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Telomeres, oxidative stress and inflammatory
factors: partners in cellular senescence?
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Abstract

Senescence, the state of irreversible cell-cycle arrest, plays paradoxical albeit important roles in vivo: it protects

organisms against cancer but also contributes to age-related loss of tissue function. The DNA damage response

(DDR) has a central role in cellular senescence. Not only does it contribute to the irreversible loss of replicative

capacity but also to the production and secretion of reactive oxygen species (ROS), and bioactive peptides

collectively known as the senescence-associated secretory phenotype (SASP). Both ROS and the SASP have been

shown to impact on senescence in an autocrine as well as paracrine fashion; however, the underlying mechanisms

are not well understood. In this review we describe our current understanding of cellular senescence, examine in

detail the intricate pathways linking the DDR, ROS and SASP, and evaluate their impact on the stability of the

senescent phenotype.
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Introduction

Cellular senescence, the state of irreversible cell cycle

arrest described by Hayflick and Moorhead [1] over 50

years ago, remains an intriguing biological process.

Senescence is characterised by dramatic changes in cell

morphology, including increased cellular volume and

flattening of the cytoplasm [2]. The senescent pheno-

type also results in changes in nuclear structure, gene

expression, protein processing and metabolism, and

resistance to apoptosis [3-6].

Whether senescence exists to any significant extent

in vivo has been the subject of a longstanding debate [7].

In the past decade, remarkable advances have been made

demonstrating that senescence plays an important role

in vivo. Several studies suggest that senescence can act

as a tumour suppressor mechanism [8,9]. On the other

hand, numerous lines of evidence indicate that senes-

cence can, in the long run, have adverse effects, by

impairing organ regeneration and releasing a host of

bioactive molecules, including reactive oxygen species

(ROS) and a wide variety of pro-inflammatory cytokines,

chemokines and growth factors (collectively referred to as

the senescence-associated secretory phenotype (SASP)).

Senescent cells containing telomere-induced foci have

been shown to increase with age in the skin of baboons,

which have similar telomere length to humans and ab-

sence of telomerase activity [10]. In mice, cells bearing

senescent markers have been reported to increase with

age in a variety of tissues [11-13], including post-mitotic

neurons [14]. Moreover, senescent cells have been asso-

ciated with several age-related diseases, such as diabetes

[15] and atherosclerosis [16]. While noteworthy, these

data do not provide causality. A major challenge in the

field has been to determine if and how senescent cells

contribute to age-related tissue dysfunction, or if they

merely correlate with it.

Mounting evidence indicates that activation of pathways

involved in cellular senescence impacts on mammalian

lifespan [17-19]. Recently, the van Deursen group has

shown that inducible elimination of p16Ink4a-positive

senescent cells from the eye, adipose and skeletal tissues in

the BubR1 progeroid mouse model delayed acquisition of

age-related pathologies in these tissues. They showed that

elimination of p16Ink4a-positive cells also attenuated the

progression of already established age-related disorders,

suggesting that cellular senescence may have a causal role

in age-related tissue impairment [20].
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Though several mechanisms responsible for the activa-

tion of senescence have been identified, it is still unclear

how a cell “commits” to becoming irreversibly arrested.

Recent studies have revealed that the SASP, as well as

mitochondrial/metabolic alterations, may contribute to

the reinforcement of the growth arrest via a series of

positive feedback loops involving a persistent activation

of the DNA damage response (DDR) [21-23].

The aim of this review is to describe the current un-

derstanding of cellular senescence, providing special

focus on the intricate pathways that link the nucleus,

mitochondria and secreted proteins, and contribute to

the stability of the senescent phenotype.

Telomeres and the stabilisation of cellular senescence

Telomeres are regions of DNA and associated proteins

present at the end of linear chromosomes; in vertebrates

they are tandem repeats of the sequence TTAGGG [24].

Telomeres are bound by a group of telomere-associated

proteins known as the “shelterin” complex [25]. These pro-

teins are thought to arrange telomeric DNA into a loop

structure known as the T-loop [26]. This structure was first

visualised in purified telomere restriction fragments using

electron microscopy, and it is proposed to prevent the acti-

vation of a DDR by hiding the exposed DNA ends. The

shelterin complex is comprised of six proteins: TRF1, TRF2

and POT1, which recognise the telomeric repeat sequence,

and additional proteins TIN2, TPP1 and Rap1 [25].

Telomere shortening is probably the best studied

mechanism driving cellular senescence. It mainly occurs

during cell division due to the inability of the DNA rep-

lication machinery, specifically DNA polymerase, to syn-

thesise in a 3′-5′ direction leading to the incomplete

replication of the lagging strand. It has been shown

that telomere shortening contributes causally to cellu-

lar senescence, since overexpression of telomerase, an

enzyme able to maintain telomere length, resulted

in cell immortalisation [27]. Mouse models, where

telomere function has been compromised, strongly

support a role for senescence (and telomeres) in the

ageing process. Telomerase knock-out (mTERC−/−)

mice which carry a homozygous deletion of the RNA

component of telomerase [28] show a progressive

generation-dependent telomere shortening, which results

in both cell-cycle arrest and apoptosis [29]. Telomere

dysfunction in mTERC−/− mice has been shown to

limit stem cell function, regeneration, organ homeosta-

sis and lifespan [30].

It is believed that the progressive loss of telomere re-

peats destabilises T-loops [26] and, as a consequence, in-

creases the probability of telomere uncapping (that is,

loss of “shelterin”). Uncapping of telomeres, whether by

inhibition of TRF2 or telomere shortening, has been

shown to activate the DDR in a manner similar to DNA

double strand breaks (DSBs) [31,32]. The DDR can elicit

a transient cell-cycle arrest, allowing sufficient time for

the cellular repair machinery to act and repair the DNA

damage [33]. However, if the damage is irreparable, the

arrest can become permanent. This response is initiated

by the phosphatidylinositol 3-kinase-like protein kinases

ATM and ATR, which phosphorylate proteins such as

H2A.X and NBS1, and downstream kinases CHK1 and

CHK2, which ultimately activate p53 and p21 proteins

[34]. Several groups have reported that senescence is

characterised by a persistent activation of the DDR,

which is necessary for both the development and stabi-

lity of the phenotype [21,35].

One important question is: what contributes to a per-

sistent DDR during cellular senescence? Recent work

has highlighted the importance of telomeres in the

maintenance of senescence. It has been demonstrated

that DNA damage at telomeres can occur as a conse-

quence of genotoxic and oxidative stress, and that this

damage is mostly irreparable [13,36]. In order to estab-

lish whether a telomeric location is necessary for foci to

persist, using live-cell imaging, our group has tracked

the lifespan of DNA damage foci using a AcGFP-53BP1c

fusion protein in combination with a fluorescently

labelled PNA probe that specifically tags telomere re-

peats. Using this method it was found that the majority

of long-lived foci in stress-induced senescent cells co-

localise with telomeres [13], which suggests that they are

major contributors to a persistent DDR.

These findings raise questions regarding how the cel-

lular repair machinery distinguishes telomeres and DSBs.

Non-homologous end joining (NHEJ) is strongly inhib-

ited in telomeric regions, perhaps as a mechanism to

prevent end-to-end fusions [37]. NHEJ is the major path-

way for the repair of DSBs. Moreover, displacement of

TRF2 from telomeres by overexpression of TRF2ΔBΔM, or

conditional deletion of TRF2, has been shown to result in

telomere fusions [37-39]. It has also been demonstrated

in vitro that TRF2 and its binding partner RAP1 are re-

quired to prevent NHEJ-dependent telomeric DNA fusions

by inhibiting DNA-PK and ligase IV mediated end-joining

[40]. Consistent with these data, Fumagalli and colleagues

have shown in budding yeast that induction of a DNA DSB

adjacent to a telomeric sequence impairs the recruitment of

ligase IV to the site of damage [36]. This suggests that da-

mage at telomeres, occurring in the presence of sufficient

shelterin components including TRF2, may elicit a persis-

tent DDR due to inhibition of repair. In accordance with

this hypothesis, it has been shown recently that during rep-

licative senescence of human fibroblasts, telomeres positive

for DDR retain both TRF2 and RAP1 and are not asso-

ciated with end-to-end fusions [41].

Recent studies have shown that the role of telomeres

in senescence may extend beyond attrition due to
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replication. A recent study has shown that oncogenic

signals cause replication fork stalling, resulting in telo-

meric DNA damage accumulation, activation of a DDR

and consequently senescence [42]. However, it has been

reported that in both replicative and stress-induced sen-

escent cells, 50% of DNA damage foci can be found in

non-telomeric regions of the genome and are short-

lived. Live-cell imaging studies have shown that these

short-lived foci are maintained in relatively constant

numbers per cell and that new foci are regularly being

created during senescence [13,21]. Moreover, data indi-

cate that these foci are mainly the result of ROS produc-

tion during senescence and contribute to some degree to

the stability and development of the phenotype. Consis-

tently, following the activation of a DDR, inhibition of

ROS production results in a small fraction of cells being

able to resume proliferation [21].

Therefore, it is highly likely that both telomeric and

non-telomeric regions are contributors to the senescent

phenotype (Figure 1); however, their relative contribu-

tion towards senescence signalling is experimentally very

difficult to dissect.

Importantly, mechanisms other than the DDR have been

shown to impact on the stability of the senescent pheno-

type. In several types of cells, senescence is accompanied by

drastic changes in chromatin organisation, such as forma-

tion of senescence-associated heterochromatic foci, which

are dependent on the p16/Rb pathway [6]. Senescence-

associated heterochromatic foci have been shown to

accumulate on the promoters of cell-cycle genes during sen-

escence, and their occurrence has been shown to correlate

with the irreversibility of the senescent phenotype [6,43].

Involvement of reactive oxygen species in the

stabilisation of cellular senescence

ROS are likely to be involved in both the induction and

stabilisation of cellular senescence: several studies have

shown that ROS can accelerate telomere shortening

[44], and can damage DNA directly and thus induce a

DDR and senescence [45-47] (Figure 2a). ROS have been

implicated in organismal ageing, with countless reports

of associations between oxidative damage and the ageing

process [48-50]; however, genetically manipulated animal

models where mitochondrial function and oxidative stress

were targeted have generated conflicting results [51].

Several studies have shown that cellular senescence is

characterised by mitochondrial dysfunction contributing to

metabolic inefficiency and elevated ROS [52-56]. Elevated

ROS levels have been associated with replicative, stress-

and oncogene-induced senescence [8,45,55,57].

Evidence indicates that activation of major down-

stream effectors of the DDR in senescence result in ele-

vated ROS. Activation of a DDR by genotoxic stress or

telomere uncapping [21], over-expression of activated

Figure 1 Both telomeric and non-telomeric DNA damage contribute to the stabilisation of cellular senescence. DNA damage at

telomeres is distinct from that throughout the genome; it is irreparable due to the repression of DNA repair pathways by telomere bound

proteins, known as the “shelterin” complex. This contributes to a permanent DNA damage response (DDR). However, continuous generation of

short-lived DDR foci by elevated reactive oxygen species (ROS) may equally contribute to the maintenance of the phenotype, as long as a

dynamic equilibrium between damage induction and repair can be maintained.
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RAS [58], BRAFV600E [59], p53 [60], p21 [61] and p16

[62] all resulted in elevated ROS generation. In most of

the above reported cases treatment with antioxidants,

such as N-acetyl cysteine, were able to prevent the cell-

cycle arrest supporting a causal role for ROS in the

process (Figure 2b).

These data indicate that elevated ROS are a conse-

quence of the activation of the senescence programme

and has led to the suggestion that ROS may act as

signalling molecules during cellular senescence [63].

However, mechanistically it is still unclear how these

pathways contribute to mitochondrial dysfunction and

ROS generation. Takahashi and colleagues, using human

fibroblasts expressing a temperature-sensitive simian

virus 40 large T antigen, connected p16 with ROS

production via protein kinase Cδ signalling [62]. Protein

kinase Cδ has been shown to activate a non-mitochondrial

source of ROS, generated by NADPH-oxidase through

phosphorylation of p47phox, an essential component of

NADPH oxidase [64]. Consistent with this study, NADPH

oxidases have been shown to limit the replicative life-

span of human endothelial cells in culture via ROS

generation [65].

Oncogene-induced senescence has been associated

with mitochondrial dysfunction and ROS production,

which is dependent on intact p53 and Rb tumour sup-

pression pathways. Mitochondrial dysfunction resulted

in the loss of ATP and activation of AMPK; in addition,

mitochondrial-derived ROS were shown to contribute to

the oxidation of DNA [66]. In a recent study, it was

shown that BRAFV600E-induced senescence was accom-

panied by the activation of pyruvate dehydrogenase,

which resulted in the enhanced use of pyruvate by the

tricarboxylic acid cycle followed by increased respiration

and ROS generation [59].

The role of p53 and p21 in ROS generation during

senescence is still not well understood. An association

between p53 and transcriptional activation of genes in-

volved in mitochondrial apoptosis has been demon-

strated [67], as well as a stress-induced translocation of

p53 to mitochondria resulting in increased outer mem-

brane permeabilisation [68]; however, a direct role of

mitochondrial p53 in cellular senescence has not yet

been demonstrated. In contrast, transcriptional regula-

tion of mitochondrial genes by p53 has been reported to

impact on mitochondrial function and contribute to

Figure 2 Two different models by which reactive oxygen species can impact on cellular senescence. (a) Reactive oxygen species (ROS)

produced via mitochondrial and non-mitochondrial sources can induce genomic DNA damage and accelerate telomere erosion/damage, both of

which contribute to activation of a DNA damage response (DDR). (b) ROS can act as signalling molecules in senescence: activation of “senescence

signals” has been shown to result in increased ROS generation (mitochondrial and non-mitochondrial). ROS has been shown to impact on a

variety of pathways which may help stabilise the senescence growth arrest. (c) Simplified feedback loop model involving ROS and DNA damage.

Telomere uncapping or general DNA damage triggers a DDR which culminates through yet unidentified processes to ROS generation. ROS

generation leads to additional DNA damage to the genome, stabilising the DDR and leading to a stable senescence arrest.
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ageing. p53 knock-out mice exhibited reduced expres-

sion of the Sco2 gene, which is required for the assembly

of the mitochondrial DNA-encoded COX II subunit

[69]. In late generation telomerase knock-out mice that

have critically short telomeres, activation of p53 has

been shown to repress the promoters of PGC-1α and

PGC-1β genes, master regulators of mitochondrial bio-

genesis and function, thereby contributing to decreased

mitochondrial function [70].

Knockdown of both p53 and p21 by RNA-mediated

interference has been shown to reduce ROS generation

in both telomere-dependent and -independent senes-

cence [21]. Our group has found that ROS levels in-

crease in senescent cells as a result of signalling through

p21, and feed back into DNA damage induction and the

DDR, generating a stable, self-sustaining feedback loop

(Figure 2c). This feedback loop persists even in irrevers-

ibly deep senescence. Moreover, p21 appears to be the

critical mediator between the DDR and MAPK and

transforming growth factor (TGF)-β stress-induced sig-

nalling cascades, which have been shown to contribute

to ROS generation [21,71,72]. Consistently, a p21 knock-

out rescued at least some accelerated ageing phenotypes

in telomerase (mTERC) knock-out mice [17], as well as

markers of oxidative stress and DNA damage foci [21].

ROS has also been shown to impact on the DDR and

ultimately senescence in a non-cell-autonomous fashion.

A recent study has shown that senescent cells can induce a

DDR in neighbouring cells via a gap junction-mediated

cell-cell contact and processes involving ROS [73].

Synergistic interactions between the senescence-associated

secretory phenotype and reactive oxygen species

during senescence

During senescence, another major contributor to the sta-

bilisation of the growth arrest is mediated by autocrine

signalling involving the secretion of bioactive, frequently

pro-inflammatory peptides, known as the SASP [74] or

senescence-messaging secretome [75]. The SASP in-

cludes several families of soluble and insoluble factors.

The soluble factors include signalling molecules such as

growth factors, inflammatory and immune-modulatory

cytokines and chemokines, whereas the insoluble factors

mainly comprise extracellular matrix components [76].

It has long been recognised that the primary function of

secreted factors is to allow inter- and intra-cellular com-

munication. However, the SASP has been found to play

a series of somewhat contradictory roles, with important

consequences for ageing and cancer. First, it can con-

tribute to the surveillance and elimination of senescent

cells by the immune system [77,78]. Second, it can be

pro-tumorigenic [74,79,80]; both cell culture experi-

ments and studies involving the co-transplantation of

senescent and cancer cells into recipient mice have

shown that senescent fibroblasts can stimulate the hyper-

proliferation of cancer cells, neoplastic progression and

tissue damage. Third, it can contribute to the reinforcement

of oncogene- or stress-induced senescence in a cell-

autonomous fashion [22,23]. Fourth, it can induce senes-

cence in neighbouring cells via a bystander effect both

in vitro and in vivo [81].

Mechanistically, it is still not entirely understood how

the SASP contributes to the reinforcement of senes-

cence; however, several lines of evidence suggest the

existence of synergistic interactions between the DDR,

ROS and inflammatory signals (Figure 3a). Kinetic ana-

lysis has shown that ROS levels increase 2 to 3 days fol-

lowing activation of a DDR [21], while the SASP occurs 7

to 10 days later [76]. Induction of both ROS and the SASP

in X-ray irradiation-induced senescence has been shown to

be dependent on activation of the DDR [21,35].

The nuclear factor (NF)-κB family of transcriptional

factors regulate expression of numerous genes involved

in a variety of cellular processes including stress re-

sponse and inflammation [82]. Importantly, activation of

NF-κB has been considered critical in chronic inflamma-

tory diseases by increasing the expression of the genes

for many cytokines, enzymes, and adhesion molecules

[83]. Increased NF-κB activity has been shown to play

an important role in senescence [84] and the SASP [85].

Recent investigations using progeroid mouse models

(models of premature ageing) driven by DNA damage

have reported that these mice have increased activation

of NF-κB driven chronic inflammation and senescence

[86,87]. Interestingly, in a murine model of XFE (xero-

derma pigmentosum F–excision repair) progeroid syn-

drome, Ercc1–/Δ mice, inhibition of NF-κB signalling not

only reduced the onset of several age-related patholo-

gies, but also both DNA and protein oxidation [87], sug-

gesting a potential link between inflammation and ROS

pathways.

Another link between ROS and the SASP during

senescence involves the p38 mitogen-activated protein

kinase (p38MAPK). p38MAPK has been shown to regu-

late the SASP in senescence mainly through NF-κB

transcriptional activity [85]. Similarly, the p38MAPK

pathway has been shown to be important for ROS gener-

ation in both stress-induced and replicative senescence

and for the stability of the DDR [21]. p16, an important

tumour suppressor gene which can be induced by

stresses other than DNA damage, has been linked to in-

creased ROS production [62]; however, less is known

about its impact on the SASP. The Campisi laboratory

has shown that ionising radiation or oncogenic RAS-

induced senescence developed a SASP regardless of

expression of p16, suggesting that these are two separate

pathways. However, the mechanisms behind it are not

yet understood [88].
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A few studies connect the SASP with reinforcement of

senescence via increased ROS (Figure 3b). Acosta and

colleagues have shown that inhibition of CXCR2, a pro-

miscuous receptor that transmits signals from several

CXC chemokine family members (CXCLs), including IL-

8, delayed the onset of both replicative and oncogene-

induced senescence and led to decreased activation of a

DDR [22]. Mechanistically, the authors proposed that in-

hibition of CXCR2 reduced the DDR potentially by redu-

cing ROS. β-IFN has been shown to induce senescence

through ROS production and subsequent activation of

the DDR, which could be inhibited with the antioxidant

N-acetyl cysteine [89]. TGF-β, a family of secreted

peptides that regulate a variety of processes such as pro-

liferation, adhesion, migration, and differentiation in sev-

eral cell types, has also been implicated in senescence.

Inactivation of TGF-β1 secretion in mouse keratinocytes

was sufficient to prevent oncogene-induced senescence

[90]. In human fibroblasts, blocking TGF-β1 type II recep-

tor (TGFBR2) activity has been shown to prevent Ultravio-

let B-induced senescence and hydrogen peroxide-induced

senescence [91,92]. Recently, it was demonstrated that the

TGF-β induced senescence in a paracrine fashion [81].

Interestingly, neutralising antibodies or chemical inhibitors

against the TGFBR2 have been shown to decrease ROS

production downstream of the DDR induced in a telomere-

dependent and -independent fashion [21].

Another potential link between the SASP and ROS is

the fact that several studies indicate that NF-κB, the

main regulator of the SASP, is also a major player in the

regulation of mitochondrial function and oxidative stress

(Figure 3c). Firstly, NF-κB is localised in mitochondria

Figure 3 Senescence is a multi-layered process involving interactions between the DNA damage response, reactive oxygen species

and senescence-associated secretory phenotype. (a) Initially, stressors such as telomeric and non-telomeric DNA damage can lead to activation

of a DNA damage response (DDR) and cell cycle arrest. Following activation of the DDR, p53, p21 and p38MAPK pathways have been shown to

enhance nuclear factor (NF)-κB transcriptional activity. NF-κB activation is both responsible for the senescence-associated secretory phenotype

(SASP) and can induce (and be activated) by reactive oxygen species (ROS). p16 has been shown to induce ROS generation via NADPH oxidases

[62]; however, it has been shown to be unrelated to the SASP [88]. Secretion of bioactive molecules such as ROS and SASP factors contribute

not only to reinforce senescence in an autocrine fashion, but also to induce senescence in neighbouring cells. (b) Components of the SASP (such as

IL-8, β-IFN and transforming growth factor (TGF)-β) have been shown to reinforce the senescence arrest via ROS through yet unidentified mechanisms

[21,22,89]. (c) NF-κB transcriptional activity has been shown to be dependent on the DDR and ROS. However, NF-κB activation has been shown to increase

ROS generation (via regulating expression of mitochondrial genes or antioxidant, pro-oxidant genes) [96,97]. DDF - DNA Damage Foci.
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from yeast [93] and mammalian cells and contributes to

the regulation of mitochondrial encoded genes [94].

Bakkar and colleagues reported that activation of the

RelB subunit of NF-κB during myogenesis is important

for mitochondrial biogenesis [95]. More recently it was

demonstrated that IKKα and RelB regulate the transcrip-

tion co-activator PGC-1β, a master regulator of mitochon-

drial function, to promote oxidative muscle metabolism

[96]. Secondly, it has also been reported that NF-κB is

involved in the transcriptional regulation of both nuclear-

encoded anti-oxidant and pro-oxidant genes [97]. A recent

study in a mouse model of type II diabetes-induced cardiac

dysfunction has shown that enhanced NF-κB activity is

associated with increased oxidative stress. The authors

demonstrated that chemical inhibition of NF-κB alleviated

oxidative stress, improved mitochondrial structural in-

tegrity, and ultimately restored cardiac function in type

II diabetes [98].

In contrast, numerous reports have implicated ROS in

the activation of NF-κB [99]. Both DNA binding and trans-

activation by NF-κB have been shown to be strongly acti-

vated by H2O2 [100]. Mechanistically, evidence suggests

that ROS are both cause and consequence of NF-κB path-

way activation during senescence, making it challenging to

establish which process occurs first. Further work is needed

in order to understand the kinetics of activation of these

pathways during senescence.

Conclusions

In addition to its previously documented role as a tumour

suppressive mechanism, recent evidence strongly implicates

cellular senescence in ageing and age-related diseases. Both

telomeric and non-telomeric DNA damage has been shown

to contribute to the phenotype, with ROS playing an im-

portant role in both the induction and stabilisation of sen-

escence. Moreover, the activation of the DDR, and the

MAPK and NF-κB pathways has been shown to contribute

to the regulation of both ROS and the SASP. Despite

accumulating evidence suggesting that ROS and the SASP

cooperate to induce and stabilise the senescent phenotype,

further research is necessary to mechanistically delineate

their interactions in regulating their response, and their

contributions to modulating the surrounding tissue micro-

environment.
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