
Telos: Representing Knowledge About
Information Systems

JOHN MYLOPOULOS, ALEX BORGIDA, MATTHIAS JARKE, and
MANOLIS KOUBARAKIS

University of Toronto

We describe Telos, a language intended to support the development of information systems. The

design principles for the language are based on the premise that information system develop-

ment is knowledge intensive and that the primary responsibility of any language intended for

the task is to be able to formally represent the relevant knowledge. Accordingly, the proposed

language is founded on concepts from knowledge representation. Indeed, the language is

appropriate for representing knowledge about a variety of worlds related to an information

system, such as the subject world (application domain), the usage world (user models, environ-

ments), the system world (software requirements, design), and the development world (teams,

methodologies).

We introduce the features of the language through examples, focusing on those provided for

describing metaconcepts that can then be used to describe knowledge relevant to a particular

information system. Telos’ features include an object-centered framework which supports aggre-

gation, generalization, and classification; a novel treatment of attributes; an explicit representa-

tion of time; and facilities for specifying integrity constraints and deductive rules. We review

actual applications of the language through further examples, and we sketch a formalization of

the language.

Categories and Subject Descriptors: D.2.1 [Software Engineering] Requirements/Specifications
-languages; methodologies; D.2.10 [Software Engineering] Design-methodologies, represen-

tation; H.l.O [Models and Principles] General; 1.2.4 [Artificial Intelligence] Knowledge

Representation Formalisms and Methods-representation languages, semantic networks, predi-

cate logic; K.6.3. [Management of Computing and Information Systems1 Software Manage-

ment-software development

General Terms: Design, Languages

Additional Key Words and Phrases: Belief time, class, deductive rules, history time, instance,

integrity constraints, knowledge base, metaclass, proposition, temporal knowledge

1. INTRODUCTION

Language facilities have been a key vehicle for advances in software produc-
tivity since the introduction of assembler in the early 195Os, the first high
level programming languages in the mid-1950s, and the languages support-

ing encapsulation/modularization in the 1970s. But programming accounts

This work was supported by the University of Toronto; the Natural Sciences and Engineering

Research Council of Canada; the Institute of Computer Science, Iraklion, Crete, Greece; and the
Commission of European Communities through ESPRIT projects LOKI and DAIDA.

Authors’ addresses: J. Mylopoulos and M. Koubarakis, Department of Computer Science, Uni-

versity of Toronto, Toronto, Ont., Canada, M5S lA4 (e-mail: jm@ai.toronto.edu,

koubarak@ai.toronto.edu); A. Borgida, Department of Computer Science, Rutgers University,
New Brunswick, NJ 08903 (e-mail: borgida@cs.rutgers.edu); M. Jarke, Fakultiit f%r Mathe-

matik und Informatik, Universitiit Passau, Postfach 2540, 8390 Passau, F. R. Germany (e-mail:

jarkeQandorfer.fmi.uni-passau.de).

0 1990 ACM 1046-8188/90/0100-0325 $1.50

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990, Pages 325-362.

326 . J. Mylopoulos et al.

for only a small fraction of the total effort and cost of producing a software
system.

This paper describes a language that is intended to support software
engineers in the development of information systems throughout the soft-
ware lifecycle. This language is not a programming language. Following the
example of a number of other software engineering projects, our work is
based on the premise that information system development is knowledge
intensive and that the primary responsibility of any language intended to
support this task is to be able to formally represent the relevant knowledge.’
Accordingly, the proposed language is founded on concepts from knowledge
representation [121. Indeed, the language is viewed as a knowledge represen-
tation language appropriate for representing knowledge about an informa-
tion system. This viewpoint leads to an eclectic approach on what mathemati-
cal concepts are relevant to software development and a rationalization of
why some notations are more significant than others.

How is a knowledge representation language different from other types of
languages, such as programming or design languages, formal languages or
natural languages? According to Brachman 112, pp. xiv-xv]:

In order to have an explicit knowledge base, a system must rely on some
well-specified language for encoding its beliefs. That role is played by a
knowledge representation language. Beyond that, in just about all imaginable
cases of interest, a system will be concerned with more than just the literal set
of sentences (or frames, or production rules, or whatever) representing what it
knows. A representation system must also provide access to facts implicit in
the knowledge base. In other words, a representation component must perform
automatic inferences for its user.

The ingredients, then, of a knowledge representation language include a
(formal) notation, and a deductive mechanism for drawing inferences from a
body of statements (the knowledge base) represented in that notation.2 In
addition, there is a need to assign some sort of “meaning” to statements-the
semantics of the notation; this meaning must be respected by the deductive
process. Finally, to be effective in large projects, a knowledge representation
language must offer facilities to structure and organize the knowledge base.

The language presented in this paper is called Telos.3 Like any useful
language, Telos has been shaped by its subject matter. But what knowledge
needs to be represented about an information system? (1) Knowledge about
the environment within which the system will function and how the system
is expected to interact with that environment. (2) The kind of information the
system will be expected to store and the meaning of that information with
respect to its intended subject matter. (3) Knowledge about the design and

‘See [471 for a survey of knowledge-based software engineering projects.
‘There is a tension between the increased “expressive power” of a notation-the ability to
express certain facts and make certain kinds of deductions-and the complexity of the computa-
tions involved.
3From the Greek word rihos which means end; the object aimed at in an effort; purpose.

ACM Transactions on Infc~rmath Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 327

implementation of the information system, which can be used during initial
system development as well as during system maintenance. (4) Knowledge
about design decisions that led to the particular design/implementation,
along with appropriate justifications that relate these decisions to perfor-
mance or other nonfunctional requirements. (5) Information on the develop-
ment process itself that led to the system, including the methodology used,
the team of developers involved, different system versions, and the like. Our
work is based on the premise that all this, and other, knowledge about an
information system is useful during its initial development, subsequent
deployment and use, maintenance, and reuse. This rather ambitious view-

point is grounded in our own experiences within the ESPRIT project DAIDA
which is concerned with the construction of a complete information system
development environment 1341.

To deal with these ideas, and to meet some of the goals of a good KR
language, Telos provides a number of novel facilities: representing and
reasoning about (possibly incomplete) temporal knowledge; particularly gen-
eral forms of conceptual structuring mechanisms such as genercdization and
chssifcation; supporting linguistic extensions through the definition of
metaattributes in order to cope with the multitude of subject matters. Also,
Telos adapts concepts from deductive databases 1241 for query processing and
integrity enforcement. In keeping with general principles of good language
design, attempts were also made to maintain uniformity and simplicity.

Telos has evolved from RML (a requirements modeling language developed
in a doctoral dissertation by Greenspan 1251) and later CML (described and
formalized by Stanley 1521). The major difference between RML and CML is
that the latter adopts a more sophisticated data structure for representing
knowledge, and supports the representation of complex temporal knowledge
and the definition of metaconcepts. Telos, on the other hand, is a “cleaned-up”
version of CML, both from a language definition and an implementation
perspective, which has been implemented and tested with a variety of knowl-
edge representation tasks related to information system development. It has
been used both in the LOKI and DAIDA projects and the section on applica-
tions of the languages is based on those experiences.

The paper is organized as follows. Section 2 presents and motivates the
basic features of the language. In Section 3, the nature and applications of
metaclasses is investigated through examples. Section 4 surveys some of the
applications that have been considered in the context of information system
development. The formalization of Telos is reviewed in Section 5, while
Section 6 discusses related work. Finally, Section 7 summarizes the contribu-
tions of the language and suggests directions for further research.

2. FEATURES OF TELOS

Telos provides facilities for constructing, querying and updating structured
knowledge bases (KBs). The operations TELL, UNTELL, and RETELL are
offered to extend or modify a KB, while the operations RETRIEVE and ASK
can be used to access it. This section introduces Telos and illustrates its use.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

328 . J. Mylopoulos et al.

2.1 Structured Knowledge Bases

A Telos knowledge base consists of structured objects built out of two kinds of
primitive units: individuals and attributes. Individuals are intended to repre-
sent entities (concrete ones such as John, or abstract ones such as Person),
while attributes represent binary relationships between entities or other
relationships. An important and distinctive feature of Telos is that individu-
als and attributes are treated uniformly by the mechanisms for structuring a
KB; they are collectively referred to by the term “proposition.”

Every attribute p consists of a source, a label, and a destination, which can
be retrieved through the functions from(p), label(p), and to(p). An attribute
proposition will be represented for the moment by a three-tuple, for example,
[Martin, age, 351.

Propositions (individual or attribute) are organized along three dimen-
sions, referred to in the literature as the aggregation, classification, and
generalization dimensions [311.

Structured/aggregate objects consist of collections of attributes that have a
common proposition as source. For example, the individual Martin may aggre-
gate the cluster of propositions

{Martin, [Martin, age, 351, [Martin, homeAddr, ‘21 Elm Avenue’],
[Martin, workAddr, ‘10 King’s College Road’]}

This indicates, among others, that Martin has two (momentarily unrelated)
attributes with labels homeAddr and workAddr, and values ‘21 Elm Avenue’
and ‘10 King’s College Road’ respectively. Attributes may also represent
abstract relationships such as [Person, address, Geographiclocationl, intended
to represent the concept of address relationships between persons and geo-
graphic locations.

The classification dimension calls for each proposition to be an instance of
one or more generic propositions or classes. Classes are themselves proposi-
tions, and therefore instances of other, more abstract classes. In this way
both Person and [Person, address, GeographicLocation] are classes, with indi-
vidual instances which are particular individuals and relationships respec-
tively (for example, Martin and [Martin, homeAddr, ‘21 Elm Avenue’]. Gener-
ally, propositions are classified into tokens-propositions having no instances
and intended to represent concrete entities in the domain of discourse, simple
classes-propositions having only tokens as instances, metaclasses-having
only simple classes as instances, metametachses, and so on. This classifica-
tion defines an unbounded linear hierarchy of planes of ever more abstract
propositions.

There are also w-classes with instances along more than one such plane.
For example, the class Proposition has all propositions as instances while
Class has all generic propositions as instances. Fig. 1 shows the structure of
the classification dimension, with sample propositions at various levels.

Instantiation is treated as a form of weak typing mechanism: the classes of
which a structured object is an instance determine the kinds of attributes it
can have and the properties it must satisfy. For example, by virtue of being
an instance of Person, Martin can have attributes that are instances of

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990

Telos: Representing Knowledge About Information Systems 329

metaclasses

simole classes

tokens

Proposition

homeAddress
Martin-21 Elm Avenue’

Fig. 1. A simple semantic net.

martian.author [during 1987/l I = {Stanley, LaSalle}

martian.author [before 19881 = {Stanley, LaSalle, Wong}

[Person, address, Geographiclocation]. Such attributes can have arbitrary
labels, such as homeAddr and workAddr, but their values must be instances of
Geographiclocation.

Classes can be specialized along generalization or ISA hierarchies. For
example, Person may have subclasses such as Professor, Student, and Teach-
ingAssistant. The classes may form a partial order, rather than a tree. Note
that ISA hierarchies are orthogonal to the classification dimension: all these
classes could be instances of PersonClass. As discussed later, non-token
attributes of a class are inherited by more specialized ones, and inheritance is
strict rather than default.

2.1.1 Znteracting with a Knowledge Base: An Example. Consider the
problem of developing an information system to support organizing interna-
tional scientific conferences. As part of the requirements model, the designer
needs to describe the entities about which information will be maintained,
such as papers, authors, conferences, and the like. The following TELL

operation introduces an object to model a paper submitted to, say, an IFIP
World Congress [421:

TELL TOKEN martian IN Paper WITH
author

firstAuthor: Stanley;
: LaSalle;
: Wong

title
: ‘The MARTIAN system’

END

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

330 l J. Mylopoulos et al.

This operation defines a token with external identifier martian and several
associated attributesa The IN clause specifies the classes of which martian is

an instance, while the WITH clause introduces martian’s attributes. For exam-
ple, the first attribute has label firstAuthor and is an instance of an attribute
class which has source Paper and label author (the latter is denoted by the

attribute category author). The second attribute has no external label and it is
an instance of the same attribute class; this attribute is going to acquire a
system-generated label.

Continuing with the requirements model, we can use TELL to define
generic concepts which determine the data base schema. Thus, the class
Paper (which is an instance of the built-in class SimpleClass) has associated a
number of attribute classes:

TELL CLASS Paper IN SimpleClass WITH
attribute

author: Person;
referee: Person;
title: String;
pages: 1 . 100

END

As indicated earlier, a class definition prescribes the attributes that can be
associated with its instances: martian can have author, referee, title, and pages
attributes because it is an instance of some class (that is, Paper) that has
attribute classes using these labels. Moreover, [martian, firstAuthor, Stanley] is
an instance of [Paper, author, Person] in exactly the same sense that martian is
an instance of Paper.

Once Paper has been defined, one can introduce specializations, such as
Accepted Paper using the ISA clause of class definitions:

TELL CLASS AcceptedPaper IN SimpleClass ISA Paper WITH
attribute

pages: 1 .I 5;
session: ConfProgrammeSession

END

AcceptedPaper inherits all attributes from Paper and adds a session attribute
to indicate the program session during which the accepted paper will be
presented. It also refines the restriction on page length to indicate that
published papers can only be up to 15 pages long.

A token may now be defined which instantiates more than one of these
classes. For example, if we also have a class ReceivedFinalVersion of papers
which have been received in camera-ready form, we can add to martian
additional information related to these aspects:

TELL TOKEN martian IN AcceptedPaper, ReceivedFinalVersion WITH
session

: applications1
dateReceived

: 1989/2/3
END

4Each Telos proposition has a unique internal identifier and zero or more external identifiers

that can be used in Telos expressions to refer to that proposition.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 331

Note that martian can have attributes “induced” by the attribute classes of
AcceptedPaper and ReceivedFinalVersion. In the case of an attribute appear-
ing in both classes, the value must be consistent with both class definitions.

Concerning the interaction of subclass and instance-of hierarchies, we
have, as usual, that instances of a class are also instances of its superclasses.
In other words, if A ISA B and C IN A, then C IN B. For representational
structures that fully support classification (and therefore offer the dimension
illustrated in Figure 1) the reader may wonder whether A ISA B and B IN C
implies A IN C. For Telos, this implication is not supported because there
seem to be cases where it is unwarranted. Consider, for example, the binary
relations Spouse and Wife. Obviously Wife ISA Spouse and Spouse IN Symmet-
ritzRelation. However, we do not want to conclude here that Wife IN Symmetric-
Relation.

2.2 Representation of Temporal Knowledge

Most application domains are not static: they exhibit a history of changes
through time. A Telos model of a domain captures the full history of its
evolution, rather than just the latest snapshot. For this, Telos adapts a
framework for representing and reasoning with temporal knowledge pro-
posed by Allen 121. This representation is based on the notion of a time
interval, where seven exclusive temporal relations (equals, meets, before,
overlaps, during, starts, ends) and their inverses are used to characterize all
possible relationships of two intervals on a linear time line. Thus, in contrast
to temporal databases 1501, Telos can represent incomplete information about
time, for example, a paper having been submitted sometime before February
2,1989. Telos’ modifications of this approach include (1) slight changes to the
definitions of the 13 temporal relationships, mostly dictated by language
design considerations; (2) incorporation of temporal constants, such as con-
ventional dates and times (for example, 1988/l 2/7 denoting December 7,
1988), semi-infinite intervals having conventional dates or times as one
endpoint (for example, 1986/10/25..*), the infinite interval Alltime and the
special interval Now denoting the current system time; (3) restricting the
power of temporal assertions that can be told to the system.

With such a framework on hand, it is possible to represent temporal
information as shown by the following revised definition of martian:

TELL TOKEN martian IN Paper (at 1986/l O..*) WITH
author

firstAuthor : Stanley (at 1986/i O..*);
: LaSalle (at 1987/l ..*);
: Wong (before 1987/5)

title
: ‘The MARTIAN system’

END

This operation introduces the token martian in the knowledge base (we
suppose it was not there already). The IN clause makes martian an instance of
the class paper for an unbounded time interval starting October 1986.
Similarly, the WITH clause asserts that Stanley is the first author of martian

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

332 . J. Mylopoulos et al.

during the interval 1986/10.. *, LaSalle is an author during the interval
1987/l ..* while Wong was an author for some time before May 1987 (but we
do not know the exact time). The corresponding attribute propositions (now
4-tuples) are shown below.

[martian, firstauthor, Stanley, 1988/l O..*]
[martian,. . . , LaSalle, 1987/l ..*I
[martian,. . . , Wong, T321

Henceforth, every attribute proposition p has a duration component which
can be accessed with the expression when(p).

The history of the application domain can be modeled by augmenting KB
facts with a history time, that is, an interval representing the time during
which these facts are true in the application domain. History time is useful
not only for tokens but also for generic propositions: for example, the defini-
tion “personal deduction” in an Income Tax Act, may only apply for this
year.

A KB records essentially the beliefs of the system, which may be distinct
from the actual state of the world at that time. So, for example, the title of a
paper might have been changed in March, but the KB is only told of it in
May. Or we may make a correction to some previously told fact. Just like it
represents the full history of an application domain, Telos also records the
full history of its beliefs. For this reason, Telos represents belief times; these
are intervals associated with every proposition in the knowledge base, which
commence (technically speaking costart) at the time when the operation
responsible for the creation of the corresponding proposition was committed.
All belief time intervals are assumed to be semi-infinite until the system is
informed otherwise. So, once the system has been TELLed something, it keeps
believing it, until it is explicitly required to revise its beliefs. The operations
UNTELL or RETELL (see Section 2.5) will cause precisely such belief revision.
Thus, system beliefs “persist” until they are explicitly revised. Similar
facilities have been proposed by Snodgrass [501 for temporal databases.

The syntax of the language, illustrated by the above example, is restricted
in the sense that it only allows a single temporal relationship to appear in
each of the temporal components of a given definition. This is in contrast
with Allen’s original framework where sets of relationships were allowed
between time intervals (for example, PaulsDateOfBirth (before during) 1975 in
order to express further kinds of incomplete knowledge). The reasons for this
expressive retreat are strictly pragmatic: verifying the consistency of a
network of temporal relations for Allen’s algebra is NP-hard, as is computing
all the consequences of a network. However, reasoning with certain subsets
of the framework; including the one adopted here, is tractable [551.

2.3 Rules and Constraints

A typed first order assertion sublanguage is offered as means of specifying
integrity constraints and deductive rules. Well-formed formulas of this lan-
guage are special objects in the Telos ontology and are allowed to appear

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 333

quoted as attribute values of propositions. For example, the integrity con-
straint of the definition below ensures that an author cannot referee her own
paper, while the deductive rule states that an author address is also a reply
address.

TELL CLASS Paper IN SimpleClass WITH
integrityconstraint

:$ (vy/Person)
(y E this.author * +t/Time)y E this.referee [at tl) $

deductiveRule
:$ (vx/Paper)(vz/Address)

(z E x.author.address * z E x.replyAddress) $ (at Alltime)
END

Note that deductive rules are constrained to be in a simple form to improve
efficiency: the antecedent of the rule must be a conjunction of atomic formu-
las and the consequent must be a single positive atomic formula.

The assertion language is naturally integrated with the existing frame-
work by treating Telos classes as ranges for quantifiers. From a computa-
tional point of view, this choice offers some of the advantages associated with
sorted logics 1221. The following functions manipulate attributes and their
values:

-The dot function x.1 [rl tl I evaluates to the set of values of the attributes of
proposition x which belong to the attribute class labeled 1 during intervals
which are in relation r 1 with tl .

-The hat function x^l [r-l tl I evaluates to the set of values of the attributes of
proposition x with label 1 during an interval which is in relation rl with
t1.

-The bar function x 1 I [rl tll evaluates to the set of attribute propositions
with source x which are instances of the attribute class labeled I during
intervals which are in relation rl with tl .

-The exclamation mark function x!l [rl tl I evaluates to the set of attribute
propositions with source x, label I, and duration which is in relation rl with
t1.

The time constraints in the above functions are optional: if they are absent,
appropriate defaults are adopted by the system. Fig. 2 shows the situation for
the example in Section 2.2. Finally, the special identifier this is used as
follows: an assertion +(this) defined on class C is an abbreviation for
www

Rules and constraints can be given history time intervals like any other
attribute values, corresponding to periods during which the assertions hold in
the knowledge base. Rules and constraints can also refer to history time
explicitly. Integrity constraints must also be given a belief time: the time
period during which the beliefs of the system are constrained. For example, if
the above operation was processed on December 5, 1988, the integrity con-
straint included would enforce in every belief state after December 5, 1988,
that no instance of the class Author can be an author and a referee of the

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

334 - J. Mylopoulos et al.

author

T30= 1986/ 1 O..”
I b

I
T31=1987/1..*

*

T32?
I I I

1987/S

Fig. 2. Examples of the use of the dot function.

same paper.5 These features can be exploited for activating and deactivating
rules and constraints during certain times. In this way, we get facilities

similar to triggers or deamons of active databases.

2.4 Querying the Knowledge Base

Telos offers the operations RETRIEVE and ASK for querying the knowledge
base. RETRIEVE uses only temporal and structural information to answer
queries, while ASK uses all the knowledge available. RETRIEVE is a much
more efficient operation, since only a few built-in inferences (for example,
inheritance) are performed. Both operations can be used either to prove that
a closed formula of the assertion language follows from the knowledge base,
or to find the propositions in the knowledge base that make a given formula
true.

ASK : LaSalle E martian.author [over 19881 BELIEVED at 1989/l /l
ASK x/Author : x E martian.author TRUE at 1987 BELIEVED at 1989/l /l

For example, when the above queries are evaluated against the current
knowledge base, the system returns yes and {Stanley, LaSalle}, respectively.

Queries can refer to history time explicitly (for example, first query above).
Alternatively, the optimal clause TRUE can be used to provide default history
time for all unqualified atomic formulas in the query. The BELIEVED clause

5Since no belief time is given for this integrity constraint, it is assumed that it constrains every

belief state of the system from the time it was processed and on.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 335

identifies the belief times which are of interest to the user. When it is not
present, the belief time is assumed to be Now (that is, the currently held
beliefs are queried).

2.5 Updating the Knowledge Base

The operations UNTELL and RETELL allow one to update the system’s beliefs
about certain historical relationships. As indicated already, updated informa-
tion is not explicitly deleted from the knowledge base. Instead, the belief

time intervals associated with such updated information are terminated.
The UNTELL operation can be used to specify that some of the instantiation,

specialization, or attribute relationships of a proposition no longer hold.
Suppose, for example, that Stanley changed his mind about authoring the
Martian system on November 20th, 1986, and no longer wants his name
associated with the paper. The following operation effects this update:

UNTELL martian WITH

author
: Stanley (at 1986/l l/20..?)

As a consequence, if this operation was processed on December 9, 1989, its
effect is to make the system believe as of December 9, 1989, that Stanley
ceased being an author of martian on November 20, 1986 (though it remem-
bers him as an author in earlier belief states). Now the answers to the
queries

ASK x/Author: x E martian.author TRUE at 1986/l 1 119 BELIEVED at 1989/l 2/l 0

ASK x/Author: x E martian.author TRUE at 1986/l l/21 BELIEVED at 1989/l 2/l 0

will be {Stanley} and the empty set respectively.
The RETELL operations amounts to a database update and can be semanti-

cally treated as the composition of an UNTELL and a TELL operation. Through
RETELL, the user can specify, for instance, that somebody’s address changed.

3. MODEL EXTENSIONS THROUGH METACLASSES

Compared to other semantic models or knowledge representation languages,
Telos appears to provide few features for capturing the semantics of applica-
tions. This section is intended to illustrate that additional structure can be
introduced for particular categories of propositions through the mechanisms
already offered by Telos. The first-class status of attributes and the ability to
define attribute classes and metaclasses plays a particularly important role.
Our point is that a relatively sparse framework can be used to accomplish a
great deal.

Let us consider again the IFIP Conference example. Conference organiza-
tion involves many different kinds of documents, including various classes of
papers, letters, announcements, memos, and the like. To define common
properties that various document classes have, we may want to introduce
attribute metaclasses which support grouping of document attributes accord-
ing to their semantic, deductive or other properties. One way to introduce

ACM Transactions on Infbrmation Systems, Vol. 8, No. 4, October 1990.

336 l J. Mylopoulos et al.

these attribute metaclasses is through the metaclass DocumentClass:

TELL CLASS DocumentClass IN MetaClass WITH
attribute

source: AgentClass;
content: SimpleClass;
destination: AgentClass;

END typicalTurnaroundTime: TimePeriod IN SimpleClass

In this example, source, content, and destination are labels of attribute
metaclasses which may be instantiated for DocumentClass instances.6 In this
case, their effect is to group together semantically similar attributes, such as
the attributes that describe the content of a document (for example, title,
abstract, keywords, text and so on) or the destination of a document (zero or
more recipients, location/affiliation of the destinations(s) and so on). The
attribute label typicalTurnaroundTime specifies a typical value for the length of
time it takes for a document to be prepared and sent to its destination (say,
one day for a letter, one month for a paper). Note that instances of typical-
TurnaroundTime are tokens and represent specific facts about their generic
sources. Other DocumentClass attributes, on the other hand, indicate the
kinds of (attribute) classes that may be associated with a document class.
DocumentClass may also have arbitrary constraints expressed through asser-
tions on its instances-document classes, such as Paper or Letter. Thus,
metaclasses constitute an important facility in the definition of generic
objects, one that cannot be simulated by the use of the generalization
hierarchy.7

The definition of the class Paper might now be refined as

TELL CLASS Paper IN DocumentClass WITH
source

author: Person
content

title: String
. . .
turnaroundTime

: 4weeks
END

Here, the attribute (class) [Paper, author, Person1 is an instance of [Docu-
mentclass, source, SimpleClass], in a similar way that [martian, firstAuthor,
Stanley] is an instance of [Paper, author, Person]. Thus attribute metaclasses
can be thought of as categories for generic attributes associated with a class.

As another example of use of attribute metaclasses, consider constraints on
attribute values which are built-in in several semantic data models. One

6To help the reader, we use identifiers ending with “Class” for metaclasses.
7The grouping of conceptually related attributes illustrated above could also have been accom-

plished by the introduction of generalization hierarchies for attributes themselves, as in KL-ONE:

title, abstract, etc., are more specialized roles than content. However, as we shall soon see,

attribute classes provide additional facilities-such as abbreviating constraints-that cannot be

achieved by attribute hierarchies.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems l 337

Class Single

1*:r:’

.tl;.~FTsI!!!tian System

Fig. 3. The constraint Single on attribute title.

such constraint, let us call it the Single constraint, restricts an attribute to
(at most) a single value. To define it, we introduce the attribute metaclass
Single whose instances are singleton attribute classes.8

TELL CLASS Single
COMPONENTS [Class, single, Class1
IN AttributeClass, MetaClass WITH

integrityconstraint

END

:$ (vu/Single)(vp, q/Proposition)
(p in u A q in u A from(p) = from(q) A
when(p) overlaps when(q) =) p = q) $

Literally, the above assertion states that for every instance of Single, say u
(that is, an attribute class), there are no two distinct instances p and q (these
are attribute instances) with common source and overlapping times. Once
this class has been defined, it can be exploited, through instantiation, to
constrain the attributes of any other class, such as Paper:

single

title: String

If now martian is an instance of Paper, with a title specified by

title
:‘The Martian system’

then the constraint in Single refers to attribute propositions like

[martian,. . . , ‘The MARTIAN system’1

which are instances of [Paper, title, String], and decrees that there cannot be
two such propositions with identical sources. Fig. 3 illustrates the situation.

‘The clause COMPONENTS gives the source, label, and destination of this attribute class.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

338 l J. Mylopoulos et al.

Similarly, one can define an attribute metaclass Necessary whose integrity
constraint assures that each instance of some class for which the attribute is
necessary, has at least one value for the attribute [401.

3.1 Talking about Assertions

To increase the extensibility of the language, we provide a way to talk about
assertions. The resulting technique allows metalevel reasoning and is very
powerful; we have, however, exploited this power only in defining attribute
metaclasses.

We introduce the predicate Holds which is true whenever its argument is
an assertion that follows from the KB. Recall that assertions appear in the
KB, quoted, as parts of propositions:

[Paper,. . . , “(vx/Paper)(v/Person). . . “, Alltime].

In the definition of metaclasses, it is often useful to have constraints and
rules which refer to formulas of the assertion ‘language. Let us assume, for
example, that we want to define an attribute metaclass Precondition and use
it for specifying preconditions for certain activities.

TELL CLASS Precondition
COMPONENTS [Class, precondition, Assertion]
IN AttributeClass, MetaClass WITH

integrityconstraint
:$ (vp/PreCondition)(vObj/Proposition)(vt/Time)

(Obj in from(p)[at tl * (aHTime/Time)(HTime overlaps t) A
HoIds(Wp $

END

This attribute class constrains its instances to have destination components
that are open assertions which follow from the knowledge base when their
special variable Obj is bound to an instance of the class they are associated
with and HTime is bound to an interval which overlaps the lifetime of this
instantiation.g

Open assertions can have at most two free variables, Obj and HTime,

intended to be bound respectively to a proposition (the subject of the asser-
tion) and a history time. lo Suppose then that the user specifies:

TELL CLASS Conference IN ConfEntityClass WITH
attribute

budget: Money
preconditon

:$Obj.budget 2 10000 [at HTimel$
END

‘Note that t overlaps t’ implies that t startsbefore t’, in addition to the implication that the two

intervals have a common subinterval.

“This binding is achieved through quantification in the constraint or rule which refers to the
open assertion.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 339

This operation defines the class Conference and asserts the proposition

[Conference,. . . , “Obj.budget 2 10000 tat HTimel”, . . .I

in the knowledge base. This proposition becomes an instance of Precondition.
Now the above integrity constraint will be satisfied if every time an instance
of Conference is constructed, its budget value exceeds $10,000. Analogous
definitions can be given for other attribute metaclasses such as PostCondition,
ActivationCondition, and Invariant with obvious semantics 1401.

In general, our language enables us to define metaclasses which represent
concepts that are appropriate for a particular application domain. For in-
stance, if it is deemed that the concept of activity is useful for modeling
conferences, we may want to adopt SADT’sTM notions of input, output and
control, referring to entities that are consumed, produced or used without
state change by an activity:

TELL CLASS ActivityClass IN MetaClass WITH
attributes

agent: AgentClass;
input: EntityClass;
output: EntityClass;
control: EntityClass;
part: ActivityClass

integrityconstraint
inputExists:$ (vp/Proposition)(vx/Token)(vtl /Time)

(p in this (input A x in from(p)[at tl I *
(aq/Attribute)(at2/Time)(q in p A
to(q) in to(p)[at t21 A t2 overlaps tl)) $;

outputcreated: . . .
controlRemains: . .
partDuringWhole:$ (vp/Proposition)(vx/Token)(vtl /Time)

(p in this 1 part A x in from(p)[at tl I =) @q/Attribute)
(ate/Time)(q in p[at t21 A from(q) = x A t2 during tl)) $;

partlnputConsistency: . . .
partOutputConsistency: . . .

END

The inputExists constraint checks that inputs exist at the start of an activity
and cease to be instances of their respective input types before the end of an
activity. Likewise, the partDuringWhole constraint declares that components
of an activity occur during the activity. Greenspan 1251 notes that RML too
offers the notion of activity defined above. However, RML has these notions
built-in and is therefore less adaptable to applications where these notions
need slight or major changes. Suppose that one wishes to base requirements
modeling on the notion of role rather than that of activity, as Pernici notes
t431. For RML such a change of perspective amounts to a total discard. For
Telos it simply means that a different set of individual and attribute meta-
classes needs to be defined. Specific activities can now be modeled in the
intended application domain.

TM SADT is the trademark of SofTech Inc.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

340 l J. Mylopoulos et al.

A final example of a useful attribute metaclass is Rep. It can be used to
constrain two classes to have isomorphic extensions.

TELL CLASS Rep
COMPONENTS [Class, rep, Class1
IN AttributeClass, MetaClass WITH

integrityconstraint
:$ (vx/Proposition)(x in from(this) =)

(g!p/Proposition)(p in this A x = from(p)))
A (vy/Proposition)(y in to(this) *
(g!p/Proposition)(p in this A y = to(p)))$

END

In the above definition “Y!” stands for “there exists unique.” Thus if

[ConferenceOrganization, . . . , ConfRecord, . . .I

is an instance of Rep, there is a one-to-one correspondence between the
instances of the two classes (though corresponding instances need not have
identical time intervals). Rep is useful for expressing accuracy and complete-
ness requirements on the contents of an information system, as we will see in
the following section.

4. REPRESENTING KNOWLEDGE ABOUT INFORMATION SYSTEMS

After obtaining a basic understanding of Telos, we can now look at its
application in developing knowledge bases about software. In particular, we
present examples of using Telos in describing and then applying a rather
powerful metamodel for knowledge relevant to the development of informa-
tion systems.

Traditionally, database engineering has made the (tacit) assumption that
an information system is supposed to capture some excerpt of world history,
and hence has concentrated on modeling (that is, “capturing information
about”) the application domain. This practice provides an answer of sorts to
the fundamental question, “What does the information handled by my sys-
tem mean?“. Unfortunately, it also tends to draw attention away from a
number of equally fundamental questions, concerning other types of knowl-
edge about an information system. The section begins with a basic taxonomy
of distinct “subworlds” about which knowledge needs to be recorded during
the development of an information system. The distinction between the
different subworlds is illustrated with definitions drawn from the IFIP Con-
ference example 1421.

-The subject world is the domain about which the proposed information
system is to provide information; this world may be an organizational
environment, say a department store, or something completely different,
say a world of chemical experiments or geopolitical games. Consequently,
the set of appropriate concepts for representing this world may vary
considerably. For the purposes of our running example, the proposed
information system does maintain information about an organizational

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 341

setting. The notions of activity and entity will be assumed to be appropri-
ate for modeling such a world.

-The system world includes specifications at different levels of implementa-
tion detail on what the information system does. The nature and the
number of specification levels depend on the development methodology
adopted. For instance, the levels may include functional requirements,
conceptual designs and implementations. For each level, appropriate con-
cepts need to be defined and made part of the system world metamodel. To
keep our running example (somewhat) manageable, we limit the discussion
of system world modeling to functional requirements only. As part of the
system world, one may want to prescribe correspondences between the
information maintained by the information system and the intended sub-
ject world. It might be specified, for instance, that the system’s record of
conferences is complete (for every conference, there is an entry in the
system’s records) and accurate (there are no entries in the system’s records
that do not correspond to an actual conference) through the use of attribute
metaclasses such as Rep.

-The usage world describes the environment within which the system is
embedded. Such descriptions often take the form of input/output relation-
ships, but may also include the different classes of (end) users of the
intended system or the kinds of interfaces supported by the system (repre-
sented, to a first approximation, as activities having the system and one or
more users as coagents). The usage world may also include descriptions of
the organizational environment within which the system will function,
including office procedures. Advanced usage worlds may even include user
modeling, for example, what does each class of users know about the
subject and system worlds, how often do they use the system, and the like.

-The development world focuses on the entities and activities which arise as
part of the design process itself. These would include the composition of the
design team, responsibilities of each team member, design decisions, devel-
opment tools, supporting documentation, etc. For example, there may be a
standard procedure by which an existing version of the conference manage-

ment system is adapted to the needs of a specific conference, using a
specific development team hired by IFIP and a specific software develop-
ment environment.

One of the obligations of a knowledge representation system is to provide
guidance on the organization of the knowledge at hand as well as the process
to be used by the knowledge engineer to build up his knowledge base. Fig. 4
illustrates the basic “worlds” as well as the kinds of knowledge that might
relate them. The rest of the section illustrates features of Telos by suggesting
possible ontologies for each of the above worlds, and occasionally instantiat-
ing it for the IFIP domain. We emphasize that the discussion in this section
is intended to illustrate the flexibility of Telos in modeling drastically
different worlds, a flexibility derived primarily from its classification dimen-
sion and the treatment of attributes. Nevertheless, the examples presented
are, in fact, based on actual application of Telos, mostly in the contest of

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

342 - J. Mylopoulos et al.

How is info about I
SubjectWorld used\\“,
within 1s e*emm? represent info

,+

t-
about Subj\

UsageWorld

A :
Justifickon
of devlp goals

‘RR
4

SystemV?orld

V

A 5

Fig. 4. Knowledge about information systems.

ESPRIT project DAIDA, where a complete prototype environment for infor-
mation systems engineering was constructed, generally following the ap-
proach outlined here [341.

4.1 The Subject World

An essential aspect of information system development is the characteriza-
tion of the domain about which information will be maintained-a character-
ization which needs to be explicitly recorded. A number of different general
approaches could be followed in gathering and recording this information,
including structured analysis, entity-relationship-activity, etc. These ap-

proaches can be defined within Telos. We could even extend them with
concepts about a particular application domain, for example, accounting
systems, to cover the use of standard requirements. Some real-world experi-
ences with domain modeling have been gained with a commercial implemen-
tation of an early Telos version [291.

For an example, we continue with the definition of a subset of the notions
of RML 1251 begun in Section 3. As indicated earlier, RML’s basic structures
are loosely based on SADT t491; this was motivated in part by the idea of
using SADT as a graphical road map which sketches the requirements model
before filling in the more formal semantic details. RML provides the three
basic mechanisms of Activities, Entities, and Assertions. Since the latter are

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 343

already available in the Telos kernel, we need to concern ourselves only with
activities and entities. The definition of ActivityClass presented in the previous
section can be used as is. The definition of EntityClass follows

TELL CLASS EntityClass IN MetaClass WITH
attribute

producer, consumer: ActivityClass;
part, association: EntityClass

integrityconstraint
producedByProducer :$ (vx/Proposition)(x in this =$

(gy/Proposition)@p, q/Attribute)(y in this.producer A
from(p) = y A to(p) = x A p in q A q in y.output)) $

END

Every instance of an entity class is produced by a producer activity. Note the
(pleasing) duality between entities and activities, initially offered in SADT.

Since entities and activities per se can be seen as fundamental concepts in
describing human activities, and hence will appear in the other subworlds,
we will in fact use the generalization hierarchy to place EntityClass and
ActivityClass in ISWorldClass, rather than just SubjectWorldClass. Returning to
conference organizing, one can then start modeling the domain by consider-
ing specific classes of entities and activities, such as the following.

TELL CLASS SubmittingAPaper IN ActivityClass WITH
output

sentln: PaperSubmitted;
submissionletter: Letter

input
prepared: PaperWritten

control
sender: Person;
recipient: Person;
conference: Conference

integrityconstraint
samepaper: $ this.prepared = this.sentln $;
submissionOnTime: $ when(this) before this.conference.deadline $;
rightRecipient: $ this.recipient = this.conference.programChair $

END

TELL CLASS Paper IN EntityClass WITH
producer

paperwriting: Writing
consumer

submitting: SubmittingAPaper

pati
title: String;
pages: 1 ..12

association
author: Author;
conference: Conference

deductiveRule
rightconference :

$ c E this.submitting.conference * c E this.conference $
END

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

344 l J. Mylopoulos et al.

In the DAIDA project, Telos-based subject world ontologies have been used to
build graphical frontends for requirements engineering which give the devel-
oper well-known visualizations such as SADT diagrams but have a precise
formal background. This formal background can be further exploited to
integrate other views of the same information system (for example,
entity-relationship).

4.2 The System World

One possible view of an information system is as a world with its own specific
entity and activity classes-often called data and transactions. An important
specific characteristic of information systems that their data and activity
classes are often related to objects and activities in the subject world.

Continuing our example, we use a set of system classes that follows the
style of Taxis [391. System activity classes are called transactions and can
have only data classes (a special kind of entity classes) as inputs and outputs.
In defining the representation relationship, we leave a lot of room for design
decisions; for example, data classes can either represent subject world enti-
ties (for example, data about referees and referees themselves), or traces of
subject world activities (for example, a class AuthorKitMailReceipts tracking
the activity of mailing out forms to authors), or a mixture.

TELL CLASS TransactionClass ISA ActivityClass WITH
attribute

input, output: DataClass

rep
activitybytransaction: ActivityClass

END

TELL CLASS DataClass ISA EntityClass WITH
attribute

producer, consumer: TransactionClass

rep
activitybydata: ActivityClass;
entitybydata: EntityClass

END

Given this specification context, one can now start defining the model of
the data base at the semantic level, by defining a variety of subclasses of
DataClass and TransactionClass. This process is sufficiently familiar that we
will not detail it further here.

4.3 The Usage World

The usage world model is intended to describe the man-machine interactions
supported by the information system and the context within which they take
place. Depending on the kind of usage environment, such models have been
investigated in office research, computer-integrated manufacturing and simi-
lar fields of study which involve the integration of information technology
with its environment.

A natural description of the usage world can also be given in terms of
activities and entities. In fact, subject and usage world have not been

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 345

traditionally distinguished. Although this is not the place to argue the issue
in full, we believe that the distinction is evident in certain domains; for
example, contrast the world of agriculture, which involves farming, weather,
produce, etc., and the information management activities about farming
which occur in the Department of Agriculture. The distinction is crucial in
clarifying various, potentially conflicting needs that the information system
must fulfil.

For the IFIP example, the subject world contains authors, paper submis-
sions, referees, and the like, whereas the usage model talks about office staff
and office tasks such as writing acknowledgments or selecting referees.
Additionally, the usage model can exploit the fact that usage activities (both
manual ones and man-machine interactions) may be constrained by plans or
bureaucratic procedures that involve issues such as precedence, priority and
security.

In modeling these aspects, we shall make use of the specialization abstrac-
tion in Telos. Usage world activity classes are specialized activity classes for
which an agent is known (it can be a person, a system, or a team composed of
both persons and systems) and which can be subject to certain precedence
constraints; also, usage world activities may have to satisfy goals set by their
supervisors, and these goals may influence the representation mapping be-
tween subject world and system world.

TELL CLASS UsageActivityClass ISA ActivityClass WITH
attribute

agents: AgentClass;
supervisor: UserClass;
precedes: UsageActivityClass;
goals: Goals

integrityconstraint
precedence:

END

$ (vpreclink/Proposition)(preclink in this 1 precedes *
when(from(preclink)) before when(to(preclink))) $

TELL CLASS Goals ISA EntityClass END

TELL CLASS AgentClass IN MetaClass WITH
attribute

member: AgentClass
END

The representational relationships between system world and subject world
can be related to the usage world by qualifying these relationships with the
goals followed when determining the system requirements. These goals can
be both functional (covering the functionality required by the application
domain) or nonfunctional (performance, accuracy, etc.). In Telos, this can be
accomplished quite easily by attribution of attributes, one of the unique
features of the language:

TELL CLASS TransactionClass!repbytrans IN Class!rep WITH
attribute

mappingGoal: Goals
END

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

346 l J. Mylopoulos et al.

The following is an example of one usage class defined:

TELL CLASS WriteAcknowledgment IN UsageActivityClass WITH
output

letter: Letter
control

sender: Person;
recipient: Person;
submission: SubmittingAPaper

agents
letterprogram: DesignTask

supervisor
programchair: Person

precedes
: SendToReferees

integrityconstraint
chairperson:

$ this.submission.conference.programChair = this.program.chair $;
rightpersons:

$ this.sender = this.programChair A this.recipient = this.submis-
sion.sender $;
acknowledgmentWithinAWeek:

$ when(this) before when(this.submission) + 7 $
END

We do not detail the modeling of agents at this point. A more elaborate
metamodel could incorporate some basic cognitive constraints on agents
which guide the activities they participate in. It could also describe the
organizational structure of agents, their access rights, etc. Telos users have
actually developed several such models, for example, for purposes of security
specification, for a coauthoring system, for contract negotiation support in
public construction projects, even for modeling paradigm shifts in the history
of natural science.

4.4 The Development World

The development world sees the information systems as a design object to be
worked on. Typically, the management of software development is organized
in layers. Single-worker tasks involving detailed knowledge about individual
languages, methodologies, and tools are called programming-in-the-small.
Tasks involving the negotiation and coordination of multiple programmers
are called programming-in-the-many. In between, object management tasks
such as version and configuration management are the domain of program-
ming-in-the-large 1481. Here, we only sketch an in-the-small and an in-the-
many model.

In a Telos model used intensively throughout DAIDA 116, 331, program-
ming-in-the-small is understood as a set of interrelated design decisions
which transform design objects into other design objects, supported by design
tools. Design tools are modeled by the special kinds of design decisions they
support. Design goals are a special kind of design objects which provide a
rationale for design decisions.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 347

TELL CLASS DesignObject ISA EntityClass END

TELL CLASS DesignGoal ISA DesignObject, Goals END

TELL CLASS DesignDecision ISA UsageActivityClass WITH
attribute

input: DesignObject;
output: DesignObject;
agents: DesignTool;
goals: DesignGoal;

END

TELL CLASS DesignTool ISA AgentClass WITH
attribute

qualification: DesignDecision
END

For the IFIP example, a design decision could concern the choice of a
particular standard package for a task defined in the system model. This
could be led by the goal of saving development costs, and could have been
proposed by an outside consulting firm.

More generally, design decisions may involve the refinement of existing
models, the mappings between various representational formalisms, the ver-
sioning of existing design objects, and the configuration of complex systems
from reusable components. In the DAIDA project, this model has been used to
formalize and manage the integration of multiple languages, methods, and
tools of the DAIDA environment 1331. The same model has also been used to
represent a bootstrapping process by which an implementation of the full
Telos language was derived from a small kernel 1321.

To organize programming-in-the-many, we start from the concept of Agent
introduced in the Usage World. To this concept, we simply add a possibility
that these agents can communicate about design decisions according to some

protocol.

TELL CLASS ConversationClass ISA UsageActivityClass WITH
attribute

content: DesignDecision
integrityconstraint

:$size(this.agents) >= 2 $
END

The constraint says that any conversation model should foresee at least two
kinds of roles for agents; it can be satisfied by any message protocol that
knows of senders and receivers, for example.

One possible instance of such a metamodel is Winograd’s K161 conversation-
for-action protocol. The model below specializes the topics of conversation to
be formal tasks in developing software according to our in-the-small method-
ology. Note also the usage of multiple inheritance.

TELL CLASS Message IN ConversationClass WITH
agents

sender: ProjectMember;
recipient: ProjectTeam j

END

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

348 l J. Mylopoulos et al.

TELL CLASS Response ISA Message WITH
attribute, necessary

reference: Message
integrityconstraint

personsright:$ this.reference.sender = thisrecipient A
this.reference.recipient = this.sender $

END

TELL CLASS MappingRequest ISA Message WITH
content

mappingtask: MappingDecision
END

TELL CLASS MappingPromise ISA Response WITH
attribute, necessary

reference: MappingRequest
content, necessary

mappingtask: MappingDecision
integrityConstraint

taskright:
$ this.reference.mappingtask = this.mappingtask $

END

This excerpt covers the first part of a conversation for action. The con-
straints say that, if one partner promises a request put to him, this partner
has (to counter it or) to accept it exactly as is. Conversation primitives such
as Counter and Accept can be modeled in a similar fashion. In the Telos-based
software information system, ConceptBase [211, the full model has been
implemented. The implementation has been applied to several software
development examples, including management of a large programming class.
Fig. 5 is a screendump from such a session; the graphical browser documents
the status of a subcontracting conversation between a designer and a pro-
grammer concerning the redesign of a program.

The design of a sophisticated Telos-specified project management system
which also takes into account the proactive organization and reorganization
of ill-structured projects is reported by Srinkath [51].

ConceptBase also offers a graphical “argument editor” which supports the
real-time or asynchronous discussion within a distributed software develop-
ment team t281. This editor is based on another instance of Conversation-
Class inspired by Toulmin’s model 1541, and is similar to the gIBIS tool
developed by MCC [171, with the important difference that the topic of
discussion is formally known to the system. Initial application experiences
indicate that such an editor may be a valuable tool for recording the
rationales of design decisions; formal experiments to evaluate this claim are
being prepared.

Note how the ConceptBase system associates different shapes and colors
with the metaclasses defined above. In Fig. 5, the agents are shown in white
ovals, and the aggregation of messages in a conversation is made explicit.
The flexibility of user-defined metaclasses in Telos requires tools for interac-
tively defining such mappings between knowledge base objects and their
graphical representations. Formally, this mapping can be described by Telos
deductive rules 1321.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems l

PROJECT name :

Fig. 5. A contracting conversation between a designer and a programmer.

4.5 Discussion

In this section, we have proposed a multiperspective approach to the repre-
sentation of knowledge about information systems. For space reasons, we
could only briefly reference actual experiences with using Telos for each of
these perspectives and for their integration, gained by our own research
groups as well as by industrial partners and various outside users and
students. These experiences lead us to believe that a number of Telos
features make it especially suitable for the task of representing knowledge
about information system development.

First, the by now standard approach of modeling a domain using objects
related by attributes, grouped into classes that are organized into subclass

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

350 l J. Mylopoulos et al.

hierarchies, provides the usual benefits of organizing and abstracting infor-
mation. The possibility of viewing classes as objects, themselves grouped into
(meta)classes, allows the description itself to be structured in useful ways, as
in the case of the different subworlds.

The treatment of attributes as first-class objects has also proven very
useful for two reasons. It does not force us to commit ourselves at the point of
first definition of an object how it is going to be used since, for example, new
attributes can be associated with any Telos proposition. Further, attributes of
attributes can be the most compact and natural representation for structures
such as design dependencies (for example, the dependency Transaction
Class!repbytrans in the UsageWorld) which have to be represented much more
awkwardly in other languages. We have included in the presentation a
screendump to illustrate how the structural orientation of Telos, supported
by the uniform treatment of individuals and attributes, allows a graphical
representation of the knowledge base which can be usefully exploited in
providing a nice user interface for developers. In particular, hypertext-like
interfaces are natural for semantic network-style representation schemes [71,
and allow developers to “navigate” through the knowledge base to explore its
contents.

Finally, the explicit distinction between and availability of both domain-
time and development-time in Telos allows not just historical reference in the
subject world, but the ability to rationalize chronologically the evolution of
the software design-an important capability during software maintenance,
which is the most cost- and work-intensive part of the software life-cycle.

In summary, our experiments as well as initial experiences by other users
have shown that Telos elegantly covers many of the requirements for repre-
senting knowledge about information systems.

5. SOME FORMAL ASPECTS OF THE TELOS SYSTEM

A formal account of a new language concisely expresses the meaning of the
various language constructs in a thorough and organized manner. Indeed,
with Telos, as with many other languages, ambiguities and inconsistencies
were discovered during the process of constructing a formal account of the
language. In addition, such an account can serve as point of contact between
the language designers, implementors, end-users, and critics.

Following Brachman [131, we describe a Telos knowledge base in terms of
its functional behavior at the knowledge level for operations such as TELL
and ASK. A Telos knowledge base is described in part (though not imple-
mented) as a collection of (historical) first-order theories, indexed by belief
times. l1 Intuitively, each one of these theories corresponds to the beliefs of
the system during some time period (the index of the theory). Knowledge
base operations are then treated as functions defined over indexed theories,

“Since belief times are constant, they can be represented by semi-open intervals of the form

[a, b) or [a, +a), where a and b are atomic pointlike intervals-days in the discussion of the

previous sections.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 351

and other things. For details omitted in this section, see Koubarakis et al.
[371 and Mylopoulos et al. [401.

Each historical theory is constructed in the following way: Start with a
first order logic with types augmented with axioms for isa, in, time entities,
etc; each historical theory constructed will be a theory in this logic. All such
theories include a group of axioms which in some sense “define” what is a
well-formed knowledge base; in addition, every TELL operation introduces
additional axioms. Finally, ASK operations invoke certain default assump-
tions to provide answers to queries.

The formal account of this section offers a proof theory as definition of
“consistency” and “question-answering.” By translating Telos expressions

into a standard first order logic, we get a model theory as a bonus.

5.1 Initial Theory

5.1.1 The Target Language Y. The language we use, dip, is a first order
logic with equality, with the additional restriction that all quantifiers have
restricted ranges. The basic types/ranges of dip are Proposition, Time, and
Class. For any particular knowledge base, all class names appearing in it can
also be used as ranges for quantifiers. 9 also contains the following predi-
cates and function symbols:

-The 5-place predicate symbol prop used to describe the components of
every Telos proposition formally. The first four arguments of prop are of
type Proposition; the last argument is of type Time.

-The l-place function symbols from, label, to and when used to map
propositions to their components.

-The 3-place predicate symbols in and isa used to describe instances and
subclasses respectively. The type of in is Proposition x Class x Time; the
type of isa is Class x Class x Time.

5.1.2 Axioms. Time is axiomatized using Allen and Hayes’ proposal [4],
modified to reflect the Telos conventions. Other axioms in our theory include
the following:

Axiom for proposition components:

(VP, x, y, z/Proposition)(vt/Time)(prop(p, x, y, z, t) *
from(p) = x/\ZabeZ(p) = yr\to(p) = z/\when(p) = t).

Transitivity of IsA12:

@PI, P2, P,lCq(vtl, t 2,t3/Time)(isa(p1,p2,t1)Aisa(p2,~32t2)A
t,= tl*t2* isa(pl,p3,t3)).

12The intersection of two time intervals t, and t, (i.e., the time period common to both) is

denoted by t ,*t 2.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

352 l J. Mylopoulos et al.

Specialization Postulate: The extension of a class is a superset of the exten-
sion of any of its subclasses.

(vpl, p2, p,/Proposition)(Vt,, t,, t,/Time)(in(p,, p2, tJ A isa(P2, P3, t2) A

t3=tl*t2~in(Pl,p3,t3)).

The Instantiation Constraint: If proposition p1 is an instance of propositon p2

then from(pJ must be an instance of from(p2), to(pl) must be an instance of
to(p2) and when(pJ must overlap when(p2).

(VP,, p2 /Proposition)(vt, /Time)(in(pl, p2, tl) *

(~t2,t3)(in(from(pl),from(p2),t2)Ain(to(Pl),to(P2),t3)A

during (t,, t2) A during (t,, t3) A ouerZups(when(PI), when(p2)))).

5.2 Integrity Constraints and Deductive Rules

Integrity constraints and deductive rules are mapped into closed statements

in the language 9. This mapping provides the semantics for the terms of the
assertion language in Telos. As an example, the following is the 9 statement
corresponding to the deductive rule from Section 2.3

I

vt/Time)(vx, y, z, w/Proposition)
in(x, Paper, t) A in(y, Address,t) A author(x, w, t) A

address(w, x, t) * repZyAddress(x, z, t))

where, in turn, a predicate such as author(x, y, t) corresponds to

(jp, 1, t’/Proposition)(in(p, author, t’) Aprop(p, x, 1, y, t)).

To make their processing tractable, rules are restricted to a “Horn” form:
(antecedent) * (consequent). The antecedent must be a conjunction of atomic
formulas while the consequent must be a single positive atomic formula. In
addition, all the variables in the rule must be universally quantified at the
beginning of the formula.

Deductive rules are statements which are added to the appropriate histori-
cal theories and are used by ASK for answering queries with respect to these
theories. However, integrity constraints are statements which must be satis-
fied: an integrity constraint is satisfied if it is consistent with the completion
of the corresponding historical theory. l3 Otherwise, we say that the con-
straint is violated.

5.3 A Functional Specification of the Telos System

A Telos knowledge base is characterized in terms of two sets KB and IC.
These sets are sequences of (historical) theories indexed by belief time
intervals. As we mentioned earlier, each theory in KB corresponds to the
beliefs of the system during the time period which is the index of the theory.
The time periods are demarcated by the system clock time, and therefore

-
13The completion of a knowledge base KB, denoted by KB, is defined in the next section.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems l 353

form a contiguous sequence up to the present time, Now. These beliefs are
constrained by a theory in IC (with identical index). Knowledge bases are
modified and queried by the functions TELL, UNTELL, RETELL and ASK.
Only TELL and ASK are presented here. The TELL operation has the
functionality:

TELL: KB x IC x 0 x Time + KB x IC.

In addition to the objects being defined (0), TELL looks at the last theory
in the input knowledge base, say KB, (where n has the form [t, +m)), the
corresponding set of integrity constraints IC,, the current system time, and
produces a new knowledge base where the index of KB, and ZC, has been
changed to [t, s), and a new theory KB,, +-) and an enhanced set of integrity

constraints IC,,, + oD) have been added. The new theories are produced by
unioning KB, (respectively, IC,) with atomic formulas and deductive rules
(respectively, integrity constraints) corresponding to the definitions in 0.

The TELL operation takes effect only if the theories in KB,,, +a) and

%, + m) are consistent and if all the integrity constraints in IC,, +-) are
satisfied. Note that because we are in first order logic, the definition of
classes resembling Russel’s paradox (“all classes not members of themselves”)
simply leads to an inconsistent knowledge base. Users of Telos are therefore
urged to abide by the convention that only propositions at adjacent levels of
the instantiation hierarchy should be related by the predicate in.

ASK can be functionally understood as follows:

ASK: KB x Query x Time + Answers.

ASK operates on the historical theories in KB whose index overlaps the time
period stated in the BELIEVED clause of the query. Assume that there is
exactly one such historical theory. ‘* We first need to know the completion of
that historical theory. The completion of a given theory is computed using
the following assumptions, inspired by Reiter 1451:

(1) A “domain closure assumption”, which states that the individuals known
are all the ones that exist, excluding time constants:

(Vx/Proposition)7Time(x)~(x=c,~~=~p~...~x=~,).

A separate domain comprehension axiom is given for time intervals.

(2) The equality axioms (reflexivity, commutativity, associativity and Leib-
nitz’s principle of substitution of equal terms).

(3) The “unique names assumption”, asserting that distinct constants are
not equal. Note that this is not asserted for temporal terms other than
the ones representing standard intervals, because in general two time
intervals a and b are assumed to be equal if and only if equaZs(a, b) is
derivable.

141n the more general case, intersect the answers to the subqueries to each historical theory.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

354 - J. Mylopoulos et al.

(4) The “completed theory assumption”: to obtain negative information, we
want to assume that any facts about the base predicates isa, in, prop that
cannot be derived from told facts or deductive rules are false. For this
purpose we use the restricted form of the deductive rules to adopt a
“predicate completion” technique such as considered in Reiter’s article

1451.

Now if query is a closed historical query, that is it is of the form (I W)
(where W is a first order statement) then

ASK(KB,, query) =

I

yes if KB, E W

no if KB, E ,W

unknown if KB, # W and KB, I# ,W.

If query is an open historical query, that is, it is of the form

(Xl /71, * . . > X, /7) W) (where W is a first order formula whose only free
variables are xi,. . . , x,J then

ASK(KB,, query) =

if for every substitution 8 i E 8, KB, != We,

if there is no substitution 8 such that

5.4 Formalizing the Holds Relation for Y

We provide here a brief formal account of the Holds predicate introduced in
Section 3 1 l5 The predicate was introduced to allow metaattributes to im- . .
pose additional constraints on the free variables Obj and HTime, which occur
in formulas that will act as preconditions, activation conditions, etc. These
formulas must therefore be objects-they will appear as parts of propositions
after all-and some form of “quotation” mechanism is needed for this pur-
pose. However, once values from the actual domain of discourse (propositions,
times) are substituted for Obj and HTime, we want the formulas to be
“unquoted” and verified.

For this purpose we encode formulas in the base language 2 as abstract
syntax trees (Prolog terms or Lisp lists in prefix notation), assuming that for
every logical and non-logical symbol of Y we have a corresponding construc-
tor. Thus (V x)(P(X) A Q(X)) might be encoded as

ALL(X, AND(PRED(P, X), PRED(Q, X))).

If the former is called formula 4; the latter is named [41.
The result is a language Y’, in which quoted sentences from Y are also

objects. We can give these sentences assertional power by setting up a simple
predicate True, which represents the standard model theoretic notion of truth
(for example, True(AND(A, B)) iff True(A) and True(B), while

15We are indebted to Jim des Rivieres for clarifications.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 355

True(PRED(P, X)) iff P(x).). Alternatively, we could define a predicate
Provable, which fomalizes some proof theory of the logic of Y (as noted by
Bowen and Kowalski [lo]). Note that the special variables Obj and HTime will
not be quoted inside a formula, so that quantifiers outside Holds can keep
them in their scope.

As shown by Des Rivieres and Levesque 1181, one avoids the paradoxes
usually associated with this sort of encoding, by the simple expedient of not
allowing all formulas from 9’ to be encoded in Y’, but only those in Y. We
will want users to write formulas involving Holds, as illustrated by the case
of Precondition. Such formulas are, however, not needed as arguments to
True, so we will simply disallow them in that position, for example, by
defining

HoZds([4]) 0 NoNesting([+]) A True([+l).

Finally, for this construction to work properly it is necessary to have a
canonical name (primitive or constructed) for every value in the domain of dp
-every value over which one can quantify. This is not an issue for proposi-
tions, of which there is only a finite number. But time intervals have been
axiomatized according to Allen [31, so we need some naming scheme for a
countable space of “canonical intervals”. This can be accomplished, for
example, by naming intervals with pairs of integers. The actual intervals
which appear in propositions are then existentially quantified, and can be
treated proof theoretically according to the technique of Reiter [451: as
constants for which the “unique name axiom” does not hold. This allows us
to learn more information about them, including the fact that some intervals
are equal.

6. RELATED WORK

Telos is fundamentally a knowledge representation language, albeit one that
has been specially crafted to facilitate the description of concepts related to
the development of information systems. Thus, it is reasonable to look for
related work in three general areas: Artificial Intelligence, Databases and
Software Engineering. In each case we will concentrate on closely related
approaches and influences rather than attempt to survey entire subareas.

Telos is a language in the tradition of semantic networks. Its distinguish-
ing marks over other proposals is the treatment of attributes as first class
objects, including the device of attribute instantiation, the integrated repre-
sentation of temporal knowledge, and the parsimonious foundation of the
language resting on the single notion of “proposition”.

The treatment of attributes was influenced by Kramer [381 where “slots”
are distinguished from “metaslots,” analogously to attribute classes and
metaclasses. Telos’ treatment of attributes can be considered a generalization
of this earlier effort. Our choice of a temporal model based on intervals,
rather than time points has been influenced by Allen [21 and Vilain et al.
[%I. Of course, the nature of the temporal component of Telos was consider-
ably complicated by all other features that need to coexist within one
linguistic and conceptual framework: notationally (making sure that time

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

356 . J. Mylopoulos et al.

does not get in the way as the user ASKS and TELLS), semantically (the
meaning of history and belief times), and structurally (offering time as a
fourth dimension of knowledge organization in Telos) and, finally, from an
implementation viewpoint. To our knowledge, no full-fledged knowledge
representation language provides facilities for time that are as tightly inte-
grated into the overall representational framework.

Finally, the integration of structural/organizational aspects of knowledge
representation with assertional/deductive parts, has been advocated and
implemented in various forms in precursor systems such as Omega [5], Cake

[461, and Krypton 1111. These, and other so-called “hybrid” systems, combine
one or more special-purpose but efficient reasoners with a general deductive
mechanism in order to achieve better performance. For example, Krypton’s
terminologic component provides efficient reasoning about concept defini-
tions, which are then used by the assertional component for theorem proving.
Telos does not explicitly demarcate subsystems of different kinds; in fact,
Telos uses the object-centered nature of the representation mechanism to
structure the entire knowledge base, by making individuals and concepts be
syntactic anchors for both generic and specific facts, including formulas in
the logical assertion language. On the other hand, reasoning with time has
been treated in a special way both in the language semantics and implemen-
tation, and the distinction between constraints/rules and ask/retrieve point
to the existence of distinct ways of using what would otherwise be first order
formulas.

Turning to Databases, the modeling of the application world has been the
focus of much work on semantic data models 1311. Telos continues in the
spirit of this work by emphasizing the importance of structuring mecha-
nisms, including generalization, aggregation and classification, which were
first identified in the context of data modeling. In fact, Telos goes further by
applying these ideas uniformly to attributes as well as individuals. The equal
treatment of individuals and relationships dates back to the entity-relation-
ship model [151, but there are many differences between Telos and ER
languages, including the presence of higher order (“meta”) classes, and the
absence of n-ary relationships with built-in cardinality restrictions. The
addition of a temporal dimension is a further step in the evolution of
conceptual models. The distinction between the “clock” of the application
world and that of the system administrators has also been made in the work
on temporal databases [501.

Object-oriented databases 1203 are a recent development, which merge the
semantic modeling constructs with the notion of objects having an encapsu-
lated internal state. They are particularly useful for CAD applications,
including providing database support for software engineering. For example,
the Cactis system 1301 concentrates on the efficient management of derived
data-objects can have local attributes defined by functional formulas, and,
interestingly, separates the definition of binary relationship classes from that
of the object classes being related. This is used to allow increased flexibility
in making changes in the schema, and resembles Telos’s view of class/indi-
vidual definitions as being nothing but convenient collections of propositions,

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 357

rather than monolithic wholes. The Telos implementation has not paid the
same careful attention to efficiency of updates, but on the other hand it does
support temporal reasoning, a full instance-of hierarchy, and allows at-
tributes as first class citizens.

Interestingly enough, the database logic F-logic 1351 also treats individuals
and attributes in a uniform way. Like Telos, it can express metaqueries such
as “retrieve the set of all objects which represent the labels defined for a
certain object.” However, it does not support time and does not offer an
instantiation dimension (instead, it treats classes and instances as members
of the same lattice ordered by the “definedness” ordering of denotational
semantics). On the other hand, F-logic offers a more explicit notion of
complex objects and a nice way of dealing with inconsistencies.

The inferential aspects of Telos, especially the distinction between in-
tegrity rules and deductive rules has been made by researchers in the field of
deductive databases 1231. However, Telos’s assertion language is different
from the FOL-based languages usually offered in deductive databases, and
the propositional four-tuple foundations of Telos are fully novel. The func-
tional constructs in our assertion language are reminiscent of similar con-
structs in the language COL 111 if the temporal arguments are omitted.

Requirements modeling in software engineering is a third research area
that has influenced the development of Telos. Following the pioneering work
of Balzer 161, Bubenko 1141, and Greenspan 1251, a consensus seems to have
emerged that a requirements model should include a description of the
application domain in addition to a functional specification of the system
itself, both expressed in an “object-centered” framework. We have already
discussed in this paper the close relationship between RML 1251 and Telos,
while Borgida 191 discusses the relationship between RML and the work of
Balzer E61 and Bubenko 1141.

In addition to RML, the ERAE method 1261. also considers a formal embed-
ding of the temporal dimension into the requirements model, albeit using a
temporal logic approach. Both ERAE and PLEXSYS 1361 consider the embed-
ding of the system in its “usage world” but neither permits the qualification
of the “rep(resents)” relationship which is possible in Telos.

More generally, the work on domain modeling for software reuse that
began with Neighbors 1411 has recently produced a number of languages and
systems which are intended to capture a wide range of information about
software subdomains. A number of these systems, including the Lassie
software information system 1191, and the Desire/Rose design recovery/reuse
system 171 are built around languages which are explicitly based on AI
knowledge representation techniques, such as frame systems and connection-
ist networks.

There is an entire subfield of formal software specifications, and some
approaches are in fact related to knowledge representation schemes (for
example, the plan calculus 1461). However, these schemes are usually ori-
ented towards the description of software components and do not attempt to
address world modeling, nor the representation of software development
knowledge.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

358 l J. Mylopoulos et al.

7. SUMMARY

The development, use, and maintenance of information systems involves a
great deal of knowledge. We have classified this knowledge as concerning (at
least) four distinct domains of discourse:

-the subject world, about which information will be stored in the informa-
tion system;

-the usage world, consisting of the environment within which the informa-
tion system will eventually function;

-the system world, of the various incarnations of the information system
itself, ranging from non-procedural requirements specifications to code; and

-the development world, of teams, development processes, design goals,
schedules and decisions.

The knowledge involved is both generic-the kind one learns in courses at
school-and specific-having to do with a particular system. Moreover, it is
essential for the development process to accumulate information concerning
the relationship between the above four worlds.

It seems intuitively clear that the ability to explicitly capture and manipu-
late these kinds of knowledge can be helpful for many software engineering
tasks (including requirements acquisition, expert support for development,
maintenance and staff training), and provides the basis for a variety of
computer tools to support these activities. These expectations have been
confirmed by our experience in the DAIDA project.

To support the above paradigm of knowledge-intensive software develop-
ment, we need knowledge bases. This paper has shown how Telos can be used
to build metumodels of the various subworlds and software engineering
activities involved in developing an information system, and to populate
these metamodels with specifications of particular software environments
and development projects.

Telos is an object-centered language which has a number of special features
that have enhanced its utility for maintaining a software knowledge base:

-it supports the organization of knowledge built up from “atomic facts”
through the use of classification and generalization hierarchies;

-it is relatively easy to extend and customize with abbreviations by provid-
ing higher order classes, including attribute metaclasses; the syntax of
“attribute categories” and the underlying simple framework of “proposi-
tions” are particularly useful;

-it supports evolving views of objects and a hypertext-style browsing inter-
face, by treating attributions as individuals;

-the consistency of the knowledge entered can be verified through con-
straint rules, and new values can be inferred by triggering the evaluation
of rules;

-a complete “longitudinal” view of various domains can be captured be-
cause of the powerful yet tractable model of time which has been tightly
integrated into the language;

ACM Transactions on Infbrmation Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 359

-the evolution of the knowledge base can be recorded through the use of
“belief’ times associated with facts, and this can be used to support
software maintenance;

There have been three prototype implementations of the language, all in
PROLOG, carried out at the University of Crete 1531, the University of
Passau 1211, and SCS Hamburg 1291. In addition to the DAIDA project, the
language has been and is now used in a number of research projects,
including ESPRIT projects LOKI [8], ITHACA [441, and MULTIWORKS [271
with generally positive feedback.

In a nutshell, the contribution of Telos lies in its adaptation of ideas from
knowledge representation, deductive databases and requirements modeling
languages in order to offer a language that can be used to tackle a broader
class of modeling tasks-arising from information system development tasks
-than those attempted by other proposals.

Design records for large information systems, formally or informally repre-
sented, are bound to contain millions of facts. If the reader were to accept the
thesis that we can develop language facilities that are expressively adequate
for the task at hand, it would still not be possible to manage effectively such
records due to the lack of suitable knowledge base management systems, for
example, ones that can manage knowledge bases with O(1M) facts, offering
implementation techniques for query optimization, concurrency control and
recovery. Even though unavailable yet, we believe that such facilities can
and will be built in the next few years and will open the way towards more
systematic, effective and productive software development technologies. We
also believe that the key to such new technologies is and will continue to be
the availability of all relevant knowledge to human designers.

ACKNOWLEDGMENTS

We gratefully acknowledge the contribution of insightful ideas, suggestions,
and moral support from Sol Greenspan (GTE Laboratories, Waltham, MA)
whose thesis provided a rationale and a springboard for this research; Yannis
Vassiliou, Thodoros Topaloglou, Manolis Marakakis, and others (Institute of
Computer Science, Iraklion, Crete, Greece) for serving as first users of the
language; John Gallagher and Levy Solomon (SCS Technische Automation
und Systeme GmbH, Hamburg, Germany), who did the first implementation
of CML; Thomas Rose, Manfred Jeusfeld, and others (University of Passau,
Germany) who carried out a second implementation; as well as other mem-
bers of the ESPRIT projects LOKI and DAIDA. Last, but not least, we would
like to thank Lawrence Chung, Brian Nixon, Martin Stanley and other
members of the Taxis group at the University of Toronto for providing a
friendly and stimulating research environment.

REFERENCES

1. ABITEBOUL, S., AND GRUMBACH, S. COL: A logic-based language for complex objects. In

Proceedings of the International Conference on Extending Data Base Technology (Venice,

Italy, Mar. 1988).

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

360 * J. Mylopoulos et al.

2. ALLEN, J. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11 (Nov.

1983), 832-843.

3. ALLEN, J., AND &YES, P. A common-sense theory of time. In Proceedings of the 9th

International Joint Conference on Artificial Intelligence (Los Angeles, Calif., 1985), pp.

528-531.

4. ALLEN, J., AND IIAYEs, P. Moments and points in an interval-based temporal logic. Compu-

tational Intelligence 5 (Nov. 1989), 225-238.

5. A~ARDI, G., AND SINAI, M. Consistency and completeness of OMEGA, a logic for knowledge

representation. In Proceedings ofZJCAZ-81 (Vancouver, B.C., 1981), pp. 504-510.

6. BALZER, R., AND GOLDMAN, N. Principles of good software specification and their implica-

tions for specification languages. In Proceedings of the Conference on Specifications for

Reliable Software (Boston, Mass., 1979), pp. 58-67.

7. BIGGERSTAFF, T., AND PERLIS, A., EDS. Software Reusability, ~01s. 1 and 2. ACM Press, New

York, 1989.

8. BINOT, J.-L., DEMOEN, B., HANNE, K.-H., SOLOMON, L., VASSILIOU, Y., VON HAAN, W., AND

WACHTEL, T. LOKI: A logic oriented approach to data and knowledge bases supporting

natural language interaction. In Proceedings of the ESPRIT ‘88 Conference. North-Holland,
New York, 1988, pp. 562-577.

9. BORGIDA, A., GREENSPAN, S. J., AND MYLOPOULOS, J. Knowledge representation as the basis
to requirements specification. ZEEE Computer 18, 4 (1985), 82-91.

10. BOWEN, K., AND KOWALSKI, R. Amalgamating language and meta-language. In Logic
Programming, K. Clark and S. Tarnlund, Eds. Academic Press, New York, 1982, pp.

153-172.

11. BRACHMAN, R., FIKES, R., AND LEVESQUE, H. KRYPTON: Integrating terminology and

assertion. In Proceedings of AAAZ-83 (Washington, D.C., 1983), pp. 31-35.

12. BRACHMAN, R. J., AND LEVESQUE, H. J., Eds. Readings in Knowledge Representation.
Morgan Kaufmann, 1985.

13. BRACHMAN, R. J., AND LEVESQUE, H. J. The knowledge level of a KBMS. In On Knowledge

Base Management Systems, M. Brodie and J. Mylopoulos, Eds. Springer-Verlag, New York,
1986, pp. 9-12.

14. BUBENKO, J. On concepts and strategies for requirements and information analysis. In
Proceedings ofZFZP-80 (1980).

15. CHEN, P. The entity-relationship model-Towards a unified view of data. ACM Trans.

Database Syst. 1, 1 (Mar. 1976), 9-36.

16. CHUNG, K., KATALAGARIANOS, P., MARAKAKIS, M., MERTIKAS, M., MYLOPOULOS, J., AND

VASS~IOU, Y. From information system requirements to designs: A mapping framework.

Tech. Note 53, Computer Systems Research Institute, University of Toronto, Nov. 1989.

17. CONKLW, J., AND BEGEMEN, M. A hypertext tool for exploratory policy discussion. ACM

Trans. Office Znf. Syst. 6, 4 (1988), 303-331.

18. DES RIVIERES, J., AND LEVESQUE, H. J. The consistency of syntactical treatments of knowl-

edge. In Proceedings of the 2nd Conference on Theoretical Aspects of Reasoning About
Knowledge (Los Altos, Calif., 1986), J. Y. Halpern, Ed., Morgan Kaufmann, pp. 115-130.

19. DEVANBU, P., SELFRIDGE, P., BALLARD, B., AND BRACHMAN, R. A knowledge-based software

information system. In Proceedings of ZJCAZ-89 (1989), pp. 500-501.

20. DITTRICH, D., Ed. Advances in Object-Oriented Dutubuse Systems (Proceedings of the 2nd
Znternutionul Workshop on Object-Oriented Database Systems). Lecture Notes in Computer

Science, vol. 334, Springer Verlag, New York, 1988.

21. EHERER, S., JARKE, M., JEUSFELD, M., MIETHSAM, A., AND ROSE, T. A global KBMS for

database software evolution: ConceptBase 2.0 User Manual. Tech. Rep. MIP-8936, Univer-
sity of Passau, 1989.

22. FRISCH, A. A general framework for sorted deduction: Fundamental results on hybrid
reasoning. In Proceedings oflst International Conference on Principles ofKnowledge Repre-

sentation and Reasoning (Toronto, Ontario, 1989), R. Brachman, H. Levesque, and R. Reiter,
Eds., pp. 126-136.

23. GALLAIRE, H., MINKER, J., AND NICHOLAS, J. Logic and databases: A deductive approach.

ACM Comput. Surv. 15, 2 (1984), 52-57.

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

Telos: Representing Knowledge About Information Systems 361

24. GALLAIRE, H., AND NICHOLAS, J.-M. How to look at deductive databases. In Foundations of

Knowledge Base Management, J. Schmidt and C. Thanos, Eds. Springer Verlag, 1989, pp.

119-127.

25. GREENSPAN, S. J. Requirements Modelling: A Knowledge Representation Approach to

Software Requirements Definition. PhD thesis, Dept. of Computer Science, University of

Toronto, 1984.

26. HAGELSTEIN, J. Declarative approach to information systems requirements. Knowledge-

Based Systems 1,4 (1988), 211-220.

27. HAHN, U., JARKE, M., KREPLIN, K., FARUSI, M., AND PIMPINELLI, F. Co-AUTHOR: A

hypermedia group authoring environment. In Proceedings of the European Conference on

Computer-Supported Cooperative Work (Gatwick, United Kingdom, 1989).

28. HAHN, U., JARKE, M., AND T., R. Group work in software projects. In Proceedings of ZFZP

WG 8.4 Conference on Multi-User Applications and Interfaces (Iraklion, Crete, Greece,

September 1990).

29. HAIDAN, R., AND MEYER, R. Requirements modeling and system specification in a logic-based

knowledge representation framework. Tech. Rep., ESPRIT project 892 (DAIDA), SCS Infor-

mationstechnik, Hamburg, Germany, 1990.

30. HUDSON, S., AND KING, R. Cactis: A self-adaptive, concurrent implementation of an object-

oriented database management system. ACM Trans. on Database Syst. 14, 3 (1989),

291-321.

31. HULL, R., AND KING, R. Semantic database modelling: Survey, applications and research

issues. ACM Comp. Surv. 19, 3 (1987), 201-260.

32. JARKE, M., JEUSFELD, M., AND ROSE, T. Software process modeling as a strategy for KBMS

implementation. In Proceedings of the First Znternational Conference on Deductiue and

Object-Oriented Databases (Kyoto, Japan, 1989), pp. 496-512.

33. JARKE, M., JEUSFELD, M., AND ROSE, T. A software process data model for knowledge

engineering in information systems. Znf. Syst. 15, 1 (1990), 86-115.

34. JAFLKE, M., M~OPOULOS, J., SCHMIDT, J., AND VASSILIOU, Y. Information systems develop-

ment as knowledge engineering: the DAIDA project. Tech. Rep., ESPRIT project 892
(DAIDA), Forthcoming.

35. KIFER, M., AND LAUSEN, G. F-logic: A higher-order language for reasoning about objects,

inheritance, and scheme. In Proceedings of ACM SIGMOD International Conference on

Management of Data (1989), pp. 134-146.

36. KONSYSNKI, B., AND KOTTEMAN, J. Dynamic metasystems for information systems develop-

ment. In Proceedings of 5th International Conference on Znformation Systems (1984), pp.

187-204.

37. KOUBARAKIS, M., M~OPOULOS, J., STANLEY, M., AND BORGIDA, A. Telos: Features and

formalization. Tech. Rep. KRR-TR-89-4, Dept. of Computer Science, University of Toronto,

1989.

38. KRAMER, B. The representation of programs in the procedural semantic network formal-

ism. Master’s thesis, Dept. of Computer Science, University of Toronto, 1980.

39. M~OPOULOS, J., BERNSTEIN, P.A., AND WONG, H. K. A language facility for designing

interactive data-intensive applications. ACM Trans. on Database Syst. 5,2 (1980), 185-207.

40. M~OPOULOS, J., BORGIDA, A., JARKE, M., AND KOUBARAKIS, M. Telos: A language for

representing knowledge about information systems. Tech. Rep. KRR-TR-89-1 (Revised),

Dept. of Computer Science, University of Toronto, August 1990.

41. NEIGHBORS, J. Draco: A method for engineering reusable software systems. In Software

Reusability, T. Biggerstaff and A. Perlis, Eds., vol. 1. ACM Press, 1989, pp. 295-319.

42. GLLE, T., SOL, H., AND A.A., V.-S., Eds. Znformation Systems Design Methodologies: A

Comparative Reuiew. North Holland, 1982.

43. PERNICI, B. Objects with roles. In Object-Oriented Deuelopment, D. Tsichritzis, Ed. Centre
Universitaire d’Informatique, Universite de Geneve, Switzerland, 1989, pp. 75-100.

44. PROFROCK, A.-K., ADER, M., MULLER, G., AND TSICHRITZIS, D. ITHACA: An overview. Tech.

Rep., Nixdorf Software Engineering GmbH, Berlin, 1989.

45. REITER, R. Towards a logical reconstruction of relational database theory. In On Concep-

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

362 . J. Mylopoulos et al.

tual Modelling: Perspectives from Artificial Intelligence, Databases and Programming Lan-

guages, M. Brodie, J. Mylopoulos, and J. Schmidt, Eds. Springer Verlag, 1984, pp. 191-233.

46. RICH, C. Knowledge representation languages and predicate calculus: How to have your

cake and eat it too. In Proceedings of AAAI-82 (Pittsburgh, 1982).

47. RICH, C., AND WATERS, R., Eds. Artificial Intelligence and Software Engineering. Morgan

Kaufmann, 1986.

48. ROSE, T., AND JAFCKE, M. A decision-based configuration process model. In Proceedings of

12th International conference on Software Engineering (Nice, France, 1990).

49. Ross, D., AND SCHOMAN, K. Structured analysis for requirements definition. ZEEE Trans-

actions on Software Engineering (1977), 49-60.

50. SNODGRASS, R. The temporal query language TQuel. ACM Trans. on Database Syst. 12,2

(June 1987), 247-298.

51. SRINKATH, R., AND JARKE, M. The design of knowledge-based systems for managing ill-

structured software projects. Decision Support Systems 5, 4 (1989), 425-447.

52. STANLEY, M. CML: A knowledge representation language with application to requirements

modelling. Master’s thesis, Dept. of Computer Science, University of Toronto, 1986.

53. TOPALOGLOU, T., AND KOUBARAKIS, M. Implementation of Telos: Problems and solutions.

Tech. Rep. KRR-TR-89-8, Dept. of Computer Science, University of Toronto, 1989.

54. TOULMIR, S. The Uses of Argument. Cambridge University Press, 1958.

55. VILAIN, M., KAUTZ, H., AND VAN BEEK, P. Constraint propagation algorithms for temporal

reasoning: A revised report. In Readings in Qualitative Reasoning about Physical Systems,
D. Weld and J. de Kleer, Eds. Morgan Kaufmann, 1989, pp. 373-381.

56. WINOGRAD, T., AND FLORES, F. Understanding Computers and Cognition. Ablex Corpora-

tion, 1987.

Received February 1990; revised August 1990; accepted August 1990

ACM Transactions on Information Systems, Vol. 8, No. 4, October 1990.

