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The number of (TTAGGG)n repeats at the ends of chromosomes is highly variable
between individual chromosomes, between different cells and between species.
Progressive loss of telomere repeats limits the proliferation of pre-malignant human
cells but also contributes to aging by inducing apoptosis and senescence in normal
cells. Despite enormous progress in understanding distinct pathways that result in loss
and gain of telomeric DNA in different cell types, many questions remain. Further studies
are needed to delineate the role of damage to telomeric DNA, replication errors, chromatin
structure, liquid-liquid phase transition, telomeric transcripts (TERRA) and secondary DNA
structures such as guanine quadruplex structures, R-loops and T-loops in inducing gains
and losses of telomere repeats in different cell types. Limitations of current telomere length
measurements techniques and differences in telomere biology between species and
different cell types complicate generalizations about the role of telomeres in aging and
cancer. Here some of the factors regulating the telomere length in embryonic and adult
cells in mammals are discussed from a mechanistic and evolutionary perspective.

Keywords: telomerase, telomere length measurements, telomere replication, telomere length regulation,
development, quadruplex DNA, tumor suppression, lifespan
INTRODUCTION

Ever since it was observed that telomere repeats are lost with each DNA replication cycle in vitro (1)
as well as with age in human tissues (2, 3) and that such losses are mechanistically linked to
replicative senescence (4), the role of telomeres and telomerase in aging and cancer has been the
subject of intensive research efforts (reviewed in (5–8)). As a result, the amount of relevant
information can no longer be effectively communicated in a single review, posing a major challenge
for researchers entering the field. This dilemma is by no means unique to the telomere field and this
perspective does not pretend to solve it. Instead, it is hoped that a discussion of selected studies and
observations will inspire discussion, insights and new experiments. For this purpose, a general
discussion of the mechanisms involved in the elongation and the shortening of telomeres is followed
by a discussion of factors and pathways that are implicated in regulating the number of telomere
repeats at chromosome ends in embryonic and adult cells.
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TELOMERE LENGTH REGULATION:
“THE LANDSCAPE”

That complete replication of linear chromosomes could
represent a problem was already proposed in the early 1970s
(9, 10) and the “end-replication problem” is a now a well-
recognized cause of telomere attrition (reviewed in (11). In
most organisms with linear chromosomes the solution to the
“end-replication problem” is extension of the 3’ end of DNA
template strands by means of telomerase, a specialised reverse
transcriptase (12, 13). However, telomerase is not the only
solution to the “end replication problem”. For example,
Drosophila melanogaster uses a transposition mechanism to
replenish the DNA lost with each DNA replication cycle
[reviewed in (14)].

Unfortunately, understanding the Yin and Yang at the
telomere: the end replication problem and its primary solution,
telomerase, only scratches the surface of why all chromosomes
end up with a given number of telomeric repeats at any given
point in time. While much progress has been made in the
characterization of the molecules and processes involved in the
loss and gain of telomere repeats at chromosome ends, many
questions remain unsolved. Further work is needed to better
understand the role of telomerase and its interaction with
chromosome ends, the role of telomere chromatin (reviewed in
(15) and the “shelterin” proteins that bind to telomeric DNA
(reviewed in (16) in telomere function in different cell types
during development and adult tissues. The “shelterin” complex is
a set of related complexes that not only differ between cells but
also function differently along the telomere at different stages of
the cell cycle (reviewed in (7). Other areas that require further
study are how cells respond to the DNA damage signals derived
from critically short telomeres and how the composition of
“shelterin” proteins is modulated by telomeric TERRA
transcripts (reviewed in (17), R-loops and guanine quadruplex
(G4) structures (reviewed in (18, 19).

Apart from differences between cell types, a complicating factor
is that the regulation of telomerase and telomere length in various
cell types is markedly different between short- and long-lived
animals (reviewed in (5). Low levels of telomerase limit the
replicative potential of somatic cells in long-lived animals
including humans but not in relatively short-lived animals such as
laboratory mice. Most likely, replication-dependent telomere
erosion in somatic cells protects long-lived animals against
tumors early in life be it at the expense of tissue regeneration and
immune responses late in life. This idea, captured in the “telomere
erosion in disposable soma (TEDS)” theory of human aging (5),
provides the framework for the following discussion of telomere
length regulation in human cells.
LOSS OF TELOMERIC DNA

Next to the loss of telomeric DNA via the “end-replication problem”,
telomeric DNA is also lost via the obligatory processing of
chromosome ends following leading strand DNA replication (20).
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The resulting blunt ends must be processed in order to create a single
strand 3’ overhang that is presumed to be present and required at
every chromosome end. Apart from inevitable losses of telomeric
DNA with each replication cycle, telomeric DNA can also be lost by
other, less predictable mechanisms. Sporadic problems can arise
following various types of damage to telomeric DNA but also when
single stranded G-rich telomeric DNA is allowed to form secondary
structures that interfere with replication or repair. In principle, all
processes that disrupt duplex telomeric DNA can generate single
stranded DNA which in turn can form secondary DNA structures
known as guanine quadruples (G4) structures (21). Next to G4
structures, single stranded G-rich DNA, folded back into duplex
telomeric DNA called T-loops, and RNA transcripts of telomeric
DNA called TERRA, associated with telomeric DNA in structures
called R-loops, can also cause stalling of the replication fork (22–24).
In view of the variable length of TERRA and single stranded G-rich
DNA telomere repeats, a variety of G4 structures could form at
telomeres including stable hybrid G4 structures containing both RNA
and DNA (25).

Unlike elsewhere in the genome, where a stalled replication
fork can be rescued by a fork coming from the opposite direction,
rescue by incoming forks is not expected at telomeres unless
replication is initiated from origins within the telomere upon
replication stress (26). Progression of the replication fork at
telomeres can also be hampered by other types of DNA lesions
including intra-strand crosslinks as well as tightly DNA-bound
proteins in telomeric heterochromatin (11). Stalled replication
forks can lead to fork collapse and breaks in telomeric DNA.
When such breaks are not repaired by telomerase or
recombination (27), large tracts of telomere repeats are lost.

Observations of telomeric DNA at individual chromosome
ends in human and murine cells using quantitative fluorescence
in situ hybridization (Q-FISH) documented heterogeneous
telomere length distributions as well as sporadic loss of
telomeric DNA (Figure 1) (5, 30–32). Importantly, in cells
with low or undetectable telomerase levels such as human
fibroblasts, the biological consequences of sporadic losses of
telomeric DNA add to the inevitable loss of telomere repeats
with each replication cycle to accelerate the replicative
senescence or apoptosis of cells.
SOLVING ADDITIONAL PROBLEMS THAT
ARISE DURING TELOMERE REPLICATION

Most problems at telomeres probably arise or become apparent
during DNA replication. Apart from the inevitable problems
during replication discussed above several additional problems
have been identified (reviewed in (11)). Lagging strand
replication of telomeric DNA involves either the regular
lagging strand DNA replication complex or a replication
complex that is more specific to telomeres involving CTC1,
STN1 and TEN1, a set of proteins known as the CST complex
(7). The CST complex is similar but different from RPA, the
protein complex that typically binds single strand DNA. The
CST complex is required for “fill-in” synthesis of C-rich DNA
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from G-rich templates extended or produced by telomerase.
Where or when lagging strand replication switches from RPA
to CST during replication of telomeric DNA in the absence of
telomerase is not known. CST protein levels could be important
to suppress the formation of G4 structures from single stranded
G-rich DNA at telomeres produced by telomerase or exposed
during replication, transcription or recombination. The POT1
protein is another protein that binds to single stranded G-rich
DNA to suppress the formation of G4 structures (33) and the full
extent of its roles in telomere biology remains to be clarified (34,
35). In general, more studies are needed to better understand the
role of DNA damage response pathways in telomere function.
Such studies should elucidate the balance between proteins that
suppress the formation of G4 DNA at telomeres and helicases
such as RTEL1, BLM and FANCJ that are capable of unwinding
G4 structures (36). Differences between cell types and the
stochastic nature of G4 DNA formation provide significant
challenges for such studies.
MULTIPLE MOLECULAR EXCHANGES
AT TELOMERES

The switch between a protected telomere end and a chromosome
end that signals DNA damage has many levels and components.
Many of these components themselves have switch-like
Frontiers in Oncology | www.frontiersin.org 3
characteristics in that two alternate states can be present or
selected. For example, it is possible that telomere damage
signaling involves a liquid-liquid phase separation in the
nucleus between heterochromatin and euchromatin (reviewed
in (37–39). Both the position of telomeres in the nucleus and
studies of telomere mobility provide some support for this
possibility. Telomeres in human lymphocytes are not randomly
distributed in the nucleus but appear positioned at the interface
between euchromatin and heterochromatin (Figure 2).
Interestingly, when the movement of telomeres in cultured
mouse embryonic stem cells was studied using telomere
binding protein tagged with green fluorescent protein (Venus-
TRF1), it was observed that the faintest fluorescent spots showed
the highest mobility. These findings are illustrated in Figure 3
(see also Supplementary Movies 1–3). More rapid movements
of short telomeres were also observed with human cells (41).
Together these observations suggest that a minimum number of
telomeric repeats at chromosome ends could be required to
anchor telomeres in heterochromatic areas of the nucleus. Such a
location is expected to suppress transcription as well as activation
of DNA damage signaling pathways.

Liquid-liquid phase transitions are known to be important for
the regulation of transcription and DNA repair (42, 43) and have
also been implicated in the function of telomeres (44).
Unfortunately, studies of the role of liquid-liquid phase
separation in telomere function (and biology in general) are
complicated by the difficulty to reconstitute relevant phase
FIGURE 1 | Q-FISH shows extreme variability in the length of telomere repeats in human (A) and mouse (B) chromosomes. (A) Human metaphase chromosomes
stained with DAPI (blue) from a cultured fibroblast following hybridization with Cy3 labeled (CCCTAA)3 PNA (yellow). Note the large variation in telomere fluorescence
intensity at individual chromosome ends, discrepancies in telomere fluorescence between sister chromatids and occasional telomere fluorescence spots outside
chromosomes*. (B) Mouse metaphase chromosomes from a cultured skin fibroblast hybridized sequentially with a mixture of different fluorescent probes: first Cy3 labeled
(CCCTAA)3 PNA (B, top left panel) and FITC labeled CGGCATTGTAGAACAGTG PNA specific for mouse minor satellite sequences (B, bottom left panel) followed by
staining of DNA with DAPI, image acquisition and hybridization with FITC labeled chromosome paint probe specific for respectively chr2 and chr11 (B, bottom right
panel). Telomere length was analyzed using the TFL-Telo software (B, top right panel) (28). Note the very short telomeres on the short arm of chr “16” and the very long
telomeres on the long arm of chr “22” (arbitrary chromosome numbers and fluorescence intensity values). For details see (29, 30).
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transitions in the laboratory. It is possible that the transition
between duplex telomere repeats and G4 DNA also acts as a
switch, perhaps facilitating liquid-liquid phase transitions and/or
activating DNA damage signaling pathways (45, 46). Other
switch events at telomeres that need further study include the
increased mobility of histones in telomere chromatin (15), the
switch from RPA to CST during telomere replication (reviewed
in (7), the initiation and suppression of telomere transcription
(reviewed in (47) and the role of subtelomeric DNA and
associated proteins including boundary elements such as CTCF
in subtelomeric chromatin and telomere function (reviewed in
(48). Further studies of these factors and their interplay promise
to yield interesting results.
REGULATION OF TELOMERE LENGTH IN
GAMETES AND EARLY EMBRYOS

The starting telomere length at the onset of life is presumably the
telomere length present in the gametes from the parents. Little is
known about the regulation of telomere length in oocytes of females
Frontiers in Oncology | www.frontiersin.org 4
throughout their reproductive lifespan. Perhaps all oocyte
precursors express telomerase during embryonic development
similar to spermatogonial stem cells in the mouse (49, 50).
However, the average telomere length in human oocytes was
reported to be around 1 kb shorter than in blastocysts, possibly
reflecting loss of telomeric DNA during cell divisions of oocyte
precursors in utero (51). Various factors implicated in regulating
telomere length in embryos were recently reviewed (52). In males,
the telomere length in sperm appears to slightly increase with age
(53) and paternal age was found to correlate with telomere length in
offspring (54). The most important events to shape the telomere
length at birth and throughout life probably occur in the first few
cell divisions of the fertilized oocyte when chromatin is completely
reorganized (reviewed in (55)). First the dense chromatin in
gametes is decompacted (56). The two-cell stage is characterized
by demethylation and a unique gene expression profile that includes
high expression of Zscan4 (57, 58). At this stage telomeres
recombine, presumably to allow elongation and rescue of very
short telomeres or damaged telomeres by break-induced
replication (58, 59). Perhaps the telomere length in sperm
chromosomes is the most important factor in adjusting the
FIGURE 2 | Telomeres in a human lymphocyte are not randomly distributed in the nucleus. Shown are optical sections through the interphase nucleus of a human
T lymphocyte following formaldehyde fixation and fluorescence in situ hybridization with fluorescently labeled (CCCTAA)3 PNA (shown in yellow/green). DNA is
counterstained with DAPI (shown in red). A stack of images, acquired at separate focal planes, was processed using deconvolution microscopy (40). Note that
telomeres appear to cluster at the interface between DNA bright areas, presumably reflecting heterochromatin and DNA weakly stained areas, presumably
representing euchromatin (Chavez and Lansdorp unpublished observations).
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telomere length at the 2-cell stage. Suppression of G4 structures at
telomeres could be particularly important when telomere chromatin
is decompacted and telomerase is expressed at high levels.
Undifferentiated human embryonic stem cells were reported to
express high levels of G4 DNA (60). Telomere length adjustments at
this stage could reflect a balance between single stranded G-rich
DNA synthesized by telomerase, the CST proteins binding to
such DNA, G4 DNA formation, G4 unwinding by helicase
activity, C-strand “fill in” synthesis and various recombination
processes. A major role for G4 DNA in the regulation of telomere
length is supported by studies of mice. Laboratory mice, Mus
musculus, with very long telomeres (>40 Kb) differ from Mus
spretus mice with relatively short telomeres (~10 Kb) in RTEL1,
the Regulator of Telomere Length helicase predicted to unwind
guanine G4 structures at telomeres (29, 36, 61). More studies are
needed to define the role of telomerase expression (62), primer
sequestration, CST proteins and fill-in replication (63, 64) in the
regulation of telomere length. Such studies should also clarify the
role of factors suppressing the formation of G4 DNA at telomeres
such as the CST complex (7), RAP1 (65) and POT1 (33) as well as
helicases that can unwind G4 DNA structures that include, next to
RTEL1, FANCJ (66) and BLM (67, 68). The protection of
chromosome ends from DNA damage response pathways in early
embryonic cells is very different from that in somatic cells (59, 69).
How differences in end protection relate to telomere length
adjustments will require further study. Such studies are
complicated by the small numbers of relevant cells as well as the
highly dynamic events within and between cell divisions during
early embryogenic development.
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Following telomere length adjustments at the 2-cell stage,
telomerase expression in embryos may result in further
elongation of telomeres. While the level of telomerase RNA
appears to be the main limiting factor for telomerase activity
in embryonic stem cells (70), it is possible that telomerase
levels in blastocysts are further upregulated by low oxygen
levels perhaps via induction of hTERT expression by the
transcription factor hypoxia inducible factor 1 (HIF-1) alpha
(71). The relatively high oxygen levels in typical tissue culture
experiments (20%) do not match the much lower oxygen levels
encountered by most cells in vivo and reducing oxygen levels
during tissue culture increases the replicative potential of many
cells in vitro (reviewed in (72). Culture of embryos at reduced
oxygen levels could not only increase telomerase activity but also
limit oxidative damage to telomeric DNA. Culture of embryos
for assisted reproductive technologies should explore the effect of
oxygen levels with some urgency given that reductions in
telomere length prior to embryo implantation could have
biological effects that only appear many years later. Future
studies should also explore whether sex differences in telomere
length and lifespan indeed reflect higher levels of dyskerin and
telomerase in embryonic cells as was recently proposed (73).
More generally, apart from overexpressing telomerase in cells,
which seems neither feasible or advisable in vivo, measures that
reduce exogenous damage to telomeric DNA represent perhaps
the most effective ways to increase the replicative potential of
cells in vitro and in vivo.
TELOMERE REGULATION IN UTERO

Telomerase levels are down-regulated in most human cells at
some point during in utero growth and differentiation to limit
the number of subsequent cell divisions. Both alternative splicing
and transcriptional regulation of the telomerase transcriptase
gene (hTERT) have been implicated in the silencing of
telomerase activity (8, 74). However, details of the timing and
degree of telomerase silencing during development and
differences between specific cell types remain to be clarified.
Downregulation of telomerase activity in somatic cells of long-
lived animals was proposed to increase reproductive fitness by
suppressing the growth of malignant tumors before reproduction
(5). Several findings support this theory. Surprisingly,
somatic mutations in dividing and non-dividing human tissues
accumulate at a very similar rate of between 10-40 mutations per
cell per year (75). In this study, cells of the germline were found
to acquire only 1-2 mutations per year. Given that tumors arise
by acquisition of mutations, one can wonder why DNA repair in
somatic cells is not as effective as in cells of the germline. Apart
from evolutionary arguments about the importance of germline
versus somatic DNA in cells, the answer could involve a trade-off
between the energy required to limit the acquisition of somatic
mutations by improving DNA repair and other ways to suppress
malignant growth prior to reproduction. Targeting telomerase
expression levels in somatic cells to suppress tumors before
FIGURE 3 | High mobility of very short telomeres in cultured mouse
embryonic stem cells. Viable cells, tagged with Venus-TRF1, were imaged at
a fixed position over 10 minutes. The position of individual fluorescent
telomere spots was recorded every 10 seconds. Two categories of telomere
spots were observed: low intensity spots and high intensity spots. The
recorded position of each spot at each time interval was used to calculate the
travel distance of individual telomeres. See Supplementary Information and
Supplementary Movie 3 for details.
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reproduction could have provided a selective advantage that
allowed lifespan to increase during evolution (5). Subsequent
cell-type specific adjustments of telomerase levels could have
allowed further increases in fitness. However, a requirement for
tumor suppression by telomere shortening is that senescence or
apoptosis is indeed enforced when telomeres become critically
short. Given that most malignant tumors are deficient in p53, the
Achilles heel of tumor suppression via telomere erosion in
humans is perhaps loss of p53, resulting in failure to impose
cell cycle arrest or apoptosis when telomeres are too short (6, 8,
76). Mechanistically, it seems possible that frequent loss of p53
on chr17p is related to the very short telomeres on that
chromosome arm (77, 78). It is also tempting to speculate that
multiple copies of p53 genes in long-lived animals such as
elephants (79) reflect selection of more effective tumor
suppression via DNA damage signals originating from
short telomeres.
VARIABLE TELOMERASE SUPPRESSION
IN SOMATIC CELLS

Next to the gradual loss of telomeric DNA with each cell division,
sporadic loss of telomeric DNA also contributes to telomere
shortening. Indeed, such losses are likely to underpin the
strikingly heterogenous telomere length in human and murine
cells. Sporadic truncation of telomeric DNA at specific
chromosome ends was well-documented in cultured human
fibroblasts (80). It is possible that the function of residual
telomerase activity in most human somatic cells is not to prevent
overall telomere shortening but to prevent premature senescence
triggered by the sporadic loss of telomeric DNA (5). The need for
such “telomere repair” by telomerase is expected to increase not
only as a function of the overall telomere length but also as a
function of the number of telomeres with damaged DNA.
Differences between cells in the efficiency of telomere repair by
telomerase argue against telomere shortening acting as a simple
“mitotic clock” in all human somatic cells given that the number of
cell divisions prior to replicative senescence could vary as a function
of telomerase levels. Fibroblasts, with little if any telomerase activity,
could encounter critical loss of telomeres and replicative senescence
earlier than hematopoietic stem cells or T lymphocytes which have
easily detectable telomerase activity (5). Telomerase activity could be
regulated at many levels, ranging from regulation of gene expression
and alternative splicing to variable processing of transcripts,
proteins and assembly of the telomerase holoenzyme. Perhaps
germinal center (GC) B cells represent the most extreme example
of high telomerase activity in human somatic cells (81, 82). High
levels of telomerase in GCB cells elongate telomeres relative to naive
B cells, perhaps allowing some B cells to avoid the Hayflick limit
altogether. Elongation of telomeres in GC B cells could reflect the
need to enable more numerous replication cycles to support
effective antibody production following clonal selection and
affinity maturation. More effective antibody responses may have
provided a selective advantage during evolution be it at the cost of
increasing the risk of malignant transformation (5). This notion is
Frontiers in Oncology | www.frontiersin.org 6
compatible with observations indicating that B cell lymphomas in
human adults are much more common than T cell lymphomas and
that haploinsufficiency for telomerase causes pronounced defects in
B cell responses (83). More generally, telomere-mediated limits in
the proliferation of lymphocytes are likely to eventually compromise
all different types of immune responses including those against
other viruses and microorganisms (84) as well as tumor cells that
can be recognized by the immune system (5). Of note, short
telomere length in leukocytes was reported to correlate with poor
outcome of COVID-19 infection irrespective of age (85).
LOSS OF TELOMERE REPEATS IN ADULT
HUMAN CELLS

The decline in telomere length over a human lifetime has been
most clearly documented for leukocyte subsets using
fluorescence in situ hybridization and flow cytometry or “flow
FISH” (86). Rapid decline in telomere length is observed in the
first few years of life in line with rapid cell divisions as well as a
“mitotic clock” ticking in hematopoietic stem cells (87, 88).
These findings were recently discussed in the context of the
“Telomere Erosion in Disposable Soma” theory of human aging
(5). The essence of this theory is that replicative senescence could
be advantageous as a tumor suppressor mechanism early in life
but disadvantageous late in life by limiting cell proliferation and
tissue regeneration. Interestingly, differences in average telomere
length and lifespan between males and females are correlated and
perhaps reflect differences in embryonic telomerase levels (73).
Given the role of oxidative damage to telomeric DNA in telomere
shortening (89), further studies of the effect of oxidative stress
on leukocyte telomere length dynamics are of interest.
Paradoxically, chronic and acute oxidative stress appear to
have opposite effects on telomere length in vivo. Exposure to
high oxygen levels in deep sea divers was shown to result in
transient elongation of telomeres in leukocytes (90). In this study
the telomere length returned to below baseline levels after a year.
Perhaps replacement of cells lost by damage from oxidative stress
increased the turnover of primitive stem cells (with longer
telomeres) which would otherwise have stayed dormant longer.
It is possible that a similar “robbing Peter to pay Paul” principle
applies to the reported elongation of leukocyte telomeres during
space flight in pure oxygen (91). In general, further long-term
studies of telomere length in relation to health outcomes are
needed to develop a clearer picture of telomere-mediated
senescence and regeneration defects in various diseases that are
more prevalent in the elderly.
CONCLUSIONS

While much progress has been made in understanding various
factors and pathways that play a role in regulating telomere
length in different cell types many questions remain unsolved.
Major variables are the length of telomeres in gametes and the
processes at telomeres that occur between fertilization and
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embryo implantation. Variable suppression of telomerase levels
in human somatic cells, ranging from little if any activity in
fibroblasts to high levels in germinal center B cells, further
complicate the picture. Whereas telomere shortening limits the
proliferation of premalignant cells, it also limits immune
responses. Variable suppression of telomerase in different cell
types such as B and T lymphocytes could reflect ongoing
selective forces. A major problem for the field is that all
current telomere length measurements suffer from limitations
(5, 92). Measurements of the average telomere length typically
ignore variation in the length of telomere repeats at individual
chromosomes which could be relevant for biological outcomes.
Most techniques require thousands of cells and obscure
differences between cells. Ideally, novel telomere length
measurements should generate information about the average
length as well as the distribution of telomere length in single cells.
Single cell techniques are also needed to clarify the highly
dynamic processes that result in adjustment of telomere length
in the first few cell divisions after fertilization. With better
telomere length measurements and more insight in telomere
length regulation during development many of the current
outstanding questions will be answered.
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