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ABSTRACT  

What does a user need to know to productively work with 
an intelligent agent? Intelligent agents and recommender 

systems are gaining widespread use, potentially creating a 

need for end users to understand how these systems operate 

in order to fix their agent’s personalized behavior. This 

paper explores the effects of mental model soundness on 

such personalization by providing structural knowledge of a 

music recommender system in an empirical study. Our 

findings show that participants were able to quickly build 

sound mental models of the recommender system’s 

reasoning, and that participants who most improved their 

mental models during the study were significantly more 

likely to make the recommender operate to their 
satisfaction. These results suggest that by helping end users 

understand a system’s reasoning, intelligent agents may 

elicit more and better feedback, thus more closely aligning 

their output with each user’s intentions. 
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INTRODUCTION  

Intelligent agents have moved beyond mundane tasks like 

filtering junk email. Search engines now exploit pattern 

recognition to detect image content (e.g., clipart, 

photography, and faces); Facebook and image editors take 
this a step further, making educated guesses as to who is in 

a particular photo. Netflix and Amazon use collaborative 

filtering to recommend items of interest to their customers, 

while Pandora and Last.fm use similar techniques to create 

radio stations crafted to an individual’s idiosyncratic tastes. 

Simple rule-based systems have evolved into agents 

employing complex algorithms. These intelligent agents are 
computer programs whose behavior only becomes fully 

specified after they learn from an end user’s training data.  

Because of this period of in-the-field learning, when an 

intelligent agent’s reasoning causes it to perform incorrectly 

or unexpectedly, only the end user is in a position to better 

personalize—or more accurately, to debug—the agent’s 

flawed reasoning. Debugging, in this context, refers to 

mindfully and purposely adjusting the agent’s reasoning 

(after its initial training) so that it more closely matches the 

user’s expectations. Recent research has made inroads into 

supporting this type of functionality [1,11,14,16]. 
Debugging, however, can be difficult for even trained 

software developers—helping end users do so, when they 

lack knowledge of either software engineering or machine 

learning, is no trivial task. 

In this paper, we consider how much ordinary end users 

may need to know about these agents in order to debug 

them. Prior work has focused on how an intelligent agent 

can explain itself to end users [9,13,15,22,27,28], and how 

end users might act upon such explanations to debug their 

intelligent agents [1,11,14,16,24]. This paper, in contrast, 

considers whether users actually need a sound mental 

model, and how that mental model impacts their attempts to 
debug an intelligent agent. Toward this end, we investigated 

four research questions: 

(RQ1): Feasibility: Can end users quickly build and recall a 

sound mental model of an intelligent agent’s operation? 

(RQ2): Accuracy: Do end users’ mental models have a 

positive effect on their debugging of an intelligent agent? 

 (RQ3): Confidence: Does building a sound mental model 

of an intelligent agent improve end users’ computer self-

efficacy and reduce computer anxiety? 

(RQ4): User Experience: Do end users with sound mental 

models of an intelligent agent experience interactions 
with it differently than users with unsound models? 

To answer these research questions, we conducted an 

empirical study that investigates the effects of explaining 

the reasoning of a music recommender system to end users. 

We developed a prototype, AuPair, which allowed 

participants to set up radio stations and make adjustments to 
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the songs that it chose for them. Half of the participants 

received detailed explanations of the recommender’s 

reasoning, while the other half did not. Our paper’s 

contribution is a better understanding of how users’ mental 

models of their intelligent agents’ behavior impacts their 

ability to debug their personalized agents. 

BACKGROUND AND RELATED WORK  

Functional and Structural Mental Models 

Mental models are internal representations that people build 
based on their experiences in the real world. These models 

allow people to understand, explain and predict phenomena, 

and then act accordingly [10]. The contents of mental 

models can be concepts, relationships between concepts or 

events (e.g., causal, spatial, or temporal relationships), and 

associated procedures. For example, one mental model of 

how a computer works could be that it simply displays 

everything typed on the keyboard and “remembers” these 

things somewhere inside the computer’s casing. Mental 

models can vary in their richness—an IT professional, for 

instance, has (ideally) a much richer mental model of how a 
computer works. 

There are two main kinds of mental models: Functional 

(shallow) models imply that the end user knows how to use 

the computer but not how it works in detail, whereas 

structural (deep) models provide a detailed understanding 

of how and why it works. Mental models must be sound 

(i.e., accurate) enough to support effective interactions; 

many instances of unsound mental models guiding 

erroneous behavior have been observed [18]. 

Mental model completeness can matter too, especially when 

things go wrong, and structural models are more complete 

than functional models. While a structural model can help 
someone deal with unexpected behavior and fix the 

problem, a purely functional model does not provide the 

abstract concepts that may be required [10]. Knowing how 

to use a computer, for example, does not mean you can fix 

one that fails to power on. 

To build new mental models, it has been argued that users 

should be exposed to transparent systems and appropriate 

instructions [21]. Scaffolded instruction is one method that 

has been shown to contribute positively to learning to use a 

new system [20]. One challenge, however, is that mental 

models, once built, can be surprisingly hard to shift, even 
when people are aware of contradictory evidence [28]. 

Mental Models of an Intelligent Agent’s Reasoning 

There has been recent interest in supporting the debugging 

of intelligent agents’ reasoning [1,11,13,14,16,25], but the 

mental models users build while attempting this task have 

received little attention. An exception is a study that 

considered the correctness of users’ mental models when 

interacting with a sensor-based intelligent agent that 

predicted an office worker’s availability (e.g., “Is now a 

good time to interrupt so-and-so?”) [28], but this study did 

not allow users to debug these availability predictions. 

Making an agents’ reasoning more transparent is one way 

to influence mental models. Examples of explanations by 

the agent for specific decisions include why… and why 

not… descriptions of the agent’s reasoning [13,15], visual 

depictions of the assistant’s known correct predictions 

versus its known failures [26], and electronic “door tags” 
displaying predictions of worker interruptibility with the 

reasons underlying each prediction (e.g., “talking detected”) 

[28]. Recent work by Lim and Dey has resulted in a toolkit 

for applications to generate explanations for popular 

machine learning systems [16]. Previous work has found 

that users may change their mental models of an intelligent 

agent when the agent makes its reasoning transparent [14]; 

however, some explanations by agents may lead to only 

shallow mental models [24]. Agent reasoning can also be 

made transparent via explicit instruction regarding new 

features of an intelligent agent, and this can help with the 

construction of mental models of how it operates [17]. 
None of these studies, however, investigated how mental 

model construction may impact the ways in which end 

users debug intelligent agents. 

Making an intelligent agent’s reasoning transparent can 

improve perceptions of satisfaction and reliability toward 

music recommendations [22], as well as other types of 

recommender systems [9,27]. However, experienced users’ 

satisfaction may actually decrease as a result of more 

transparency [17]. As with research on the construction of 

mental models, these studies have not investigated the link 

between end users’ mental models and their satisfaction 
with the intelligent agent’s behavior. 

EMPIRICAL STUDY  

To explore the effects of mental model soundness on end-

user debugging of intelligent agents, we needed a domain 

that participants would be motivated to both use and debug. 

Music recommendations, in the form of an adaptable 

Internet radio station, meet these requirements, so we 

created an Internet radio platform (named AuPair) that 

users could personalize to play music fitting their particular 

tastes. 

To match real-world situations in which intelligent agents 

are used, we extended the length of our empirical study 

beyond a brief laboratory experiment by combining a 
controlled tutorial session with an uncontrolled period of 

field use. The study lasted five days, consisting of a tutorial 

session and pre-study questionnaires on Day 1, then three 

days during which participants could use the AuPair 

prototype as they wished, and an exit session on Day 5. 

AuPair Radio 

AuPair allows the user to create custom “stations” and 

personalize them to play a desired type of music. Users start 

a new station by seeding it with a single artist name (e.g., 

“Play music by artists similar to Patti Smith”). Users can 

debug the agent by giving feedback about individual songs, 

or by adding general guidelines to the station. Feedback 

about an individual song can be provided using the 5-point 
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rating scale common to many media recommenders, as well 
as by talking about the song’s attributes (e.g., “This song is 

too mellow, play something more energetic”, Figure 1). To 

add general guidelines about the station, the user can tell it 

to “prefer” or “avoid” descriptive words or phrases (e.g., 

“Strongly prefer garage rock artists”, Figure 2, top). Users 

can also limit the station’s search space (e.g., “Never play 

songs from the 1980’s”, Figure 2, bottom). 

AuPair was implemented as an interactive web application, 

using jQuery and AJAX techniques for real-time feedback 

in response to user interactions and control over audio 

playback. We supported recent releases of all major web 

browsers. A remote web server provided recommendations 
based on the user’s feedback and unobtrusively logged each 

user interaction via an AJAX call. 

AuPair’s recommendations were based on The Echo Nest 

[6], allowing access to a database of cultural characteristics 

(e.g., genre, mood, etc.) and acoustic characteristics (e.g., 

tempo, loudness, energy, etc.) of the music files in our 

library. We built our music library by combining the 

research team’s personal music collections, resulting in a 

database of more than 36,000 songs from over 5,300 

different artists. 

The Echo Nest developer API includes a dynamic playlist 
feature, which we used as the core of our recommendation 

engine. Dynamic playlists are put together using machine 

learning approaches and are “steerable” by end users. This 

is achieved via an adaptive search algorithm that builds a 

path (i.e., a playlist) through a collection of similar artists. 

Artist similarity in AuPair was based on cultural 
characteristics, such as the terms used to describe the 

artist’s music. The algorithm uses a clustering approach 

based on a distance metric to group similar artists, and then 

retrieves appropriate songs. The user can adjust the distance 

metric (and hence the clustering algorithm) by changing 

weights on specific terms, causing the search to prefer 

artists matching these terms. The opposite is also 

possible—the algorithm can be told to completely avoid 

undesirable terms. Users can impose a set of limits to 

exclude particular songs or artists from the search space. 

Each song or artist can be queried to reveal the computer’s 

understanding of its acoustic and cultural characteristics, 
such as its tempo or “danceability”. 

Participants  

Our study was completed by 62 participants, (29 females 

and 33 males), ranging in age from 18 to 35. Only one of 

the 62 reported prior familiarity with computer science. 

These participants were recruited from Oregon State 

University and the local community via e-mail to university 

students and staff, and fliers posted in public spaces around 

the city (coffee shops, bulletin boards, etc.). Participants 

were paid $40 for their time. Potential participants applied 

via a website that automatically checked for an HTML5-

compliant web browser (applicants using older browsers 

were shown instructions for upgrading to a more recent 

 

Figure 1. Users could debug by saying why the 

current song was a good or bad choice.  

 
. . . 

 

Figure 2. Participants could debug by adding guidelines on the type of  

music the station should or should not play, via a wide range of criteria. 

Session: AI & Machine-Learning & Translation CHI 2012, May 5–10, 2012, Austin, Texas, USA

3



browser) to reduce the chance of recruiting participants who 

lacked reliable Internet access or whose preferred web 

browser would not be compatible with our prototype. 

Experiment Design & Procedure  

We randomly assigned participants to one of two groups—a 

With-scaffolding treatment group, in which participants 

received special training about AuPair’s recommendation 

engine, and a Without-scaffolding control group. Upon 
arrival, participants answered a widely used, validated self-

efficacy questionnaire [5] to measure their confidence in 

problem solving with a hypothetical (and unfamiliar) 

software application.  

Both groups then received training about AuPair, which 

differed only in the depth of explanations of how AuPair 

worked. The Without-scaffolding group was given a 15-

minute tutorial about the functionality of AuPair, such as 

how to create a station, how to stop and restart playback, 

and other basic usage information. The same researcher 

provided the tutorial to every participant, reading from a 
script for consistency. To account for differences in 

participant learning styles, the researcher presented the 

tutorial interactively, via a digital slideshow interleaved 

with demonstrations and hands-on participation. 

The With-scaffolding group received a 30-minute tutorial 

about AuPair (15 minutes of which was identical to the 

Without-scaffolding group’s training) that was designed to 

induce not only a functional mental model (as with the 

Without-scaffolding group), but also a structural mental 

model of the recommendation engine. This “behind the 

scenes” training included illustrated examples of how 
AuPair determines artist similarity, the types of acoustic 

features the recommender “knows” about, and how it 

extracts this information from audio files. Researchers 

systematically selected content for the scaffolding training 

by examining each possible user interaction with AuPair 

and then describing how the recommender responds. For 

instance, every participant was told that the computer will 

attempt to “play music by similar artists”, but the With-

scaffolding participants were then taught how tf-idf (term 

frequency-inverse document frequency, a common measure 

of word importance in information retrieval) was used to 

find “similar” artists. In another instance, every participant 
was shown a control for using descriptive words or phrases 

to steer the agent, but only With-scaffolding participants 

were told where these descriptions came from (traditional 

sources, like music charts, as well as Internet sources, such 

as Facebook pages). 

After this introduction, each participant answered a set of 

six multiple-choice comprehension questions in order to 

establish the soundness of their mental models. Each 

question presented a scenario (e.g., “Suppose you want 

your station to play more music by artists similar to The 

Beatles”), and then asked which action, from a choice of 
four, would best align the station’s recommendations with 

the stated goal. Because mental models are inherently 

“messy, sloppy… and indistinct” [18], we needed to 

determine if participants were guessing, or if their mental 

models were sound enough to eliminate some of the 

incorrect responses. Thus, as a measure of confidence, each 

question also asked how many of the choices could be 

eliminated before deciding on a final answer. A seventh 
question asked participants to rate their overall confidence 

in understanding the recommender on a 7-point scale. 

The entire introductory session (including questionnaires) 

lasted 30 minutes for Without-scaffolding participants, and 

45 minutes for With-scaffolding participants. Both groups 

received the same amount of hands-on interaction with the 

recommender. 

Over the next five days, participants were free to access the 

web-based system as they pleased. We asked them to use 

AuPair for at least two hours during this period, and to 

create at least three different stations. Whenever a 

participant listened to music via AuPair, it logged usage 
statistics such as the amount of time they spent debugging 

the system, which debugging controls they used, and how 

frequently these controls were employed. 

After five days, participants returned to answer a second set 

of questions. These included the same self-efficacy and 

comprehension questionnaires as on Day 1 (participants 

were not told whether their comprehension responses were 

correct), plus the NASA-TLX survey to measure perceived 

task load [8]. We also asked three Likert-scale questions 

about user’s satisfaction with AuPair’s recommendations, 

using a 21-point scale for consistency with the NASA-TLX 
survey, and the standard Microsoft Desirability Toolkit [3] 

to measure user attitudes toward AuPair. 

Data Analysis  

We used participants’ answers to the comprehension 

questions described earlier to measure mental model 

soundness. Each question measured the depth of 

understanding for a specific type of end user debugging 

interaction, and their combination serves as a reasonable 

proxy for participants’ understanding of the entire system. 

We calculated the soundness of participant’s mental models 

using the formula !!"##$!%&$'!! !!!!"#$%&'#!!!!! , 

where correctness is either 1 for a correct response, or -1 
for an incorrect response and confidence is a value between 

1 and 4 (representing the number of answers the participant 

was able to eliminate). These values were summed for each 

question i to create a participant’s comprehension score, 

ranging from -24 (indicating a participant who was 

completely confident about each response, but always 

wrong) to +24 (indicating someone who was completely 

confident about each response and always correct).  

Mental models evolve as people integrate new observations 

into their reasoning [18], and previous studies have 

suggested that participants may adjust their mental models 

while working with an intelligent agent that is transparent 
about its decision-making process [14]. Furthermore, 
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constructivist learning theory [12] places emphasis on 

knowledge transformation rather than the overall state of 

knowledge. Hence, we also calculated mental model 

transformation by taking the difference of participants’ two 

comprehension scores (day_5_score – day_1_score). This 

measures how much each participant’s knowledge shifted 
during the study, with a positive value indicating increasing 

soundness, and a negative value suggesting the replacement 

of sound models with unsound models.  

Table 1 lists all of our metrics and their definitions.  

RESULTS 

Feasibility (RQ1)  

Effectiveness of Scaffolding 

Understanding how intelligent agents work is not trivial—

even designers and builders of intelligent systems may have 

considerable difficulty [11]. Our first research question 

(RQ1) considers the feasibility of inducing a sound mental 

model of an algorithm’s reasoning process in end users—if 

participants fail to learn how the recommender works given 

a human tutor in a focused environment, it seems 

unreasonable to expect them to learn it on their own. 

We tested for a difference in mental model soundness 
(measured by comprehension scores weighted by 

confidence) between the With-scaffolding group and the 

Without-scaffolding group. The With-scaffolding group had 

significantly higher scores than the Without-scaffolding 

group, both before and after the experiment task (Day 1: 

Welch’s t-test, p=.004, t=-3.03, df=53.64) (Day 5: Welch’s 

t-test, p<.001, t=-3.77, df=59.87). To ensure these 

differences were not primarily the result of differing levels 

of confidence, we performed the same test without 

weighting the comprehension scores by confidence, finding 

nearly identical results (Day 1: Welch’s t-test, p=.003, t=-
3.09, df=55.11) (Day 5: Welch’s t-test, p<.001, t=-3.55, 

df=59.36). Neither group’s mean comprehension score 

changed significantly during the 5-day study (Figure 3). 

Participants also showed differences in their perceived 

mental model soundness, at least at first. On Day 1, the 

Without-scaffolding group was significantly less certain 

that they accurately understood how the system selected 

songs and responded to feedback (mean score of 4.5 out of 

7) than the With-scaffolding group (mean score of 5.6 out 

of 7) (Welch’s t-test, p=.015, t=-2.51, df=58.00). By Day 5, 

however, the Without-scaffolding group’s responses had 
risen to a mean of 5.25, with no evidence of statistical 

difference against the With-scaffolding group (with a mean 

of 5.3). 

Discussion 

These results provide insights into four aspects of the 

practicality of end users comprehending and debugging the 

reasoning of an intelligent agent.  

First, even a short 15-minute scaffolding tutorial effectively 

taught participants how the recommender “reasoned”. 

With-scaffolding participants were significantly more likely 

to correctly and confidently answer the comprehension 

questions. This in turn suggests that the With-scaffolding 
participants should be better equipped to debug the 

recommender’s reasoning than the Without-scaffolding 

participants, a point we investigate in RQ2. 

Second, mental model soundness did not significantly 

improve during the five days participants interacted with 

AuPair on their own—simply using the system did not 

significantly help participants develop sounder mental 

 
Figure 3. With-scaffolding participants (dark) held sounder 

mental models than without-scaffolding participants (light), 

both immediately following the tutorial, and five days later.  

Metric Definition 

Mental model 

soundness 
Responses to comprehension questions (sum of correct responses, weighted by confidence). 

Perceived mental model 

soundness 

Response to Likert question "Are you confident all of your statements are accurate?" after 

participants were asked to enumerate how they think the recommender made decisions. 

Mental model 

transformation 
Post-task mental model soundness minus pre-task mental model soundness. 

Debugging interactions Number of actions a participant used to debug the playlist (e.g., providing feedback, getting 

the next recommendation, or viewing a song’s features), from the automated log files. 

Interaction time Length of time a participant spent on the task, i.e. listening to and interacting with AuPair. 

Cost/benefit Response to Likert question "Do you feel the effort you put into adjusting the computer was 

worth the result?" 

Satisfaction Response to Likert question "How satisfied are you with the computer's playlists?" 

Table 1: Definitions for each metric used in our data analysis. 
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models about its reasoning. This is in contrast to recent 

work in interactive machine learning, which has found that 

for some systems (e.g., gesture recognition frameworks), 

repeated use taught people the most salient aspects of how 

the system worked [7]. 

Third, the soundness of participants’ mental models largely 
persisted for the duration of the study. This appeared to be 

the case for both the Without-scaffolding and With-

scaffolding groups, with neither groups’ comprehension 

scores significantly changing between Day 1 and Day 5. 

This bodes well for end users retaining and recalling sound 

models initially learned about an intelligent agent. 

Fourth, however, is the issue of initially building unsound 

models: once incorrect models were built, they were hard to 

shift. Even though the Without-scaffolding group formed 

less sound mental models, their confidence in their mental 

models increased, suggesting that they had convinced 

themselves they were, in fact, correct. Making in situ 
explanations available on an ongoing basis, such as in 

[9,14,26], may be a way to address this issue. 

Together, these findings provide evidence that furnishing 

end users with a brief explanation on the structure of an 

intelligent agents’ reasoning, such as the attributes used, 

how such attributes are collected, and the decision-making 

procedure employed, can significantly improve their mental 

model’s soundness. 

Accuracy (RQ2) 

A recommender’s effectiveness is in the eye of the 

beholder. Personalized recommendations cannot have a 

“gold standard” to measure accuracy—only the end users 

themselves can judge how well an agent’s 

recommendations match their personal tastes. Hence, for 

our second research question (RQ2), we turned to a pair of 

more appropriate measures to explore the effects of mental 

model soundness on “accuracy”—cost/benefit and 

participant satisfaction. 

Cost/Benefit 

In theory, a sound mental model enables a person to reason 

effectively about their best course of action in a given 

situation [10]. Thus, we expected participants with sounder 

mental models (the With-scaffolding participants, according 

to the RQ1 results) to debug more effectively than those 

with less sound models. For example, knowing that the 
recommender could be steered more effectively by using 

unique, highly specific words (e.g., “Merseybeat”) rather 

than broad, common descriptors (e.g., “oldies”) should have 

helped such participants debug the agent’s reasoning more 

effectively than participants who did not understand this.  

Surprisingly, when using participants’ perceptions of 

cost/benefit as a surrogate for effectiveness, the soundness 

of participants’ mental models showed little impact on this 

measure of debugging effectiveness. However, mental 

model transformation was tied with cost/benefit: 

participants who most improved the soundness of their 

mental models reported that the effort of debugging was 

significantly more worthwhile than participants whose 

mental models improved less, or not at all (Table 2, row 1 

& Figure 4A). 

Participants’ opinions of effectiveness were confirmed by 
their debugging interactions to adjust or assess AuPair’s 

recommendations (e.g., providing feedback, getting the next 

recommendation, or viewing a song’s features). The count 

of these debugging interactions was significantly correlated 

with the improvement in mental model soundness for With-

scaffolding participants, while no such correlation existed 

among Without-scaffolding participants (Table 2, rows 2 

and 3 & Figure 4B). Sounder changes to the mental model, 

then, may have had a positive effect on debugging, whereas 

changes in an initially unsound model did not serve the 

Without-scaffolding participants as well. 

Further, participants who most improved the soundness of 
their mental models spent significantly less time on their 

interactions than others (Table 2, row 4 & Figure 4C). In 

light of the increases in perceived cost/benefit and 

debugging interactions, this suggests positive mental model 

transformations were linked to more efficient debugging.  

An alternative explanation of the above results is that 

debugging interactions were responsible for participants’ 

mental model transformations, rather than the other way 

around. Recall, however, that the Without-scaffolding 

group showed no correlation between debugging 

interactions and mental models (Table 2, row 3). Thus, the 
evidence suggests that it was the in situ enhancement of 

relatively sound models that was linked to improved 

attitudes toward debugging. 

Satisfaction 

Our second measure of debugging effectiveness and the 

accuracy of the result was participants’ satisfaction with 

AuPair’s resulting recommendations. To measure this, we 
asked participants (using a Likert scale) “How satisfied are 

you with the computer’s playlists?” at the end of the study. 

As with the cost/benefit results, neither treatment nor 

mental model soundness was predictive of participant 

satisfaction (Table 2, rows 5 and 6). However, here again, 

transformation of mental models appeared to matter—

mental model transformation was marginally predictive of 

how satisfied participants felt with AuPair’s playlists (Table 

2, row 7). For example, the participant whose mental 

model’s soundness decreased the most expressed 

dissatisfaction and a feeling of being unable to control the 

computer: 

“The idea is great to be able to ‘set my preferences’, but if 

the computer continues to play what I would call BAD 

musical choices—I’d prefer the predictability of using 

Pandora.”
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Conversely, one of the participants whose mental model 

most increased in soundness expressed a feeling of being 

more in control: 

“I like the idea of having more control to shape the station. 

Controls made sense and were easy to use. The user has a 

lot of options to tune the station.” 

Perceived cost/benefit from debugging the recommender 

was also significantly correlated with participant 

satisfaction (Table 2, row 8 & Figure 4D)—further 

evidence that satisfaction was indicative of an increased 

ability to debug the agent’s reasoning. To ensure that 

participant satisfaction was not simply a result of time and 

effort invested, we tested for a relationship between 

reported satisfaction and the number of debugging 

interactions each participant performed, but found no 

evidence of a correlation (Table 2, row 9). 

Discussion 

It should be noted that one additional factor may have 

affected participant satisfaction. Our music database held 
songs by just over 5,300 artists—pandora.com, by 

comparison, has over 80,000 different artists [19]. 

Participant satisfaction may have been confounded by the 

fact that some participants hoped their stations would play 

music that was unavailable to AuPair. As one participant 

commented: 

“The songs played weren’t what I was looking for, the 

selection was poor. The system itself was excellent, but I 

need more music.” 

Despite this potential factor, the confluence of several 
metrics (cost/benefit, debugging interactions, interaction 

time, and satisfaction) suggests that transformations in 

mental model soundness translated to an improved ability to 

debug the recommender’s reasoning, resulting in more 

satisfaction with AuPair’s recommendations. Because our 

evidence suggests mental model transformations (which 

occurred during the study) helped participants debug more 

efficiently and effectively, continuing to provide 

explanations of an intelligent agent’s reasoning while end 

users interact with the agent may help to increase their 

ultimate satisfaction with the agent’s decisions. Such on-

line explanations, however, were not investigated by the 
current study; we focused our exploration on the impact of 

explanations prior to (rather than during) user interaction 

with an intelligent agent. 

One potential explanation of why we found no evidence 

that end-of-study mental model soundness was predictive of 

 Metric Statistical Test Result Figure 

1 Mental model transformation vs. cost/benefit Linear regression p=.041, R2=.07, F(1,60)=4.37 Figure 4A 

2 Mental model transformation (With-scaffolding) 

vs. debugging interactions 

Pearson correlation p=.031, r=.39, t=2.27, df=28 Figure 4B 

3 Mental model transformation (Without-scaffolding) 

vs. debugging interactions 

Pearson correlation p=.952, r=.01, t=0.06, df=30  

4 Mental model transformation vs. interaction time Pearson correlation p=.032, r=-.27, t=-2.19, df=60 Figure 4C 

5 Satisfaction between With-scaffolding/Without-

scaffolding groups 

Welch’s t-test p=.129, t=1.53, df=59.9  

6 Satisfaction vs. mental model soundness Linear regression p=.272, R2=.02, F(1,60)=1.23  

7 Satisfaction vs. mental model transformation Linear regression p=.053, R2=.06, F(1,60)=3.89  

8 Satisfaction vs. cost/benefit Pearson correlation p<.001, r=.73, t=8.25, df=60 Figure 4D 

9 Satisfaction vs. debugging interactions Pearson correlation p=.293, r=-.13, t=-1.06, df=60  

Table 2. Positive mental model transformations were consistently associated with better benefits, lower costs,  

and improved satisfaction (significant results shaded). Definitions for each metric are listed in Table 1. 

   
(A) (B) (C) (D) 

Figure 4: Scatterplots of raw data for each significant result from Table 2. Definitions for axis measurements are listed in Table 1. 
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debugging ability could be that the information presented to 

the With-scaffolding tutorial participants was not helpful 

for debugging the recommender’s reasoning. Instead, the 

most effective participants may have learned to debug by 

using the system. However, this alternative explanation is 

weakened by the fact that the prototype was not transparent 
about how it made its decisions; the only time when 

participants were presented with explanations of AuPair’s 

reasoning occurred during the With-scaffolding tutorial. 

Confidence (RQ3)  

Presenting a complex system to unsuspecting users could 

overwhelm them. We are particularly concerned with 

peoples’ willingness to debug intelligent agents—some 

people (especially those with low computer self-efficacy) 

may perceive a risk that their debugging is more likely to 

harm the agent’s reasoning than to improve it. Similarly, 

computer anxiety (a “degree of fear and apprehension felt 

by individuals when they consider the utilisation, or actual 

use, of computer technology” [4]) is known to negatively 
impact how (and how well) people use technology, and is 

negatively correlated with computer self-efficacy [29].  

As Table 3 shows, almost three-quarters of the With-

scaffolding participants experienced an increase in their 

computer self-efficacy between Day 1 and Day 5. Without-

scaffolding participants, conversely, were as likely to see 

their computer self-efficacy decrease as to increase. A X
2 

comparison showed that With-scaffolding participants were 

significantly more likely than a uniform distribution (in 

which only half would increase their self-efficacy) to 

increase their computer self-efficacy (X2=6.5333, df=1, 
p=.011). This suggests that exposure to the internal 

workings of intelligent agents may have helped to allay, 

rather than to increase, participants’ perceived risk of 

making their personalized agents worse. 

As further evidence that it was understanding how the 

system worked (rather than simply a byproduct of using it) 

that influenced participants’ computer self-efficacy, 

participants’ perceived mental model soundness was 

significantly correlated with their computer self-efficacy at 

the end of the study (Pearson correlation, p<.001, r=.44, 

t=3.81, df=60). Additionally, there was no evidence of a 

correlation between the number of debugging interactions 
participants made and their self-efficacy at the end of the 

study (Pearson correlation, p=.286, r=.13, t=1.07, df=60); 

participants did not appear to grow more confident by 

simply interacting with the system. Thus, participants who 

at least thought they understood the nuances of AuPair’s 

reasoning scored higher on the computer self-efficacy 

questionnaire than those who expressed little confidence in 
their knowledge of the recommender’s logic. 

Discussion 

We hope further research will shed additional light on this 

preliminary link between learning how an intelligent 

computer program reasons, and increasing levels of 

computer self-efficacy (and, by association, decreasing 

levels of computer anxiety). Challenging tasks, when 

successfully accomplished, have been found to have a 

significantly larger impact on self-efficacy than overcoming 

small obstacles [2]. Personalizing intelligent agents seems 

exactly the sort of difficult computer task that, successfully 

carried out, may make people say, “If I could do that, surely 

I can do this…”, thereby reducing the obstacles of risk and 
anxiety toward future computer interactions. 

User Experience (RQ4)  

For our final research question, we looked at the potential 

effects of mental model soundness on perceptions of 

experience, such as cognitive demands and emotional 

responses. 

Cognitive Demands 

Prior work has found that explaining concrete decisions of 

an intelligent agent’s reasoning to end users in situ created 

an increase in participants’ frustration with, and mental 

demand of, debugging the agent (measured via the NASA-

TLX questionnaire) [14]. We suspected that end users 

might experience similar effects when presented with prior 

structural knowledge. However, the With-scaffolding 
participants showed no significant difference to Without-

scaffolding participants’ TLX scores. While acquiring a 

sound mental model undoubtedly requires mental effort on 

the part of end users, we encouragingly found no evidence 

that this was any greater than the mental effort required to 

interact with an intelligent agent without a clear 

understanding of its underpinnings. This suggests that end 

users’ experience with intelligent agents does not 

necessarily suffer when they are exposed to more 

knowledge of how the agent works. 

Emotional Responses 

We used the Microsoft Desirability Toolkit [3] to 

investigate participants’ user experience with the AuPair 
music recommender. Participants were given a list of 118 

adjectives and asked to underline each one they felt was 

applicable to their interactions with AuPair. 

The Internet General Inquirer (a tool which associates 

participants’ words with either positive or negative 

connotations, based on the content analysis framework 

proposed in [23]) revealed that With-scaffolding 

participants employed slightly more positive descriptions of 

 Self-Efficacy 

Did  

Improve  

Did Not 

Improve 

Average 

Change 

Without-

scaffolding 
16 16 3.29% 

With-

scaffolding 
22 8 5.90% 

Table 3. Participants in the With-scaffolding group were likely 

to end the experiment with higher computer self-efficacy than 

when they began. 
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AuPair than the Without-scaffolding group (54.9% vs. 

49.6%) and fewer negative descriptions (9.9% vs. 12.0%). 
While not statistically significant between groups, these 

numbers suggest that the With-scaffolding participants 

(with their sounder mental models) may have viewed the 

overall experience of interacting with AuPair in a more 

positive light than Without-scaffolding participants. 

Participants’ descriptions revealed a subtler picture of the 

difficulties they faced. Word clouds—in which a word’s 

frequency is indicated by its size—of the negative 

descriptions show that the With-scaffolding group’s 

complaints may have stemmed more from difficulties using 

the system than difficulties understanding it; these 

participants were apt to complain the system was 
“simplistic”, “annoying”, and “frustrating” (Figure 5, 

bottom), while the Without-scaffolding group appeared to 

have trouble even understanding the impact of their 

debugging interactions, citing the system as “confusing”, 

“complex”, “overwhelming”, and “ineffective” (Figure 5, 

top). 

Participants’ choices of positive descriptions provide 

further evidence the With-scaffolding participants’ mental 

models contributed positively to interacting with the agent 

(Figure 6). The phrase “easy to use” dominated their 

responses, alongside “innovative” and “accessible”. In 
contrast, the Without-scaffolding participants focused on 

the visual appearance of the agent, with words like “clean” 

and “appealing”. Participants with a deeper understanding 

of the system may have placed more emphasis on the 

interaction experience than aesthetics. 

Discussion 

Numerous benefits are associated with sound mental 

models, and in the case of this intelligent agent, it appears 

possible to gain these without impairing the user 

experience. This is encouraging for the feasibility of end-

user debugging of recommendation systems (and possibly 

other types of intelligent agents), especially when the user 

associates a benefit with debugging the agent’s reasoning.  

CONCLUSION  

This paper provides the first empirical exploration of how 

mental models impact end users’ attempts to debug an 

intelligent agent. By scaffolding structural models for half 
of our study’s participants, we learned that: 

• Despite the complexity inherent to intelligent agents, 

With-scaffolding participants quickly built sound mental 

models of how one such agent (a music recommender) 

operates “behind the scenes”—something the Without-

scaffolding participants failed to accomplish over five 

days. 

• The participants’ mental model transformations—from 

unsound to sound—was predictive of their ultimate 

satisfaction with the intelligent agent’s output. 

Participants with the largest transformations were able to 
efficiently adjust their recommenders’ reasoning, 

aligning it with their own reasoning better (and faster) 

than other participants. These same participants were 

also likely to perceive a greater benefit from their 

debugging efforts. 

• Participants presented with structural knowledge of the 

agent’s reasoning were significantly more likely to 

increase their computer self-efficacy, which is known to 

correlate with reduced computer anxiety and increased 

persistence when tackling complex computer tasks. 

• Participants who were presented with structural 
knowledge showed no evidence of feeling overwhelmed 

by this additional information and viewed interacting 

with the intelligent agent in a positive light, while 

participants holding only functional mental models more 

frequently described their debugging experience in 

negative terms, such as “confusing” and “complex”. 

This work demonstrates the value and practicality of 

providing end users with structural knowledge of their 

Without-scaffolding:

 

With-scaffolding:

 

Figure 5. Tag cloud of negative descriptive terms for AuPair. 

Without-scaffolding participants found the system 

“overwhelming” and “complex” (top), whereas the With-

scaffolding group (bottom) viewed it as “simplistic”.  

Without-scaffolding: 

 

With-scaffolding:

 

Figure 6. Tag cloud of positive descriptive terms for AuPair. 

Without-scaffolding participants (top) focused on visual 

appearance more than With-scaffolding participants (bottom). 
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intelligent agents’ reasoning. Our results suggest that such 

an approach could better support end-user personalization 

of intelligent agents—telling an end user more about how it 

does work may help him or her tell the agent more about 

how it should work. 
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