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Abstract: Two-dimensional layered monoelemental mate-

rials (Xenes) with excellent optoelectronic properties have 

various property-related applications, such as energy, bio-

medicine, and optoelectronic devices. Xenes also show 

excellent performance in acting as saturable absorbers 

(SAs) for obtaining ultrafast laser operations. Few-layer 

tellurene as a typical Xenens exhibits distinct optoelec-

tronic properties and promising practical application 

potential, and its nonlinear optical absorption character-

istics and related ultrafast modulation applications have 

been investigated preliminarily. However, tellurene-based 

SAs to demonstrate large-energy mode-locked operations, 

which have special applications in industrial and sci-

entific research areas, are seldom studied. In this work, 

we focus on the preparation of tellurene-based SAs and 

explore its applications in demonstrating large-energy 

mode-locked operations [dissipative soliton (DS) and 

noise-like pulses (NLP)]. For DS operation, the maximum 

average output power, pulse width, and largest pulse 

energy are 23.61  mW, 5.87 ps, and 1.94 nJ, respectively. 

NLP operation with a recorded average output power of 

106.6 mW and a pulse energy of 8.76 nJ is also generated, 

which shows significant enhancement in comparison to 

previously reported Xenes-based works. Our contribu-

tion reveals the great potential and capacity of tellurene-

based SAs in obtaining large-energy pulse operations and 

further promotes the explorative investigation of Xenes-

based optoelectronic devices.

Keywords: tellurene; ultrafast modulation application; 

large-energy mode-locked lasers; dissipative soliton; 

noise-like pulses.

1   Introduction

Recently, ultrafast saturable absorbers (SAs), including 

mode lockers and Q-switchers, have been extensively inves-

tigated to demonstrate pulsed laser operations [1–12]. Espe-

cially, two-dimensional (2D) material-based SAs exhibit 

tremendous development potential and practical applica-

tion prospects due to its excellent 2D material-related prop-

erties, including wide absorption band, ultrafast recovery 

time, high damage threshold, and low cost [1–3]. Specifi-

cally, since its first ultrafast application in 2009 [6, 7], gra-

phene has been widely employed as SA to demonstrate 

pulsed laser operations and regarded as a recognized path-

finder for the investigation of 2D material-based ultrafast 

optoelectronic devices [6–13]. Since then, inspired by gra-

phene, 2D materials, including transition metal dichalco-

genides (TMDs) [14–24], topological insulators (TIs) [25–29], 

ferromagnetic insulators [30–32], metal chalcogenides [33, 

34], MXenes [35–40], and group IV to VI Xenes (graphdiyne 

[41], phosphorene [42–52],  antimonene [53, 54], bismuth-

ene [55–57], silicene [58, 59], and tellurene [60]), have been 
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employed to propose ultrafast SAs with excellent absorp-

tion performance successfully. Among which, in compari-

son to 2D multielemental layered materials, Xenes exhibit 

excellent nonlinear optical absorption properties [49–63]; 

additionally, they also exhibit special photoelectric char-

acteristics, including outstanding photoelectric response, 

strong anisotropy, and high nonlinear coefficient [56, 60]. 

Due to the above-mentioned properties, investigation on 

ultrafast optical modulation applications of group IV to VI 

Xenes has attracted increasing attention.

Zhang et al. have demonstrated serious original works 

with great significance in exploring the investigation of 

Xenes-based ultrafast SAs [42–44, 50, 53, 55, 56, 60]. The 

nonlinear absorption properties of phosphorene were 

first reported in 2015 [42, 43]. Afterward, phosphorene 

was widely employed as SA to demonstrate pulsed laser 

operations arranged from visible to mid-infrared range 

[42–52]. However, the air instability property also pre-

vented phosphorene toward its future exploration. In 2017, 

antimonene-based optical devices were also prepared by 

employing an antimonene-based mode locker, and tradi-

tional soliton (TS) operation with 552 fs pulse width under 

a repetition rate of 10.27  MHz was generated success-

fully. Besides, in their contribution, antimonene-based 

passively Q-switched operation with a pulse duration 

of 1.31 µs was also reported [53]. Recently, the saturated 

absorption properties of antimonene SA were measured 

using the Z-scan method. Single- and dual-wavelength 

mode-locked fiber lasers were also demonstrated [54]. 

Also, in 2017, bismuthene-based SA was demonstrated 

to obtain TS mode-locked operation with a pulse width 

of 652 fs under a pulse repetition rate of 8.83  MHz [55]. 

Before long, based on bismuthene as SA, stable mode-

locked operation centered at 1561  nm with the shortest 

pulse duration of about 193 fs was obtained [56]. Recently, 

bismuthene-based mode-locked Er-doped fiber (EDF) 

laser was proposed to obtain 1-, 2-, 8-, and 14-pulse soliton 

molecules [57]. All the experiment results indicated that 

bismuthene-based SA exhibited excellent nonlinear 

saturable absorption properties and wide potential in 

obtaining femtosecond-level pulsed lasers. Silene-based 

Q-switchers were also prepared to demonstrate passively 

Q-switched solid-state or all-fiber laser operations [58, 59]. 

Results indicated that silene can be used as SA to generate 

pulsed operations; however, silene-based SA for obtain-

ing mode-locked operation has not been reported thus far. 

Recently, based on liquid-phase exfoliation (LPE) method, 

tellurene was successfully prepared and proven to exhibit 

excellent nonlinear saturable absorption properties. Pas-

sively mode-locked EDF and Yb-doped fiber lasers with 

pulse duration of 829 fs and 456.6 ps, respectively, were 

successfully reported [60]. In general, Xenes have already 

promoted the development of novel photonic devices. 

However, investigation on Xenes-based SAs is still far from 

being thoroughly investigated. Additionally, Xenes-based 

SAs were mainly employed to demonstrate TS operations 

with picosecond- or femtosecond-level pulse width and 

relatively low 0.1 nJ pulse energy limited by the soliton 

area theorem. Xenes-based SAs used to obtain soliton 

operations with large pulse energy are of great potential 

and challenge. Thus, it is of great significance to expand 

the deep nonlinear absorption application investigation 

of 2D Xenes-based ultrafast photonic devices.

In our work, tellurene was selected as SA material. As 

reported, tellurene exhibits a buckled honeycomb struc-

ture with a thickness-dependent bandgap value of 0.3–0.92 

eV [64–71], corresponding to a broad optical absorption 

band (1350–4130 nm). Tellurene also exhibits the proper-

ties of excellent air-stable performance at room tempera-

ture, which plays a critical role in practical applications as 

optical devices [67–69]. In addition, high-quality tellurene 

can be easily prepared by the cost-effective LPE method 

[65]. All the mentioned properties guarantee tellurene to 

be an excellent nonlinear absorption material. In our con-

tribution, we investigated the synthesis and characteriza-

tion of 2D tellurene nanosheets and its ultrafast nonlinear 

optical absorption properties in demonstrating large-

energy dissipative soliton (DS) and noise-like pulse (NLP) 

operations. High-quality few-layer tellurene nanosheets 

were fabricated by the LPE method and deposited onto a 

piece of tapered fiber acting as the SA. Based on tellurene-

based SA, DS and NLP mode-locked operations were gen-

erated within an EDF laser successfully. DS operation 

(5.87 ps) located at 1573.97 nm with a 3 dB spectral width 

of 18.13 nm was obtained. The pulse energy was as high as 

1.94 nJ, which showed a significant enhancement in com-

parison to previously reported Xenes-based results. Also, 

NLP mode-locked operation with a maximum average 

output power of 106.6 mW and a pulse energy of 8.76 nJ 

was demonstrated. The experiment results fully presented 

that the tellurene-based tapered SA exhibits excellent 

nonlinear absorption properties and large damage thresh-

old, which promotes the development of tellurene-based 

optical devices in the near future.

2   Preparation and characterization 

of tellurene-based SA

The preparation and characterization processes of few-

layer tellurene nanosheets and tellurene-based SA are 
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described in Figure 1 and summarized as follows. First, 

few-layer tellurene nanosheets were fabricated by the LPE 

method. As shown, tellurium powder was stripped from 

bulk tellurium and added into 50 ml ethanol for soaking 

for about 48 h. Then, the tellurene-ethanol solution was 

placed in an ultrasonic cleaner for 8 h to assist the disper-

sal of tellurene nanosheets. The soliton was centrifuged at 

a rate of 2000 rpm for 30 min to remove the precipitation. 

At this time, few-layer tellurene nanosheets were prepared 

successfully. Second, based on the prepared tellurene 

nanosheets and a piece of tapered fiber, tellurene-based 

SA was demonstrated. The tellurene solution was mixed 

with 5 wt% polyvinyl alcohol (PVA) solution at the volume 

ratio of 1.1. The mixed solution was placed in an ultrasonic 

cleaner for another 6  h to obtain uniform tellurene-PVA 

solution. The tapered fiber (the length and diameter of the 

tapered area were about 1.6 mm and 18 µm, respectively) 

was fixed on a glass, and 120 µl tellurene-PVA dispersion 

solution was coated on the tapered area of the fiber. Then, 

the coated tapered fiber was placed into an oven for 48 h 

at 20°C. At this time, the tapered area was covered with 

a thin tellurene-PVA film. Finally, tellurene-based SA was 

prepared successfully.

In the experiment, characterization methods, includ-

ing scanning electron microscopy (SEM), energy-disper-

sive X-ray spectroscopy (EDS), Raman, X-ray diffraction 

(XRD), transmission electron microscopy (TEM), and 

atomic force microscopy (AFM), were employed to test the 

surface and physical properties of tellurene nanosheets 

to better understand its nonlinear optical absorption 

characteristics.

SEM images of bulk tellurium recorded under differ-

ent resolutions by SEM (Sigma 500, Zeiss) are shown in 

Figure 2. As depicted, bulk tellurium exhibits an obvious 

layered structure, indicating that few-layer tellurene 

nanosheets can be expected based on the LPE method 

to break the van der Waals force between layers. EDS 

provided in Figure 2B (inset) confirms the monoelemen-

tal component of the used bulk tellurium crystal, which 

ensures the quality of the prepared tellurene nanosheets.

Raman and XRD spectra of bulk tellurium and stripped 

powder are shown in Figure 3. Raman spectra (Horiba HR 

Step 1

Step 2

Stripped CentrifugationSoaking Ultrasonic

PVA Coating

Figure 1: Preparation processes of few-layer tellurene nanosheets and tellurene-based SA.
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Figure 2: The structure and elemental characteristics of the stripped tellurium powder.

SEM images of bulk tellurium recorded under a resolution of (A) 2 µm and (B) 1 µm. (Inset of B) EDS of bulk tellurium.
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Evolution) are shown in Figure 3A. For bulk tellurium 

and stripped powder, three peaks corresponding to E
1
, A

1
, 

and  E
2
 Raman-active modes are observed successfully, 

consistent with the reported results [71]. No obvious blue 

or red shifts between bulk tellurium and stripped powder 

Raman spectra are observed, which is mainly due to the 

relatively large scale of the powder. XRD spectra are pro-

vided in Figure 3B. As shown, for bulk tellurium, obvious 

diffraction peaks at (100), (101), (110), (003), and (120) are 

recorded, consistent with previously reported works [71]. 

However, for stripped powder, (101) and (012) peaks show 

great enhancement, and intensities of (100), (110), (003), 

and (120) peaks decrease. The presented results indicate 

that pure Te powders with well-layered structure are pre-

pared in our work.

Additionally, to test the structure characteristics of 

tellurene nanosheets prepared by the LPE method, TEM 

and high-resolution TEM (HR-TEM) images of the tellurene 

nanosheets are recorded by TEM (JEM-2100) under resolu-

tions of 50 and 5  nm and shown in Figure 4. As shown 

in Figure 4A, the layered structure is observed in the TEM 

image. Figure 4B presents the HR-TEM image with a clear 

crystal lattice of tellurene nanosheets, indicating that tel-

lurene nanosheets with high crystallinity are obtained by 

the LPE method. Details of the marked area of the HR-TEM 

image under 5  nm resolution is shown in Figure 4C. As 

shown, the tellurene nanosheets exhibit obvious lattice 

fringes. A d-spacing of ∼0.318 nm, which corresponds to 

the (101) dominant lattice planes, is recorded [71].

In general, 2D material-based SAs exhibit thick-

ness-dependent nonlinear optical absorption prop-

erties, which play decisive roles in investigating the 

saturable performance of SAs. Thus, in our work, 

the thickness characteristics of prepared tellurene 

nanosheets are tested by AFN (Bruker Multimode 8) to 

better understand the thickness-dependent nonlinear 

absorption properties, such as modulation depth and 

saturable intensity. Figure 5A and B shows the recorded 

AFM images of prepared tellurene nanosheets before 

centrifugation. It is obvious that large-area tellurene 

nanosheets with flat surface are fabricated success-

fully. However, a condensation phenomenon between 
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Figure 3: Raman and XRD characteristics of the tellurium.

(A) Raman spectra of bulk tellurium and stripped powder and (B) XRD spectra of bulk tellurium and stripped powder.
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Figure 4: Structure characteristics recorded by the TEM.

(A) TEM image and (B and C) HR-TEM images of tellurene nanosheets.
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tellurene nanosheets is also recorded. Figure 5A and B 

(inset) shows the corresponding thicknesses of the 

marked areas of Figure 5A and B. The thicknesses of 

the  marked areas are about 20–60  nm, indicating that 

the prepared tellurene nanosheets without centrifuga-

tion exhibit nonuniform thickness characteristics. Thus, 

the prepared soliton is centrifuged to remove large-scale 

nanosheets and particles. Then, the thickness charac-

teristics are recorded and depicted in Figure 5C and D. At 

this time, the thicknesses of the marked areas are about 

5–6.5 nm, corresponding to ∼12–15 layers, presenting a 

smaller fluctuation of thickness. The results show that 

tellurene nanosheets with uniform thickness character-

istics are prepared successfully.

Furthermore, the nonlinear optical property of 

tellurene-based SA is investigated by employing the 

commonly used power-dependent transmission tech-

nique [72, 73]. The corresponding experimental setup is 

provided in Figure 6 (inset). In detail, a homemade fem-

tosecond mode-locked fiber laser (average output power: 

46  mW, central wavelength: 1557.6  nm, repetition rate: 

22.6 MHz, and pulse duration: 527 fs) is employed as the 

pump source. The pump source is divided into two parts 

by a 50:50 all-fiber output coupler (OC) for the testament 

of the nonlinear optical property. One part is directly 

detected by a power meter (PM1), whereas the other part is 

detected by the power meter (PM2) after passing through 

tellurene-based SA. Thus, based on a variable optical 

attenuator, by continuously adjusting the input average 

power, the relationship between optical transmittance 

and input optical intensities is calculated. The recorded 

experiment data are provided in Figure 6. In addition, 
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Figure 5: Thickness characteristics of the prepared tellurene nanosheets.

(A and B) AFM images of prepared tellurene nanosheets before centrifugation. (Inset of A and B) Corresponding thicknesses characteristics. 

(C and D) AFM images of prepared tellurene nanosheets after centrifugation. (Inset of C and D) Corresponding thicknesses characteristics.
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based on the theory applied for a simple two-level model 

[72, 73],

ns

sat

( ) 1 exp
I

T I T T
I

∆
 

= − − ⋅ −  

where T(I), T
ns

, ∆T, I, and I
sat

 are the transmission rate, 

nonsaturable loss, modulation depth, input pulse energy, 

and saturation energy, respectively. Finally, the satura-

tion intensity, modulation depth, and nonsaturable loss 

of the prepared tellurene-based SA are calculated to be 

34.3 mW/cm2, 5.06%, and 58.6%, respectively.

In the experiment, based on the experimental setup 

provided in Figure 6 (inset), the polarization-dependent 

loss of tellurene-based SA is also tested, in which the 

polarization state of the pump source can be adjusted 

by the polarization controller (PC); however, under a dif-

ferent polarization state, the output power exhibits little 

difference, indicating that the loss of tellurene-based SA 

is insensitive to the polarization state.

In conclusion, the characterization results prove 

that Te nanosheets with good purity (EDS, Raman, XRD, 

and HR-TEM), excellent layered structure (SEM, XRD, 

and AFM), and high crystallinity (TEM and HR-TEM) are 

successfully prepared based on the LPE method and 

employed to propose SA with suitable absorption proper-

ties (∆T = 5.06%, I
sat

 = 34.3 mW/cm2).

3   Experimental setup

To test the nonlinear absorption performance of tellurene-

based SA, a ring laser cavity is designed and described in 

Figure 7. As shown, a 976 nm laser diode (LD) with a maximum 

output power of 1300  mW, acting as the pump source, is 

guided into the laser cavity through a 980/1550 wavelength 

division multiplexer. A 10.3-m-long EDF (of MP 980) is used 

as the laser gain medium. A polarization-independent isola-

tor (PI-ISO) and two PCs are used to ensure the unidirectional 

transmission and adjustment of the polarization states in the 

ring laser cavity. Tellurene-based SA is set between the PI-ISO 

and the PC acting as a mode locker. Mode-locked pulses are 

obtained from the 10% port of a 10:90 OC. Finally, the total 

cavity length is ∼16.88 m, including the single-mode fibers 

(SMFs) of the all-fiber devices. The dispersion values for EDF 

and SMF are about -18 and 17 ps/(nm km), respectively. Thus, 

the net dispersion of the total cavity is calculated to be about 

0.096 ps2, which is beneficial for the formation of large-

energy mode-locked soliton operations such as DS and NLP. 

The output properties are analyzed by a 3 GHz photodetec-

tor, a digital oscilloscope (Tektronix DPO 4054), an optical 

spectrum analyzer (OSA) (AQ6317B), a spectrum analyzer 

(R&S FPC1000), and a power meter.
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4   Results and discussion

4.1   DS operation

In the experiment, tellurene-based SA was first removed 

from the laser cavity and replaced by a piece of tapered 

fiber without coating with tellurene nanosheets. When the 

pump power was higher than 36  mW, continuous-wave 

operation can be recorded; however, no pulsed operation 

was observed by adjusting the state of PCs and the value 

of the pump power, indicating that no self-mode-locked 

or Q-switched phenomenon induced by the tapered fiber 

was tested. Then, tellurene-based SA was inserted into the 

laser cavity, by adjusting the pump power or the state of 

PCs (the angle of each polarizer converts between 0° and 

180°). Stable mode-locked operation was recorded with 

a threshold power of 85 mW, indicating that the modula-

tion effect was due to tellurene-based SA. However, due 

to the low modulation depth of tellurene-based SA, no 

Q-switched operation was recorded during the experi-

ment by adjusting the state of PCs and the value of the 

pump power. As mentioned, tellurene-based SA and the 

all-fiber components used in the laser cavity exhibited no 

polarization-dependent characteristics, and it is difficult 

for an SA-based mode-locked fiber laser to self-start. Thus, 

under this condition, the employment of PCs is mainly for 

starting mode-locked operations and the formation of dif-

ferent solitons. In the experiment, stable mode-locked 

operation can be recorded with the pump power increas-

ing from 85 to 285 mW.

Figure 8 shows the output characteristics of tellurene-

based mode-locked operation under the pump power 

of 285 mW. The emission spectrum recorded by the OSA 

with a resolution of 0.05  nm is provided in Figure 8A. 

Obviously, optical spectrum with typical DS characteris-

tic of sharp steep edges is recorded, indicating that DS is 

obtained in the normal dispersion cavity. The formation of 

DS is due to the comprehensive function of the total laser 

gain and loss, cavity dispersion, nonlinear optical effects, 

and birefringence filter effect induced by PCs. The central 

wavelength and 3 dB spectrum bandwidth are 1573.97 and 

18.13 nm, respectively. The recorded pulse train is shown 

in Figure 8B. The pulse-to-pulse separation is 82.17 ns, cor-

responding to a pulse repetition rate of 12.17 MHz, which 

matches well with the cavity length, indicating that the 

laser operating at a mode-locked state. Figure 8C depicts 

the measured autocorrelation trace of mode-locked 

pulses. The full-width at half-maximum (FWHM) is about 

8.3 ps; assuming a Gaussian temporal profile (0.707), the 
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real pulse duration is about 8.3 × 0.707 = 5.87 ps, corre-

sponding to a time-bandwidth product of 4.3, indicating 

that the pulses are highly chirped. As reported, the large-

frequency chirp for DS operations is due to the combined 

effects of normal dispersion and fiber nonlinearity [74, 75]. 

The relationship between average output power and pump 

power is provided in Figure 8D. As shown, the maximum 

average output power is 23.61  mW under a pump power 

of 285  mW, corresponding to an optical-to-optical con-

version efficiency of 8.3%. The maximum pulse energy 

and peak power are calculated to be 1.94 nJ and 0.33 kW, 

respectively. As a 90/10 OC is used to output mode-locked 

pulses through its 10% port, the corresponding intracav-

ity pulse-energy and peak power are 17.46 nJ and 2.97 kW, 

respectively, indicating that the damage threshold of tel-

lurene-based SA is higher than 4.67 GW/cm2.

In Figure 9, we summarize the spectral evolution and 

stability characteristics of tellurene-based mode-locked 

operation. Figure 9A shows the emission spectra under 

different pump powers. It is obvious that, with increasing 

pump power, the intensity of the optical spectra exhibit 

enhancement. However, the 3 dB bandwidth of the optical 

spectrum exhibits an insignificant broadening trend. Espe-

cially, with the increase of pump power, the top of output 

spectra exhibit obvious rough characteristics, indicat-

ing that the pulse shape contains unstable incompletely 

divided burr-like pulse components. However, the meas-

ured autocorrelation trace can only reflect the envelope 

shape of the pulse instead of its real pulse details; thus, the 

provided autocorrelation trace (Figure 8C) cannot be used 

to analyze the real pulse details. In addition, in our work, 

based on the adjustment of PCs, unstable bound-state 

mode-locked pulses with obviously divided pulse compo-

nents is also recorded, which also indicates the existence 

of pulse splitting. Due to its unstable characteristics, its 

detailed performance is not discussed in this work. In our 

future work, we will focus on the demonstration of stable 

bound-state pulses based on tellurene-based SAs. Figure 

9B depicts the radiofrequency (RF) spectra of the recorded 

pulse train in different bandwidth. As shown in Figure 9B, 

the central frequency locates at the cavity length related 

12.17 MHz, and the signal-to-noise ratio (SNR) is as high 

as 55 dB. Broadband RF spectrum is shown in Figure 9B 

(inset) recorded under a bandwidth of 200  MHz and a 

resolution of 10 kHz, which also presents excellent stable 

properties. All the RF spectra prove that the DS mode-

locked laser operates at a stable state.

4.2   NLP operation

Further increasing the pump power to higher than 320 mW, 

DS operation presents unstable state and evolves into NLP 

operation. As known, NLP operation exhibits the most 

competitive advantage of large pulse energy. In all-normal 

dispersion laser cavity, the formation of NLP is mainly due 

to the peak-power limited effect. In our experiment, when 

the pump power is from 320 to 1120 mW, NLP mode-locked 

operation remains stable.

Figure 10 depicts the output characteristics of NLP 

operation under the maximum pump power of 1120 mW. 

A typical smooth broad-width emission optical spectrum 

without Kelly side is recorded and provided in Figure 10A, 

and the central wavelength and 3  dB spectral width are 

1563.97 and 38.63  nm, respectively. The NLP character-

istic can be further confirmed by autocorrelation traces 

measured under different scan ranges (400 and 0.8 ps). 

As shown in Figure 10B, an obvious spike ridding on a 
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triangle shoulder is tested. The packet duration is cal-

culated to be about 38.5 ps (59.4 ps * 0.648) based on a 

sech2 fitting. As known, the characteristics of the spike 

provide the average pulse width of the exact structures 

within mode-locked pulses. Within a narrow scan range of 

800 fs, the autocorrelation trace of the spike is provided in 

Figure 10C. FWHM is calculated to be about 105.82 fs fitted 

with a sech2 profile. In the experiment, the width char-

acteristics of the spike under different pump powers are 

also recorded. The relationship between the spike width 

and the pump power is depicted in Figure 10C (inset). It is 

obvious that the width of spike in autocorrelation traces 

decreases with the increment of pump power. When pump 

power increases from 320 to 1120 mW, the width decreases 

from 168.3 to 105.82 fs. The relationship between average 

output power and pump power is provided in Figure 10D. 

Under the pump power of 1120 mW, the maximum average 

output power is as high as 106.6 mW, corresponding to an 

optical-to-optical conversion efficiency of 9.52%. The cal-

culated pulse energies under different pump powers are 

also provided in Figure 10D. As shown, the largest pulse 

energy is as high as 8.76 nJ. The corresponding intracav-

ity pulse energy is as high as 78.84 nJ. Therefore, the 

damage threshold of tellurene-based SA is calculated to 

be as high as 0.12 J/cm2. In comparison to previous results 

obtained within Xenes-based mode-locked operations 

[42–53, 55–57, 60], the damage threshold of the SA and the 

output laser performance all exhibit significant enhance-

ment, which fully reveals the potentiality and capacity 

of tellurene in acting as SAs to demonstrate large-energy 

pulse operations. In our opinion, the employment of high-

power pump source and high damage threshold SA all 

have significance in enhancing the average output power 

and pulse energy of mode-locked DS and NLP operations.

Similarly, the stability of NLP operation was also 

tested by monitoring the RF characteristics. The RF with 

an SNR of ∼55 dB is also located at the fundamental fre-

quency of 12.17 MHz (Figure 11A). The wideband RF shown 

in Figure 11B also exhibits excellent stability characteris-

tics. However, it is well known that NLP operation belongs 

to an unstable pulse regime with lower coherence char-

acteristics and SNR in comparison to TS or DS operations 

[76]. In our work, in comparison to the mentioned DS 

operation, the stability of NLP operation is not reduced 

due to pulse splitting. For NLP operation, the pulse energy 

is enhanced to be 8.76 nJ, which is four times more than 
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that of DS operation. The enhancement of signal intensity 

naturally leads to the increase of SNR.

As mentioned, various Xenens have been used as SAs to 

demonstrate ultrafast laser operations. In Table 1, the typical 

output characteristics of Xenes-based mode-locked EDF laser 

operations are compared. It is obvious that Xenes-based SAs 

are mainly employed to generate TS operations with pico-

second- or femtosecond-level pulse width [43–53, 55–57, 

60]. Based on BP and bismuthene as SAs, the pulse widths 

are as short as 102 and 193 fs, respectively [51, 56]. Mean-

while, Xenes-based TS mode-locked lasers also exhibit low 

pulse energies, which are always lower than 1 nJ. However, 
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Table 1: Comparison of Xenes-based mode-locked fiber lasers.

Materials   ∆T/I
sat

 (mW/cm2/%)  Soliton   λ (nm)  P
ave

 (mW)   E
pulse

 (nJ)  τ
pulse

 (fs)  Ref.

BP   6.5/8.1   TS   1571.45  –   –  946  [42]

BP   4.5 mW/6.91   TS   Tunable  5.6 mW   1.13  940  [43]

BP   9.27/10.1   TS   Tunable  –   –  280  [44]

BP   –   TS   1558.7  1.6   0.11  786  [45]

BP   –   TS   1560.5  0.5   0.018  272  [46]

BP   –   TS   1562      635  [47]

BP   −/0.3   TS   1562  ∼20   3.7  1236  [48]

BP   12.5/3.31   TS   1558.4  0.077   0.005  2180  [49]

BP   12/21   TS   1559.5  53   6.04  670  [50]

BP   14.98/10.03   TS   1555  1.7   0.07  102  [51]

BP   0.25/7   TS   1560.7  5.1   0.74  570  [52]

Antimonene   10.8 mW/6.4   TS   1557.68  0.65   0.063  552  [53]

Bismuthene   30/2.03   TS   1559.18  1.15   0.13  652  [55]

Bismuthene   48.6/5.2   TS   1561  5.6   0.63  193  [56]

Bismuthene   0.3/2.4   TS   1557.5  –   –  621.5  [57]

  DPS   –  –   –  525.5 

  MPS   1557.5  ∼11   0.48  – 

Tellurene   78.17 GW/cm2/27   TS   1556.57  5.3   0.34  829  [60]

Tellurene   34.3/5.06   DS   1573.97  23.61   1.94  5870  This 

work

  NLP   1563.97  106.6   8.76  105.82 

Bi
2
Te

3
  6.48/10.39   DS   1571  30   2.8  4500  [77]

In
2
Se

3
  7.8/4.5   TS   1565  83.2   2.03  276  [78]

MoTe
2

  9.6/25.5   TS   1559  57   2.14  229  [79]

WSe
2

  1.4/52.38   TS   1562  30   0.51  182  [80]

WSe
2

  15.423/21.89   TS   1557.4  28.5   0.45  163.5  [81]

WS
2

  157.6/15.1   TS   1568.3  62.5   128.3  1490  [82]

λ, wavelength; P
ave

, average output power; E
pulse

, pulse energy; τ
pulse

, pulse width; DPS, dual-pulse soliton; MPS, multipulse soliton.
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based on BP as SAs, pulse energies of 3.7 and 6.04  nJ are 

also obtained successfully [48, 50], proving that BP exhib-

its excellent nonlinear absorption properties despite its air-

unstable disadvantages. In addition, based on BP as SA, 

the maximum average output power is as high as 53  mW 

[50]. To our knowledge, this is the highest output power 

obtained within Xenes-based mode-locked lasers thus far. 

Besides the mentioned Xenes, 2D materials, including TIs 

and TMDs, are also employed to demonstrate large-energy 

or high-power mode-locked EDF operations. Output charac-

teristics of several typical reports are also provided in Table 1. 

As shown, based on In
2
Se

3
 and WS

2
 as SAs, the maximum 

average output powers are 83.2 and 63.5 mW, respectively [78, 

82]. Meanwhile, the largest pulse energy is as high as 128.3 

nJ obtained within a WS
2
 based long-length fiber laser [82].

In our work, based on tellurene as SA, DS operation 

with a maximum average output power of 23.61 mW and 

a pulse energy of 1.94 nJ is obtained. Especially, for NLP 

operation, the maximum average output power and pulse 

energy are as high as 106.6 mW and 8.76 nJ, which exhibit 

significant enhancement in comparison to the listed 

works. Our results fully prove that tellurene-based SA 

exhibits competitive nonlinear optical absorption proper-

ties and performance in acting as mode lockers to demo-

nstrate large-energy pulse operations.

In conclusion, tellurene nanosheets are prepared 

using the LPE method and coated on tapered fiber to act 

as an SA. Its nonlinear absorption performance is char-

acterized within an EDF laser. DS operation located at 

1573.97 nm with a pulse width of 5.87 ps and a maximum 

average output power of 23.61 mW is obtained. Addition-

ally, NLP operations with recorded pulse energy of 8.76 nJ 

and average output power of 106.6  mW is also gener-

ated successfully. Our competitive experimental results 

present that tellurene-based SA exhibits great potential 

and capacity in obtaining large-energy pulse operations 

and open a new avenue to generate high-power, large-

energy, mode-locked fiber lasers based on Xenes as SAs.
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