negligible

advantage.
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