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Abstract 

Background: Telomerase Activator 65 (TA-65), a compound extracted from Astragalus 

membranaceus, was developed to increase or maintain telomere length. Objectives: To determine 

the effects of TA-65 on the parameters of metabolic syndrome (MetS). Methods: We recruited 40 

patients aged 32-70 years with MetS to determine the effects of TA-65 on dyslipidemias and 

anthropometrics in this at-risk population.   This was a double-blind, randomized crossover design 

in which patients were allocated to consume either 16 mg daily of a TA-65 supplement or placebo 

for 12 weeks. Following a 3-week washout, participants were allocated to the alternate treatment 

for an additional 12 weeks. Anthropometric and biological markers were measured at the end of 

each treatment. Plasma lipids, fasting blood glucose, C-reactive protein (CRP), liver enzymes, and 

glycosylated hemoglobin were measured using a Cobas c-111. Plasma insulin was measured by 

ELISA and telomere length was measured in lymphocytes and granulocytes using q-FISH assay. 

Diet records were analyzed by using the Nutrition Data System for Research (NDSR) software.  

Results: There were no changes in dietary intake between treatments and most of the parameters 

of MetS were not altered.  Compared to the placebo period, HDL cholesterol (HDL-c) was higher 

while body mass index, waist circumference, and the LDL-c/HDL-c ratio were lower during TA-

65 treatments (p < 0. 05). Negative correlations of changes in HDL-c and CRP (r = -0. 511, p < 0. 

01) and HDL-c and alanine aminotransferase (r = -0. 61, p < 0. 001) were observed during the 

treatments, suggesting that the favorable changes observed in HDL-c were associated with 

decreases in inflammation. Telomere length was not changed from baseline even after 3 months 

of TA-65 treatment.  Conclusion: TA-65 slightly improved key markers of cardiovascular disease 

risk, while sustaining telomere length in patients with MetS 
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Chapter 1 

Introduction 

 

Telomere, a compound structure of unique DNA repeats (TTAGGG) present at the end of each 

strand of DNA, represents a mechanism that offers protection to chromosomes against degradation 

(1).  During each cell division, DNA polymerase cannot fully replicate the 3’ end of linear DNA, 

which results in progressive telomere shortening, leaving DNA vulnerable to damage (2). 

Shortening telomeres act as the aging clock in every cell. As they shorten, they signal change in 

gene expression, changing the cell’s phenotype to that of an older cell. Furthermore, short 

telomeres lead to genetic mutations and can result in serious complications associated with age 

(3). In addition to aging, telomere length (TL) can also be shortened by oxidative stress, smoking, 

obesity, lack of exercise and a poor diet (3,4,5). Shortening of TL is observed in connection to 

several disease conditions such as cardiovascular diseases, stroke, diabetes, osteoporosis, liver 

disease and cancer. Normally, TL can be maintained or increased by addition of TTAGGG 

telomere sequences to the ends of chromosomes guided by the enzyme telomerase. However, the 

telomerase production declines with age, mortality and disease conditions.TA-65® (Telomerase 

Activator-65), a patented compound developed by TA Sciences claims to activate telomerase 

production and thus help maintain or rebuild telomeres without any side effects.  

 

TA-65® is a patented, natural, small molecule that activates the telomerase enzyme and enhances 

telomere length. It rejuvenates the immune system and other critical cells compromised by age and 

daily stress. TA-65 is the only known commercially available telomerase activator on the market 

and is an expensive nutraceutical. TA-65 is a concentrated herbal extract from the root of 
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Astragalus membranaceus, which has been used safely for millennia in traditional Chinese 

medicine (6). Several studies have shown beneficial effects of TA-65 in increasing telomerase 

activity and telomere length (7). Additionally, it has been demonstrated to improve cardiac 

function and possibly decrease insulin resistance (9). These protective effects of TA-65 have been 

attributed to various fractions of the root extract, most notably the extract that is the proprietary 

molecule TA-65.  TA-65 has shown a significant capacity to stimulate the rescue of short 

telomeres, both in vitro (in mouse embryonic fibroblasts) and in vivo, according to a study 

performed in mice by Blasco et al (7). There was a significant drop of very short telomeres (less 

than 2, 3, and 4 kb) in the groups of mice previously treated with TA-65, following 3 months of 

treatment (7). Essentially, the TA-65 molecule, increases protective cytokine release and enhances 

the immune system without increasing inflammatory responses. In a prospective, randomized, 

double-blind study conducted by Marshall-Blum et al in men aged 60 and 84, participants took 

TA-65 at a dose of between 2 and 4 capsules a day, depending on the treatment group assigned, 

for 24 weeks (8). Laboratory tests were performed 2 weeks before inclusion, at the baseline visit, 

and at 6, 12, and 24 weeks of treatment. Cardiac events frequency decreased on average in the 

subjects that took TA-65 extract in comparison with the baseline value (9). Subjects treated with 

TA-65 showed a statistically significant improvement (P<0.0001) in quality of life parameters, 

measured both by self-evaluation and by health personnel.   

 

Telomere length is maximum at birth and decreases progressively with age, thus it is considered 

as a biomarker of chronological aging. This age associated shortening of TL is linked to various 

age-related diseases like diabetes, hypertension, Alzheimer’s disease, cancer etc. and their 

associated complications. Telomere length is a result of combined effect of oxidative stress, 
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inflammation and repeated replication of cells, thus forming and association between telomere 

length and chronological aging and age-related diseases. Shortening of telomere length in 

peripheral blood mononuclear cells is associated with mortality in patients with stable coronary 

artery disease, suggesting that telomere length can be used as a predictor of adverse outcomes in 

these patients. Shorter leukocyte telomere length has been linked to impaired glucose tolerance, 

Type 2 Diabetes, and coronary heart disease. Thus, telomere length may play an important role in 

predicting cardiovascular disease and diabetes. TA-65 has proven to be effective in supporting 

various disease conditions by activating the immune system, decreasing inflammation, boosting 

anti-oxidant profile in addition to telomerase activation which prevents telomere length shortening. 

Considering the problems of age related metabolic diseases, TA-65 can be considered as a possible 

supplement to correct the parameters affecting these conditions. It may not only ameliorate the 

symptoms associated with these disease condition but could be a preventive measure as well.   

 

Although we have some information on the effects of TA-65 on clinical studies, the effects of TA-

65 on Metabolic Syndrome (MetS) is scarce. MetS is a constellation of metabolic conditions which 

double the risk for heart disease and quintuple the risk for diabetes mellitus (10).  MetS is 

characterized by central obesity, hypertension, hyperglycemia, and dyslipidemia in combination 

with oxidative stress and systemic inflammation (11). There are many proposed strategies to 

reduce the biomarkers of MetS including dietary interventions (12), increased physical activity 

(11), or the use of bioactive components that may target specific physiological pathways associated 

with the symptoms (12,13). A large population-based study with 6 years of follow-up by Revesz 

et al revealed that short telomere length could a predictor for prevalence and progression of MetS 

components (14). It was shown particularly that increasing abdominal obesity was accompanied 



 4 

by accelerated telomere attrition.  Since TA-65 has been found to ameliorate disease conditions 

involving MetS components, the possibility of TA-65 to correct or modify the metabolic 

abnormalities in patients suffering from MetS is high. This study fills that gap in being the first to 

evaluate the effectiveness of TA-65 in individuals with MetS. 

 

 This study is a life style intervention in 11 men and 37 women classified with MetS. The objective 

of the study was to evaluate the efficacy of TA-65 on the parameters of MetS. We hypothesized 

that when compared to placebo, TA-65 would improve glucose metabolism by lowering plasma 

glucose, plasma insulin and glycosylated hemoglobin, reduce dyslipidemias by decreasing plasma 

triglycerides, increase HDL-c and lower LDL-c, lower blood pressure and waist circumference 

and reduce systemic inflammation in patient with MetS thus, favorably modify the parameters of 

MetS.  
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Chapter 2 

Literature Review  

 

2.1 Metabolic syndrome 

Metabolic syndrome (MetS) is a multi-faceted condition characterized by increased central 

adiposity, artherogenic dyslipidemias, insulin resistance, high blood pressure, low grade 

inflammation and oxidative stress (15). In line with national obesity trends in the United States, it 

has been estimated that ~34% of adults have MetS (16). The progression of these metabolic 

abnormalities amplifies the risk for cardiovascular disease by two-fold and the risk for type 2 

diabetes mellitus by five-fold (17). The pathophysiology in the development of the disease is 

complex and not completely understood. Despite ethnicity, MetS is being identified globally as a 

growing epidemic due to the sedentary life style and poor diet (18). The clustering of metabolic 

syndrome risks with cardiovascular disease and DM has been recognized for more than 80 years, 

but the modern concept of metabolic syndrome began when Reaven proposed a conceptual frame 

work linking the metabolic events in a single pathophysiological construct (19). In 1947 Vague, a 

physician from Marseilles, observed that upper body obesity was significantly associated with 

diabetes mellitus, atherosclerosis, gout and calculi, in which all these conditions were improved 

by eating low carbohydrate diet (20,21). Haller in 1977 described metabolic syndrome to be 

associated also with obesity, diabetic mellitus, hyperlipoproteinemia, hyperuricemia and hepatic 

stenosis (22). In the same year, Singer added that hypertension and gout could also be associated 

with the syndrome (23) In 1988, Reaven proposed the theory that insulin resistance provides 

common mechanisms underlying the associated abnormalities such as blood pressure, lipid 
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abnormalities and glucose intolerance in his landmark Banting lecture (24). Reaven also termed 

the disease as syndrome X. He did not include obesity as one of the factors in the syndrome as the 

previous authors did. However, obesity in particular, central obesity came later to be recognized 

as one of the important underlying factor of metabolic syndrome. The terms metabolic syndrome, 

insulin resistance syndrome or syndrome X were used to define the clustering of factors that 

increase the risk for cardiovascular disease and type 2 diabetes. The exact pathology of metabolic 

syndrome is still not yet fully known (25). The first clinical definition was released by the WHO 

in 1998. It included impaired glucose tolerance (IGT/IFG), diabetes, or insulin resistance, 

calculated according to the homeostasis model assessment (HOMA) or through oral glucose 

tolerance test (OGTT) as an essential component in addition to dyslipidemia (low HDL-C and high 

TG), hypertension and microalbuminuria. In 1999, the European group for the study of Insulin 

Resistance (EGIR) proposed the modification to the WHO definition.  

 In 2001 the NCEP ATP III released a recommendation which excluded insulin resistance and 

introduced five equal components based on routine clinical measurements of which three have to 

be present for the diagnosis of MetS (26). These criteria were: elevated waist circumference, high 

TG, low HDL-c, elevated BP and fasting glucose. This was again revised in 2003 based on the 

recommendations of the American Diabetic Association (ADA) by decreasing the fasting glucose 

cut off point to <100mg/dL. In 2004, the International Diabetes Federation (IDF) published new 

criteria that modified the ATP III definition. The IDF considered central adiposity as a key 

component to MetS and highlighted that the determination of central obesity requires the attention 

to gender and ethnic specificity. In 2005 The American Diabetes Association (ADA) and European 

Association on the Study of Diabetes (EASD) pointed out specific controversies in the diagnosis 

of metabolic syndrome (27) For instance the value of including diabetes in the definition was 
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questionable. Also, the use of insulin resistance as the unifying etiology was considered to be 

uncertain. The ADA/EASD committee also pointed out that there was no clear basis for including 

or excluding cardiovascular disease (CVD) risk factors in the diagnosis of the metabolic syndrome. 

There are a number of arguments regarding this topic and the debate on the definition and diagnosis 

of metabolic syndrome continues. There are several existing criteria in use for defining the 

metabolic syndrome like the definition used by the American Heart Association (AHA), European 

Group for the Study of Insulin Resistance (EGIR), National Cholesterol Education Program-Adult 

Treatment Panel III (NCEP/ATP III), World Health Organization (WHO) and International 

Diabetes Federation (IDF). The most commonly used definition of MetS was described by the 

WHO and NCEP ATP III criteria (27) According to the NCEP ATP III definition, metabolic 

syndrome is present if three or more of the following five criteria are met: waist circumference 

over 40 inches (men) or 35 inches (women), blood pressure over 130/85 mmHg, fasting 

triglyceride (TG) level over 150 mg/dL, fasting high-density lipoprotein (HDL-c) cholesterol level 

less than 40 mg/dL (men) or 50 mg/dL (women) and fasting blood sugar over 100 mg/dL. 

The NCEP ATP III definition is one of the most widely used criteria of metabolic syndrome. It 

incorporates the key features of hyperglycemia/insulin resistance, visceral obesity, atherogenic 

dyslipidemia and hypertension. It uses measurements and laboratory results that are readily 

available to physicians, facilitating its clinical and epidemiological application. It is also simple 

and easy to remember. Importantly, it does not require that any specific criterion be met; only that 

at least three of five criteria are met. Thus, the definition does not build on any preconceived notion 

of the underlying cause of metabolic syndrome, whether it is insulin resistance or obesity. 
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 Regardless of the existing controversies in diagnosis and definition, the metabolic syndrome is 

still considered to be a useful diagnostic tool in primary care prevention. It gives opportunity for 

early patient identification and education on proper and early health behavioral changes implicated 

in the development of the deadly cardiovascular diseases like hypertension and diabetes. Patients 

could be educated early about the connection between their lifestyle, health risks, and medical 

outcomes. For instance, NCEP/ATP III identifies metabolic syndrome as an indication for 

vigorous lifestyle intervention. Effective interventions include diet modification, exercise, and 

judicious use of pharmacologic agents to address specific risk factors. Weight loss will 

significantly improve all aspects of metabolic syndrome (28) . Increase in physical activity and 

decrease in caloric intake by reducing portion sizes have been found to improve metabolic 

syndrome abnormalities, even in the absence of weight loss. Specific dietary changes that are 

appropriate for addressing different aspects of the syndrome include reducing saturated fat intake 

to lower insulin resistance, reducing sodium intake to lower blood pressure, and reducing high-

glycemic-index carbohydrate intake to lower triglyceride levels. These dietary changes include 

carbohydrate restricted diet (CRD) (28), the Mediterranean diet (29), low fat diet (30), eggs as a 

part of low fat diet (31) and several others (32). 

 2.2 Telomere 

The important role of chromosome ends in ensuring chromosomal stability was first proposed from 

the classic studies of the 1930s by Hermann Muller working with fruit flies (Nobel Prize 1945) 

(33) and Barbara McClintock working with maize (Nobel Prize 1983) (34). These conclusions 

have stood the test of time, and since this work was published, an enormous amount of data on 

telomeres and their function has been produced. Ever since these conclusions were made, 
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enormous amount of research on telomeres, its functions and the details of the mechanism and 

molecules associated were focused. Muller coined the term, from the Greek for “end” (telos) and 

“part” (meros). McClintock pointed out that without these special end structures, chromosomes 

would fuse and often break upon mitosis, resulting in chromosome instability which was 

detrimental to cells. These pioneering studies established that functional “telomeres” are required 

to protect chromosome ends, to provide chromosome stability, and to ensure faithful segregation 

of genetic material into daughter cells upon cell division. This protective function of telomeres is 

known as ‘telomere capping’. The molecular mechanisms underlying telomere capping involve 

specialized protein complexes bound to telomeres (35-37) as well as telomere-associated 

noncoding RNAs known as TERRA (38-40).  

If telomere capping is disrupted, telomere fusions generate dicentric chromosomes that are 

susceptible to breakage during mitosis, ultimately leading to aneuploidy and disease states 

including premature aging pathologies and cancer (41,42,43) Telomere science has raised to 

further glory and attention when the 100th Nobel Prize in Medicine and Physiology  (2009) was 

awarded jointly to Elizabeth H. Blackburn, Carol W. Greider and Jack W. Szostak for the 

discovery of “how chromosomes are protected by telomeres and the enzyme telomerase"(44). 

Telomeres can be naively described as specific cap like segments of DNA at the end of 

chromosomes. They are composed of a DNA component characterized by noncoding repetitive 

sequences rich in Guanine (G) and multiple protein components. The DNA component of 

telomeres is characterized in all vertebrates by tandem repeats of (TTAGGG/CCCTAA) n and the 

repeat sequences can vary from one species to another (45). They protect the genome from 

nucleolytic degradation, unnecessary recombination, repair and inter-chromosomal fusion, thereby 

playing a pivotal role in preserving the information in the genome. As a normal cellular process in 
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all cells, a small portion of telomeric DNA is lost with each cell division. The diminishing of TL 

has been linked with progression of age, diabetes, cancer and an increased risk of death. A myriad 

of proteins is directly or indirectly associated with telomeric DNA. Some of these proteins are 

found in telomeres at any time, even though there is a highly dynamic exchange between proteins 

that are telomere-bound and unbound (46). 

2.3 Structure and formation of telomere 

Telomeres form a special heterochromatic structure at the end of linear chromosomes. They are 

cap like structures that protects chromosomes from degradation, preventing fusion of sticky arms 

and are essential for preventing genomic instability (47). Thus, telomeres are essential to ensure 

chromosome stability (48). Mammalian telomeres comprise several kilobases, between 10 and 15 

kb in humans and 25 and 50 kb in mice, of tandem TTAGGG DNA repeats (47) Telomeres are 

characterized by the presence of a 30–400-nucleotide-long 3′ overhang of a G-rich strand, known 

as the G-strand overhang. The G-strand overhang can fold back and invade the double-stranded 

telomeric region, forming the so-called T-loop and generating a displacement loop, or D-loop. The 

T-loop structure has been proposed to protect chromosome ends from degradation and DNA repair 

activities as well as from telomerase activity (49,50). Telomeres are bound by a specialized 

complex known as shelterin that has crucial functions in telomere length regulation and in the 

protection of telomeres from the DNA damage response (DDR) by masking the chromosome ends 

from the DNA repair machinery through repression of the ATM and ATR signaling pathways (48). 

The shelterin complex is composed of six proteins: telomeric repeat binding factors 1 and 2 (TRF1 

and TRF2), TRF1-interacting protein 2 (TIN2), protection of telomeres protein 1 (POT1), TIN2, 

POT1-interacting protein (TPP1), and repressor/activator protein 1 (RAP1) (50-52). Telomeres 
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shorten with each cell division as a result of the incomplete replication of linear DNA molecules 

by conventional DNA polymerases, which is called the end-replication problem (53,54).  

2.4 Telomere homeostasis 

Due to repetitive DNA replication, the end telomere sequence is lost in each cycle. Shortening is 

restored by the cell using various mechanisms to maintain homeostasis. Telomerase adds bases to 

the ends of telomeres (37). In young cells, telomerase keeps telomeres from wearing down too 

much. But as cells divide repeatedly, there is not enough telomerase, so the telomeres grow shorter 

and the cells age. As shortening advances, this may lead to aging, cellular death or even cancerous 

transformation of somatic cells, thereby affecting the health and life span of the individual. 

Telomerase remains active in sperm and eggs, which are passed from one generation to the next. 

If reproductive cells did not have telomerase to maintain the length of their telomeres, any 

organism with such cells would soon go extinct (42). 

Several studies have derived evidence on the inverse relationship between telomere length and 

increased incidence of disease resulting in higher mortality rates. Life style modifications have 

been proven to reverse these effects (74). 

2.5 Quantification of Telomere Length 

Multiple methods have been developed for the study of telomere length. These techniques include 

quantification of telomere length by southern blots of terminal restriction fragmentation (TRF)- 

which was one of the earliest tools for length assessment- making it the gold standard in telomere 

biology. TL has also been successfully measured using real-time quantitative polymerase chain 

reaction (qPCR), which provides the advantage of requiring small samples of DNA for analysis. 
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Another method, Quantitative Fluorescence in situ hybridization (q-FISH) of telomeric repeats is 

performed by assessing metaphase chromosome or interphase nuclei using a fluorescent 

(CCCTAA)3 probe in cells, rather than DNA. Alternate and the recently used mechanism is by 

Flow FISH assay. telomere length measurement of leukocytes is very accurate using flow-FISH 

and provides cell population specific measure, but its utility in population-based studies is limited 

by its need for viable cells. The telomere length in both granulocytes and lymphocytes are 

measured using the assay. The correlation of telomere length between these measurements is 

generally modest. In an epidemiological study of 681 elderly individuals, a weak correlation of (r 

= 0.52) was generated between Southern blot and qPCR. A similar result (r = 0.47) was seen when 

comparing telomere length measured by qPCR and flow FISH in 52 normal individuals. No data 

are available for the correlation between flow FISH and Southern blot telomere length beyond the 

strong correlation reported in the initial flow FISH study (r =0.9) (71,72) 

One of the major drawbacks in using telomere length as a clinical measure is its high variability 

between different individuals, which is determined at birth. Furthermore, shortening with age is 

more rapid in males than females, and the rates can also differ between various ethnic groups. All 

these factors limit the usefulness of telomere measurement in cross-sectional studies; thus, 

longitudinal studies measuring actual telomere erosion rates in individuals over times represent 

more powerful study designs for demonstrating causal effects. (73) 

2.6 Shortening of Telomere Length 

In 1961, Leonard Hayflick discovered that human cells could undergo only a limited number of 

cell divisions when cultured in vitro (55), a phenomenon known as replicative senescence or the 

Hayflick limit (56). This is an important feature of telomeres; their length determines the number 
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of cell divisions that a cell can undertake. Alexei Olovnikov linked the Hayflick limit to the 

replication of telomeric DNA. The existence of a compensatory mechanism for telomere 

shortening was first found in 1973 by Alexy Olovnikov who also suggested the telomere 

hypothesis of aging and the telomere's connections to cancer (57). Replication of the 5′-3′ strand 

requires RNA primers that are removed afterward, leaving gaps. These gaps are filled-in using the 

adjacent Okazaki fragments as primers. The very terminal gap at the 5′ end of telomeres cannot be 

filled because of the lack of such a primer. Olovnikov proposed that the DNA replication 

machinery could not copy chromosomal ends completely and, therefore, cells could not 

compensate for the chromosomal shortening associated with cell division, suggesting that 

progressive telomere shortening may be a key factor to limit the number of cell divisions. James 

D Watson (Nobel Prize 1962) also recognized that the unidirectional nature of DNA replication 

was a problem for the complete copy of chromosomal ends (58). This was called the ‘end-

replication problem’. In this manner, during each cycle of cell division, a small fragment of 

telomeric DNA is lost from the end. After several rounds of division, telomeres eventually reach 

a critically short length, which activates the pathways for senescence and cell death (59,60) A 

progressive decline in telomere length may also occur due to DNA damage. There is a consensus 

that their length is reduced with age, smoking and stress thereby impairing health. (61) 

The properties of eukaryotic telomeres are usually identified as the “capping function”, with a 

principal mission to protect chromosome ends from DNA degradation, DNA repair mechanism 

and fusion with other chromosomal ends. Their length serves as an intrinsic biological clock that 

regulates the life span of the cell, i.e. they provide limits on the number of replications a cell can 

go through. Uncapped telomeres are able to activate the DNA damage response and cause end-to-

end fusions, resulting in chromosomal instability, cellular senescence and apoptosis (programmed 
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cell death). Telomere repeats are lost with each round of cell replication by a plethora of different 

mechanisms, and most somatic cells express insufficient telomerase to compensate for the loss of 

telomere repeats. 

Human cells lose telomeric DNA at a modest rate of about 15-60 bp per year, likely reflecting the 

small number of stem cells that are actively dividing in proliferative tissues compared to the total 

stem cell reserve and the quiescent state of cells in other tissues. Telomere shortening has been 

investigated in human cells in culture, in human genetic diseases with mutated telomerase and in 

animal models of telomere deficiency (62-70) 

2.7 Factors affecting telomere length 

Telomere length as generally assessed in leukocytes, is a novel marker of cellular aging and is 

associated with increased risks of morbidity and mortality.  Telomere length reduces with age and 

may predict life span. Telomere length can be affected by combination of factors including age, 

lifestyle, genetic make-up, social and economic status, body weight, smoking, exercise, which may 

affect overall health, lifespan and rate of aging. Also, exposure to harmful agents, pollution, lack 

of physical activity, certain work atmospheres, stress and related hormones, high fat diet and low 

fiber diet increase telomere length shortening. This can be modified by life style and diet 

modification such as regular exercise, yoga or other physical activities that can reduce stress and 

obesity in addition to diets rich in anti-oxidants such Vitamin E, Vitamin C and beta carotene or 

carbohydrate restricted diet may reduce the pace of preserving telomere length by reducing 

oxidative stress. (74) 
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Rate of telomere shortening in human liver cells have been reported to lose 55 base pairs of 

telomeric DNA per year (75). Similar shortening has been reported in rapidly renewing gastric 

mucosal cells. Telomere length decreases by the increased action of proteins responsible for aging 

and thus negatively correlates with age (76) Individuals with shorter telomeres have significantly 

poor survival due to higher mortality rates caused by heart and infectious diseases (77). Progressive 

shortening leads to senescence, apoptosis or formation to cancerous cells (78,79) Certain 

individuals may also be born with shorter telomeres or may have a genetic disorder leading to 

shorter telomeres. Such individuals are at a greater risk to develop premature coronary heart 

disease (80, 81) and premature aging. Deficiency of telomerase gene in a genetic disorder 

dyskeratosis congenita leads to shorter telomeres and is associated with premature graying, 

predisposition to cancer, vulnerability to infections, progressive bone marrow failure, and 

premature death in adults (82).  

 

2.8 Telomere length and age 

Although telomerase is expressed in adult stem cell compartments, this is not sufficient to 

counteract telomere attrition associated with cell division throughout life, and therefore telomeres 

shorten with age in vitro and in vivo (83-89). This progressive telomere shortening eventually 

leads to critically short telomeres that can impair the regenerative capacity of tissues and has been 

proposed as one of the molecular hallmarks of aging (90) In mice, it has been shown that the rate 

of increase in the percentage of short telomeres, rather than the rate of telomere shortening 

throughout life, is a significant predictor of life span (91). Shortened telomeres induce a DDR that 

leads to a growth arrest, during which cells attempt to repair the damage and, if DNA damage is 

irreparable, triggers replicative senescence (92,93). Senescent cells progressively accumulate 
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during life and secrete factors that influence age-associated diseases (94). Indeed, senescence has 

been proposed as a mechanism that evolved to protect from cancer, with the drawback of 

promoting age-associated diseases (95) Therapeutic interventions based on either chemical 

activators of telomerase or telomerase-based gene therapy are currently being investigated in 

mouse models for their potential to improve health and extend life span, and as a treatment for 

short telomere syndromes (96-9). 

 

2.9 Telomere length and MetS 

 The Netherlands Study of Depression and Anxiety reported that cellular aging is associated with 

abdominal obesity and dyslipidemia (low HDL cholesterol and high triglycerides (100) Shorter 

leukocyte telomere length is cross-sectionally associated with abdominal obesity, dyslipidemia, 

hyperglycemia, and the presence and severity of metabolic syndrome. Thus, short telomere length 

is associated with metabolic risk profile and is a known cellular marker which may predict a 

person’s deteriorating metabolic condition (100,101). In patients with MetS compared to healthy 

volunteers, significant telomerase activity was detected in the circulating PBMC, along with 

elevated markers of inflammation and endothelial dysfunction. This suggest a prolonged activity 

of inflammatory cells in the studied state of this metabolic disorder that could represent a 

contributory pathway in the pathogenesis of atherosclerosis (102). However, it is still largely 

unknown how telomere maintenance might influence disease processes. 

2.10 Telomerase 

Telomerase is composed of a reverse transcriptase subunit (TERT) as well as an associated RNA 

component (Terc), which is used as a template for the de novo addition of telomeric repeats (12). 
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Telomerase is an RNA containing ribonucleoprotein enzyme that catalyzes the extension of 

telomeric DNA in eukaryotes. Although there is practically no activity of the telomerase in somatic 

cells, a low level is present in mitotically active cells. It has reverse transcriptase activity and is 

composed of two main parts – a telomere RNA component and a telomere reverse transcriptase. 

Once telomerase has been recruited to the telomere, it appears to undergo a separate activation 

step, which may include an increase in its repeat addition process.  Telomerase reverses telomere 

shortening. 

2.11 TA-65® 

TA-65® is a registered trademark of Telomerase Activation Sciences, Inc. formulated to help 

maintain or rebuild telomeres. It is a plant based dietary supplement, extracted from the dried root 

of a Chinese herb, Astragalus membranaceus and was It is considered as a nutraceutical and also 

the only one of its kind commercially available claiming to safely activate telomerase enzyme. The 

active ingredient in TA-65 activates telomerase enzyme thereby possibly reversing the telomere 

shortening or rebuilding the shortened cap. Harley et al at Geron Corporation and the Hong Kong 

University of Science and Technology conducted a screening program for telomerase activators, 

which led to the discovery that certain small molecule components of Huang Xi, a traditional 

Chinese medicine reputed to maintain health, were activators of telomerase (103-105,109) Thus, 

in 2000, TA-65 was discovered as a chemically defined small molecule activator of telomerase. 

Since then, there has been research and observational studies on TA-65 in humans and animal 

models supporting improvements in biomarkers of aging, including immune, cardiovascular, 

metabolic, bone, and inflammatory markers, without significant signs of toxicity. TA-65® showed 

striking in vivo effects declined senescent and natural killer cells together with a significant 



 18 

reduction in the percentage of cells with short telomeres without any adverse events in 

cytomegalovirus (CMV) seropositive subjects (103). Telomerase activation and functional studies 

on a related molecule (TAT2) from the same plant have been previously reported for human skin 

keratinocytes and immune cells in culture leading to a decline of senescent and natural killer cells 

together with a significant reduction in the percentage of cells with short telomeres (106). Murine 

studies have reported that TA-65 increased mouse telomerase reverse transcriptase (mTERT) 

expression, leading to telomerase dependent elongation of short telomeres thereby rescuing the 

DNA damage (107). PattonProtocol-1 (TA-65 in combination with other supplements and 

physician counseling) launched in January, 2007, by TA Sciences (New York, NY) as a 

commercial age-management product produced reduction in fasting blood sugar, insulin, 

cholesterol, blood pressure, and homocysteine, and increases in bone mineral density, all 

considered positive health changes in humans (108) 

2.12 Astragalus membranaceous 

Astragalus membranaceus (Chinese: Huang Qi; milk-vetch root) is an important herb in traditional 

Chinese medicine. Astragalus roots are harvested from 4-year-old plants and are the only part that 

are used medicinally. It has been used widely as an herbal blend in natural remedies because of 

the anti-inflammatory, anti-oxidant, cardio-protective and longevity effects. (110) However, it is 

still largely unknown how telomere maintenance might influence disease processes. Astragalus 

contains saponins, flavonoids and polysaccharides which gives the positive impact on human 

health and may be related to its mechanism of action. These bioactive compounds are known to 

give anti-inflammatory effects, boost immune system and prevent oxidative stress while giving 

cardio protective and anti-diabetic effects (111). Also used generally for asthma, colds, flu, wound 
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healing and prevention of scarring. Astragalus membranaceus contains an active ingredient such 

as astragalside IV (AST IV), which has been demonstrated to have cardio protective effects mainly 

against hypertension. RevGenetics in 2014, demonstrated that CAG (cycloastragenol), which 

increases telomere length (112). However, the active ingredient extracted from Astragalus for TA-

65 preparation remains as a proprietary secret of TA Sciences. 

2.13 TA-65 and Telomere length 

TA-65 claims to be the only scientifically proven molecule that can dramatically rejuvenate aging 

human cells. A study to prove the effect of TA-65 in telomere length was conducted in mice. 

Experiments to demonstrate the effect of Telomerase activator by increasing the telomere length 

in a dose dependent manner in ex vivo mouse embryonic fibroblasts (MEF) incubated with TA-

65. However, TA-65 administration for 4 months did not change the maximum life span of female 

mice (107) 

It has been demonstrated that TA-65 is an effective telomerase activator in human immune cells, 

neonatal keratinocytes and fibroblasts. The impact of telomerase-dependent telomere extension 

was investigated in a telomerase-haplosufficient model by an ex vivo experiment. Investigators 

crossed Terc+/-(Terc gene mutation/deficient cold result in decreased. Telomerase activity and 

accelerated telomere shortening) female mice with G2 Terc+/- male mice to generate littermate 

populations of MEF which is either G3 Terc+/- or G3 Terc-/-. Using TRAP mechanism, TA-65 was 

capable of activating Telomerase by approximately 2-fold telomerase-haplosufficient model and 

showed G3 Terc+/- treated with 10m of TA-65, showed a raise in average telomere length (103). 

 

The effects of TA-65 in alleviating telomere attrition in CMV – (cytomegalo-virus) was studied in 

117 subjects divided into 3 groups: placebo, low dose TA 65 (250 IU)  and high-dose TA 65 (1000 
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IU).The study period consisted of 90 days with 14 days abstinence and telomere length was 

measured by qFISH. For the median TL, the placebo group showed a decrease at 9 and 12 months, 

while the low dose TA-65 group showed a significant increase at 3 months followed by stability. 

The high dose TA-65 group showed a trend of improvement in median telomere length when 

compared to placebo group, although the values were not significant (113).  

 

2.14 TA-65 on glucose tolerance and Insulin resistance 

Administration of AT-65 for 4 months significantly improved the capacity for glucose uptake in 

1year old mice while post treatment, no significant changes were seen in the control group at 6 

and 12 months. Additionally, treated mice showed a tendency of lowering insulin levels and 

HOMA-IR scores at 6 months post treatment, with no statistical significance (107). 

2.15 TA-65 on cancer, immunity and age related macular degeneration. 

The role of telomeres and telomerase in cell aging and cancer was established by scientists 

at biotechnology company Geron with the cloning of the RNA and catalytic components of human 

telomerase (107). They did this by developing a PCR based assay for telomerase activity called 

the TRAP assay, which surveys telomerase activity in multiple types of cancer. While assessing 

the long-term effects of TA-65 supplementation in mice with tumors, a decreased incidence of 

sarcomas, slightly decreased lymphomas, as well as a decreased incidence of hepatic cancer in the 

TA-65 treated group was observed (107). Another study showed improved immune function with 

TA-65 treatment on CD8T in individuals infected with HIV (103). An increase in the ability of T 

cells to reduce HIV production was noted by a 1.5 - 2.5-fold increase of telomerase enhancement 

in the treatment group compared with the control. In patients with AMD (Age related macular 

https://en.wikipedia.org/wiki/Cellular_aging
https://en.wikipedia.org/wiki/Cancer
https://en.wikipedia.org/wiki/Biotechnology
https://en.wikipedia.org/wiki/Geron_Corporation
https://en.wikipedia.org/wiki/RNA
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degeneration), TA-65 treatment improved macular functions when compared to the placebo 

treatment.  

2.16 Impact of TA-65 on parameters of MetS  

Short telomeres are strongly linked to increased risk of cardiovascular disease and diabetes, 

indications where tissue aging and senescence play significant roles.  Shorter leukocyte telomere 

length has been linked to impaired glucose tolerance, Type 2 Diabetes, and CHD (1).  Telomere 

length and telomerase activity have been shown to be significantly lower in CAD patients 

(2).  Telomere length may play an important role in predicting cardiovascular disease and 

diabetes. Over a 5-year period, and with an estimated 7000 person-years of use, TA-65 claims 

positive results in immune remodeling while improving or maintaining markers of metabolic, bone 

and cardiovascular health (103,108). With the millennia old reference of cardio-protective and 

anti-diabetic effects of Astragalus, the impact of TA-65 in improving the parameters of MetS is a 

possibility, however further studies are required in the area for stronger evidence.  

 

 

 

 

 

 

.   
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Chapter 3 

Materials and methods 

3.1 Study design 

Data from this study is derived from a double blind, randomized, cross over clinical trial on 40 

subjects aged 32-72 and classified with MetS, defined as having 3 or more of the following criteria: 

blood pressure (BP) ≥ 130/85 mm of Hg (either number, or use of antihypertensive medications); 

plasma glucose ≥ 100 mg/dL; triglycerides (TG) ≥ 150 mg/dL, waist circumference (WC) ≥ 88 cm 

for women or ≥ 102 cm for men, and HDL cholesterol (HDL-c) < 40 mg/dL for men or < 50 mg/dL 

for women. The criteria for exclusion were: participants with a BMI ≥ 40 kg/m2, current or past 

diagnosis of liver or renal disease, diabetes, cancer, stroke, heart disease, severe infectious or 

autoimmune diseases, and pregnant or lactating women. Other exclusion criteria were use of any 

glucose-lowering medications or supplements, use of immune-suppressants, anticoagulants, 

methadone, suboxone, MAO inhibitors, or lithium. Participants with fasting plasma triglycerides 

(TG) ≥ 500 mg/dL, glucose ≥ 126 mg/dL, or BP ≥ 145/100 mm Hg were also excluded. 

Subjects were recruited at the University of Connecticut, Storrs by advertising flyers, e-mails, 

social media posts as well as advertising booths in various health fairs. The study was approved 

by the University of Connecticut Institutional Review Board (IRB) under protocol H14-278 and 

all subjects signed a consent form prior to screening. The study was registered at Clinicaltrials.gov, 

protocol # NCT02531334. The study design is schematically represented in Figure 1. 
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Figure 1. Schematic representation of the intervention 

 

3.2 Screening of subjects 

A total of ninety-four participants underwent a screening to determine eligibility of MetS criteria 

by measuring blood pressure, waist circumference, and calculating plasma lipids and glucose by 

use of the Cobas c 111 Analyzer.  Subjects fasted 12 hours prior to screening, which took place at 

the University of Connecticut Department of Nutritional Sciences. Screening procedures included 

signing an informed consent form, followed by filling a comprehensive medical history form 

detailing any allergies, supplements and medications participants were taking, a personal health 

history and a medical history of family members. After collection of non-invasive anthropometric 

measurements and blood pressure, blood was drawn for analysis. All medical history data were 

examined by a physician (Jeffrey Anderson, MD). Individuals meeting 3 out of 5 inclusion criteria, 

with no exclusion criteria were enrolled in the study as per their consent. 
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3.2.1 Pregnancy Test 

Women of child-bearing age were tested four times for pregnancy using a qualitative immunoassay 

that measures Human Chorionic Gonadotropin (hCG) in urine. The pregnancy screening is 

performed at baseline (week 0) and repeated at the beginning of the washout (week 12), at the 

beginning of the second supplement period (week 15), and at the end of the intervention (week 

27). Subjects with positive result had to discontinue the study. 

 

3.3 Experimental period 

The period between recruiting and finishing the last intervention lasted 24 months, from August 

2015-August 2017. One participant discontinued due to health problem unrelated to the study and 

two others were removed due to sudden increase in plasma glucose which were above the required 

criteria. Thirty-seven subjects comprising 11 men and 26 women, completed the intervention. The 

experimental period involved a 27-week intervention, where the subjects were randomly allocated 

to consume either a daily serving of TA-65 (two capsules per day of 8 mg each, n=20) or a placebo 

(n=20) for 12 weeks. Randomization was by TA Sciences; they sent labeled supplement bottles 

for each participant and retained the key in their possession. After a 3-week washout, participants 

were allocated to the alternate treatment for an additional 12 weeks.  

Participants were advised not to change their diet or exercise protocols during the 27-week 

intervention. They recorded a 3-day dietary record and exercise questionnaire before and after the 

two treatment periods to ensure that there were no changes in diet or physical activity.  Participants 

were also asked to report to the department every 4 weeks to check compliance on supplement 

intake, to assess weight, and to monitor blood pressure on those subjects who were classified with 

blood pressure ≥ 130/85 and ≤ 145/100 mm Hg at baseline.  
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3.6 Anthropometrics and blood pressure 

Weight was measured to the closest 0.1 kg and height to the closest 0.5 centimeter on a portable 

stadiometer/scale. Height was converted into metric units to calculate BMI (kg/m2). Waist 

circumference was measured at the top of the iliac crest to the adjacent iliac crest to the nearest 0.5 

cm, using a flexible measuring tape placed against the skin. Blood pressure was measured on the 

right arm using an Omron automated blood pressure cuff. Subjects were seated quietly for 5 min 

in a chair, bladder empty, and upper arm supported at heart level as described by Pickering et al 

(114). Blood pressure and waist circumference were measured 3 times and the mean was recorded 

to account for variability. 

 

3.7 Dietary analysis 

Detailed diet records composed of all the food and beverages consumed over a 3-day period (two 

non-consecutive weekdays and a weekend day) were collected four times i.e., before starting the 

study (Week 0), at the end of each supplement period (TA-65 or placebo) (Week 12), at the end of 

the washout period or beginning of the alternate treatment (Week15) and the end of the second 

phase (Week 27). The dietary intake data were analyzed using the Nutritional Data Systems for 

Research (NDSR, 2013) software, developed by the Nutrition Coordinating Centre, University of 

Minnesota. The mean values were obtained for nutrient intake at each data collection point. Values 

for total energy as well as absolute and percent contribution from the macronutrients, types of 

dietary fat, dietary cholesterol, and dietary fiber were calculated as well as dietary carotenoids.  
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3.8 Blood sample collection 

After a 12 hour fast, blood was collected from an antecubital vein into EDTA tubes, which were 

immediately centrifuged at 2,000 x g for 20 min. The plasma was aliquoted and preserved in 

labelled plastic vials and were stored at -80 ºC. This procedure was carried out on 5 occasions; 

during the screening visit, the baseline and end of each intervention i.e., week 0, week 12, week 

15, week 27. 

 

3.9 Plasma lipids, fasting blood glucose, glycosylated hemoglobin, CRP, liver enzymes and 

insulin  

Plasma lipids such as total cholesterol (TC), triglycerides (TG) and HDL-c, as well as glucose, C-

reactive protein (CRP), liver enzymes alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST) were determined using the Cobas c-111 Analyzer (Roche Diagnostics, 

Indianapolis, IN). Glycosylated hemoglobin (HbA1c) was also measured in whole blood in the 

Cobas c-111 analyzer. LDL cholesterol (LDL-c) was calculated by the Friedewald equation as 

previously reported (115), Insulin was measured by ELISA using a kit, according to manufacturer 

instructions (Crystal Chem, Elk Grove Village, IL). 

 

3.10 Telomere length analysis 

Telomere length was analyzed in whole blood at baseline and after each supplement period by 

Repeat Diagnostics Inc. in Vancouver, Canada in both granulocytes and lymphocytes using flow 

FISH assay. Flow-FISH (fluorescent in-situ hybridization) is a cytogenetic technique to quantify 

the copy number of specific repetitive elements in genomic DNA of whole cell populations via the 

combination of flow cytometry with cytogenetic fluorescent in situ hybridization staining 
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protocols. To assess the durable effects of TA-65, the telomere length was measured 6 months 

after the end of the intervention. 

 

3.11 Statistical analysis 

Differences in anthropometric and parameters of MetS were compared between the TA-65 and the 

placebo periods by Student’s paired t-test using SPSS software. Data are presented as mean ± SD. 

Pearson correlations were calculated between changes between supplement and placebo on plasma 

HDL-c and changes in CRP and liver enzymes. Level of significance was set at p < 0.05. 
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Chapter 4 

Results 

 

4.1 Baseline characteristics 

The baseline characteristics of 40 participants consisting of 11 men and 29 women are presented 

in Table 1. Participants age ranged from 32 to 71 with a mean of 52.4 ± 9.5 years. Their mean 

weight was 90.7 kg and the mean BMI was 32.3 ± 2.7 kg/m2, placing them in the category of 

obese. In terms of the NCEP ATP III definition of the MetS, was used in this study, all subjects 

met the criteria for waist circumference with a mean of 113.9 cm in men and 105.1cm in women. 

When compared to the MetS criteria, 100% of the participants met WC as the common criteria, 

70% were hyperglycemic, 63% either had high systolic BP, high diastolic BP or both, 48% had 

elevated plasma TG, and 43% had low HDL-c (Figure 2). Total cholesterol was 183.6 mg/dL and 

LDL-c were elevated at 104.5 mg/dL. Interestingly 50% of subjects had LDL-c values higher than 

100 mg/dL although this parameter is not a component of the MetS.  Mean plasma insulin and 

HbA1c were within normal ranges. To provide information about inflammation, CRP was 

determined with an average plasma concentration of 0.45mg/dL. 
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Table 1. Baseline characteristics of subjects (n = 40) with Metabolic Syndrome 

Parameter Values1 

Age (years) 52.4 ± 9.5 

BMI (kg/m2) 32.3 ± 3.7 

Waist Circumference (cm) 113.9 ± 13.2 for men and 

105.1 ± 8.9 for women 

Systolic BP (mm Hg) 126.3 ± 12.5 

Diastolic BP (mm Hg) 84.1 ± 7.9 

Total Cholesterol (mg/dL) 183.6 ± 33.9 

LDL-c (mg/dL) 104.5 ± 30.2 

Triglycerides (mg/dL) 136.0 ± 71.5 

HDL-c (mg/dL) 40.1 ± 9.2 for men and 

56.1 ± 19.0 for women 

Glucose (mg/dL) 105.7 ± 9.9 

HbA1c (%) 5.6 ± 0.5 

Insulin (pmol/L) 52.4 ± 30.0 

1 Values are expressed as mean ± SD.  
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Figure 2. Percent of subjects who met each criterion for MetS 

 

 

4.2 Dietary Intake  

Results from daily dietary intake are presented in Table 2. There were no differences in 

macronutrient intake, type of fatty acids, dietary fiber, added sugar, and carotenoids throughout 

the intervention. Even the values for glycemic load and glycemic index were not statistically 

significant when the two treatments where compared. Overall, participants consumed a high fat 

and low fiber diet, when compared to dietary recommendations. There was a high degree of inter-

individual variation in carotenoid consumption, however participants remained consistent between 

dietary periods. 
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Table 2. Dietary daily intake of participants with Metabolic Syndrome 

 (n = 37) during the TA-65 and the placebo periods 

 
Dietary Component TA-65 Placebo 

Total Energy (kcal) 1713 ± 463 1754 ± 501 

Fat Energy (%) 40.1 ± 6.4 38.9 ± 6.9 

Carbohydrate Energy (%) 38.4 ± 8.3 40.2 ± 7.5 

Protein Energy (%) 18.3 ± 4.4 17.5 ± 3.6 

Cholesterol (mg) 287.2 ± 124.7 286.9 ± 145.9 

SFA (g) 27.5 ± 10.6 25.9 ± 9.9 

MUFA (g) 27.0 ± 10.5 27.7 ± 10.1 

PUFA (g) 16.2 ± 5.9 16.9 ± 10.1 

Omega-3 Fatty Acids (g) 1.85 ± 0.84 1.78 ± 1.65 

Trans Fatty Acids (g) 2.47 ± 1.17 2.63 ± 1.47 

Added Sugar (g) 32.9 ± 22.9 34.2 ± 29.3 

Total Fiber (g) 16.3 ± 5.9 17.5 ± 7.8 

Soluble Fiber (g) 5.7 ± 2.3 6.2 ± 2.3 

Insoluble Fiber (g) 10.2 ± 4.6 11.7 ± 6.1 

Glycemic Index 58.8 ± 5.4 59.2 ± 5.3 

Glycemic Load 92.5 ± 43.1 98.8 ± 38.6 

β-Carotene (μg) 2641 ± 2837 3321 ± 2575 

α-Carotene (μg) 348 ± 442 564 ±    559 

Cryptoxanthin (μg) 120 ± 362 142 ± 287 

Lycopene (μg) 3317 ± 3073 3679 ± 3770 

Lutein + Zeaxanthin (μg) 2416 ± 4393 2385 ± 2773 

1 Values are expressed as mean ± SD.  
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4.3 Anthropometric measurements  

As indicated in Table 3, there was no significant change in weight during the treatment periods. 

However, participants under TA-65 treatment had a BMI of 32.6 kg/m2 which was significantly 

lower when compared to the BMI of 32.9 kg/m2 during the Placebo treatment. (p < 0.05). The 

waist circumference was also lowered from 109.8 to 108.9 cm during the TA-65 treatment period 

when compared to the supplement period (p < 0.05) (Figure 3).  

 

 

Figure 3. Change in WC in MetS participants (n=37) after consuming TA-65 or placebo for 

12 weeks 
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Table 3. Anthropometric and plasma biomarkers of participants with 

Metabolic Syndrome (n = 37) after consuming TA-65 or placebo for 12 

weeks 

Parameter TA-65 Placebo 

Weight (kg) 92.1 ± 16.8 a 92.7 ± 17.1 a 

BMI (kg/m2) 32.6 ± 3.8a 32.9 ± 3.9b 

Waist Circumference (cm) 108.9 ± 10.1a 109.8 ± 10.8 b 

Systolic BP (mm Hg) 123.8 ± 10.5 a 124.9 ± 13.5 a 

Diastolic BP (mm Hg) 83.6 ± 8.0 a 83.8 ± 8.9 a 

Total Cholesterol (mg/dL) 178.4 ± 32.8 a 182.7 ± 40.1 a 

LDL-c (mg/dL) 100.5 ± 30.1 a 104.1 ± 36.3 a 

HDL-c (mg/dL) 52.9 ± 21.5 a 49.3 ± 17.8 b 

LDL-c/HDL-c Ratio 2.15 ± 0.90 a 2.43 ± 1.14 b 

Triglycerides (mg/dL) 124.8 ± 67.3 a 131.2 ± 62.7 a 

Glucose (mg/dL) 104.5 ± 13.3 a 103.6 ± 11.7 a 

Insulin (pmol/L) 58.3 ± 37.7 a 57.9 ± 43.4 a 

HbA1c (%) 5.54 ± 0.45 a 5.54 ± 0.48 a 

ALT (U/L) 31.2 ± 11.1a 34.5 ± 18.7 a 

AST (U/L) 26.2 ± 7.1 a 28.9 ± 21.8 a 

CRP (mg/dL) 0.39 ± 0.41 a 0.41 ± 0.44 a 

 a,b Values are expressed as mean ± SD. Values in the same row with different superscripts are 

significantly different at p < 0.05 
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4.4 Plasma lipids, fasting blood glucose, glycosylated hemoglobin, insulin, liver 

enzymes and CRP 

Results from Table 3 shows no differences in systolic and diastolic BP, total cholesterol, plasma 

TG, or in parameters of glucose metabolism (plasma glucose, HbA1c, or insulin). 

However, HDL-c was higher (p < 0.05) (Figure 4) and the LDL-c/HDL-c ratio (p < 0.05), a key 

marker of cardiovascular disease risk, was lower in participants following the TA-65 period 

(Figure 5). In addition, there were no changes in ALT, AST or CRP between treatments. 

 

 

Figure 4. Change in HDL-c in MetS participants (n=37) after consuming TA-65 or placebo 

for 12 weeks 
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Figure 5. Change in LDL-c/HDL-c in MetS participants (n=37) after consuming TA-65 or 

placebo for 12 weeks 
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4.5 Lymphocyte telomere length 

Telomere length did not change following TA-65 treatment across the whole intervention. 

However, Figure 5 depicts a pattern observed in the 2 randomly assigned panels of treatment 

during the intervention. In panel A (consisting of 17 participants, who started with TA-65) had a 

0.29% reduction in telomer length which reduced further to a 0.72% when they switched to placebo 

treatment. Whereas in Panel B consisting of 20 participants who started with placebo, there was a 

2% reduction in telomere length followed by a 0.15% increase in telomer length when they 

switched to TA-65 treatment. These results suggest that if they had continued to take TA-65, 

telomer length would have been maintained. 

 

 

Figure 6.  Comparisons of telomere length at baseline, followed by either the TA-65 or 

placebo supplementation in the 2 randomly assigned groups: Panel A (n=17) and Panel B 

(n=20). There were no significant differences in telomere length.  

 



 37 

4.6 Correlation of granulocyte and lymphocyte telomere length with age 

As depicted in Figure 6, an inverse relation was observed between the granulocyte and 

lymphocyte telomere length to the age of the MetS participants at baseline. In participants 

ranging from ages 32 to 71, the length of telomere decreased with increase in age.  

 

 

Figure 7. Correlation between telomere length and age in MetS participants at baseline 

(n=40) 
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4.7 Correlation between changes in HDL-c with changes in CRP 

A negative correlation was observed between the changes in HDL-c with the liver enzymes (AST 

and ALT) and CRP. (Table 4).  The correlation of changes in HDL-c with these biomarkers may 

suggests a protective role of HDL-c against inflammation.  

 

Table 4. Correlations between changes in HDL-c with liver enzymes and 

CRP between the placebo and the TA-65 periods  

Parameter Correlation P value 

ALT -0.610 0.0001 

AST -0.445 0.001 

CRP -0.511 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39 

Chapter 5 

Discussion 

By studying 37 participants who were treated with TA-65 for 12 weeks (August 2015 - August 

2017), we were able to examine protective effects of this supplement and its association with the 

parameters of MetS, dietary intake and telomere length. In this pilot study, we have inferred that 

TA-65 exerts some protective effects in individuals with MetS as demonstrated by the lower BMI, 

WC and LDL-c/HDL-c ratio, and the higher HDL-c following a 12-week treatment as compared 

with placebo. The results show no significant changes in telomere length during both the treatment 

periods, while sustaining the telomere length after 3 months of not consuming TA-65 indicating 

possible extended effect of TA-65 in maintaining telomere length. However, this has to be 

investigated further. 

 

5.1 Baseline characteristics: 

5.1.1 Central obesity as the chief predictor of MetS 

The high BMI (32.3 ± 2.7 kg/m2) at baseline assessment is clear evidence that obesity plays a 

major role in the metabolic complications seen in this population. Central obesity is the most 

common feature of MetS, which generally increases the risk for developing T2D and CVD (127). 

However, not every obese subject is resistant to metabolic actions of insulin or at increased risk of 

developing T2D and CVD. This seems to be true for the population under study since although the 

fasting plasma glucose was elevated, their insulin as well as CRP were within the normal range. 

Therefore, obesity has been a well-defined modifiable risk factor for CVD on the same level with 

smoking, hypertension and dyslipidemia. However, aside from total body fat, subjects with 
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increased amounts of visceral fat (intra-abdominal fat) are more prone to be classified with insulin 

resistance and MetS than individuals without or with less abdominal obesity. 

 

The main concerns of obesity are fat stores/deposition and fat distribution. Kissebah et al outlined 

that body fat distribution and adipocyte size are important markers of metabolic complications in 

women (128). BMI, however, does not have an ability to indicate body fat distribution, thus we 

also assessed WC as an anthropometric marker of central obesity. The mean value of WC in this 

population was 113.9 ± 13.2 for men and 105.1 ± 8.9 for women, therefore almost 12 cm greater 

than the cut-off point in the NCEP ATP III definition (102 cm) and even greater (17cm) than that 

for women (88 cm) (17).  

 

5.1.2 Telomere length as a marker of aging 

The MetS participants ranging in age from 32-70, showed a correlation of progressive shortening 

of telomere length as they aged. Leukocyte telomere length has been identified as a biomarker of 

aging (90). The baseline data depicted the same pattern reviewed by previous studies on telomere 

length shortening with age. This inverse relation in telomere length might be accelerated by 

metabolic defects of MetS such as dyslipidemias and insulin resistance (39) in addition to the 

production of inflammatory mediators and reduced anti-oxidant production, increases in 

dysregulation of the insulin receptor leading to insulin resistance and dyslipidemias. The 

shortening of telomere length with age could thus be a marker to predict an individual’s 

deteriorating metabolism and health condition (100,101). In vitro research and controlled animal 

studies in human cells, have shown that long term TA-65 use supports enhanced telomerase-

activation thereby resulting in enhanced lifespan (103). Telomerase enhances the number and 
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quality of healthful years, though it does not necessarily lengthen lifespan. There have been no 

negative side effects, as the molecule acts in a transient, non-pathogenic fashion (103)  

 

5.2 Dietary intake 

The 3-day dietary assessment and the analysis of daily dietary intake during the treatment showed 

no significant changes in eating pattern. This eliminated the chances of the interference of dietary 

components into the results. Life style changes including successful modifications by energy 

restriction of dietary macronutrients, incorporation of functional foods and bioactive nutrients, 

adherence to the Mediterranean diet in addition to regular exercise serves as a proved therapeutic 

treatment for MetS (12). Dietary intake modification is a key strategy to reduce MetS. The 

participants of this study who were blinded to the treatments maintained the same life style and 

did not modify their diet or exercise pattern throughout the intervention. Also, the diet intake 

pattern of the participants when compared to healthy adults seems to show a greater consumption 

of saturated fats with lower intake of dietary fiber. The prevalence of central obesity in this 

population might be a result of that dietary pattern.  A deliberate change in the dietary pattern 

during the TA-65 treatment could prove to be more effective than the sole consumption of TA-65 

following an unhealthy dietary pattern. 

 

5.3 Improvement in anthropometric markers when comparing TA-65 and placebo 

treatments by lowering waist circumference and BMI. 

Abdominal obesity is the most common feature of MetS and is associated with increased release 

of free fatty acids into the circulation, which target specific organs leading to dyslipidemia, insulin 

resistance, and inflammation (127). As seen in the results, a small but significant lowering in waist 
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circumference and BMI levels were observed after the TA-65 treatment when compared to the 

placebo. The mechanism for this improvement is unclear.  However, the diet records of participants 

reveal a non-significant decrease in total calories and in carbohydrate intake, where high intake of 

both is highly associated with increased WC (129). Therefore, we speculate that TA-65 may have 

affected the behavior of our participants and that they followed a healthier eating pattern during 

the TA-65 period, which resulted in the positive effects on WC.  Daubenmire, et al. (130) have 

reported previously that being enrolled in a mindfulness intervention pilot study affected 

telomerase activity in a positive manner and they found a positive correlation between restrained 

eating and telomerase activity. 

 

5.4 Cardio-protective effects of TA-65 

Previous studies have recorded that intake of TA-65 results in improvement of plasma lipids. In 

the current study, although no differences in TC or TG were observed between TA-65 and placebo, 

HDL-c was higher at the end of TA-65 and, consequently, there was a significant decrease in the 

LDL-c/HDL-c ratio, a very well-known biomarker of cardiovascular disease risk (133).  

 

The Framingham study as well as others that followed have shown that HDL-c is an independent 

cardiovascular risk factor and an increase in HDL-c of only 10mg/dL leads to a reduction of 2-3% 

in CVD (116,117)). It was found that low HDL-c was even associated with increased mortality 

(118). Thus, raising HDL-c reduces the risk of CHD (119). HDL-c promotes reverse cholesterol 

transport from the periphery (mainly macrophages) to the liver but also exerts pleiotropic effects 

on inflammation, hemostasis and apoptosis (119). A retrospective cohort study in Taiwanese adults 

with MetS has shown that the individual components of MetS, especially low HDL-c and 
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hypertension were better predictors of CVD mortality than MetS as a whole (120). The Quebec 

cardiovascular study which followed 2103 middle aged men for 5 years showed that plasma HDL-

c was an independent marker of CHD and recommended that raising plasma HDL-c is a therapeutic 

target for optimal prevention of CHD (121). Hence the slight increase in HDL-c that we observed 

during the TA-65 treatment is of utmost importance as it reduces the risk of CHD as well as CVD 

associated mortality. 

While it is established that HDL-c is an independent protective risk factor for atherosclerotic CVD 

and LDL-c increases CVD risk, the LDL-c/HDL-c ratio reflects the two-way traffic of cholesterol 

entering and leaving the arterial intima in a way that the individual levels of LDL-c and HDL-c do 

not (132). It has also been suggested that LDL-c/HDL-c is a more robust risk indicator of CVD 

than the individual parameters (122-125,133). In a middle aged male population assessed at 

baseline in the Finnish Kuopio Ischemic Heart Disease prospective cohort study, it was found that 

a high serum LDL-c/HDL-c ratio was independently associated with an increased risk of SCD 

(Sudden cardiac death) (126). The current NCEP guidelines recommend levels of LDL and HDL 

that represent a ratio of 2.5 or lower (134). Coronary deaths spiked when LDL-c/HDL-c ratio was 

raised between 3.7 and 4.3 (135). In the Physician’s health study involving around 15,000 men of 

ages 40 to 80, a 1 -unit increase in the ratio was associated with a 53% increase in risk of MI (130). 

In the Boston Area Health Study, which analyzed a group of men and women less than 76 years 

of age with no prior history of CVD but who had experienced a first MI, a 1-unit increase in the 

LDL-c/HDL-c ratio was associated with a 75% increase in risk of MI (131). In addition, 

comparison of individual LDL-c/HDL-c ratios from subjects in the Framingham Study clearly 

indicates that the ratios are significantly more durable predictors of CVD than the individual levels 

of LDL-c or HDL-c (132) 
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Thus, the raising of HDL-c and lowering of LDL-c/HDL-c during the TA-65 treatment exerts 

minor but powerful cardio protective effects. 

 

5.5 Pattern of telomere length  

The characterized function of TA-65 is its ability to decrease the shortening of telomeres during 

DNA transcription. In mouse embryonic fibroblasts, TA-65 has been shown to ameliorate the 

number of short telomeres and decrease the percentage of critically short telomeres as well as DNA 

damage that harbors critically short telomeres (7). In humans, it has also been shown that the small 

molecule telomerase activator (TAT2) isolated from Astragalus membranaceus induced 

telomerase activity in peripheral blood mononuclear cells and T lymphocytes and increased their 

antiviral functions (106). Furthermore, human supplementation with TA-65 as well as other dietary 

supplements have been shown to reduce the percentage of cells with short telomeres (9). 

 

 In the present study, no significant change in telomere length was observed during the two arms 

of treatment. However, a non-significant pattern was seen in the 2 panels of treatment. TA-65 does 

its job in protecting the end region of chromosomes by preventing loss of telomere length. 

Telomerase activator stimulates the production of Telomerase enzymes which prevents further 

attrition of the TL. The pattern showed no decrease in telomere length thereby showing a tendency 

to maintenance or prevent of shortening of telomere length which is the classic function of TA-65. 

Life style modifications with increased physical activity paired with carbohydrate restricted diet 

and/or Mediterranean diet has previously been shown to offer reduction in MetS risk and further 

complications of MetS (12). Boccardi, et al. on the other hand, reported that a healthy diet such as 

Mediterranean diet promoted health-span by maintaining rather than increasing telomere length 
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suggesting that both maintenance and increases of telomere length are important determinants of 

aging (131). Other studies have also shown that the main functions of telomerase activity are 

slowing telomere attrition by preserving the proliferative potential of stem cell (44,45). Hence diet 

restrictions with long term supplementation of TA-65 might pose better effects than the present 

study where diet restrictions were not present.  

 

5.6 Conclusion 

TA-65 supplementation in MetS participants for 12 weeks when compared to a placebo exerted 

some protective effects against dyslipidemia and waist circumference, which are metabolic 

abnormalities associated with MetS. While no significant change in telomere length was observed 

during the treatments, a pattern of maintenance of telomere length was observed after TA-65 

treatment suggesting a protective effect in life expectancy. Since MetS is a precursor to the 

development of Type-2 diabetes or heart disease, dietary strategies for reversal of MetS biomarkers 

may be a preventative treatment for this at-risk population. Therefore, the effect of TA-65 

supplementation along with strict diet and exercise modifications may improve symptoms of MetS 

or reduce future health complications.  

 

Strengths of the study 

Since scarce information exists on the effects of TA-65 on parameters of MetS, this was a unique 

pilot study involving a population at risk for heart disease and diabetes.  
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Limitations and future directions 

1. The long-lasting effect of TA-65 could not be clearly depicted in the study as the intervention 

lasted only 27 weeks with participants consuming TA-65 only for 12 weeks. A similar study with 

larger sample size and longer duration would give more information on the protective effects of 

TA-65.  

 

2.Another future direction would be to assess ethnicity and to adjust for ethnic differences in 

statistical analyses. It is well established that parameters of MetS vary in different populations, 

thus our results may have been biased by ethnicity.  
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