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Abstract

Cloud computing provides access to shared resources through Internet. It provides facilities such as broad access,

scalability and cost savings for users. However, cloud data centers consume a significant amount of energy because

of inefficient resources allocation. In this paper, a novel virtual machine consolidation technique is presented based

on energy and temperature in order to improve QoS (Quality of Service). In this paper, two heuristic and meta-heuristic

algorithms are provided called HET-VC (Heuristic Energy and Temperature aware based VM consolidation) and FET-VC

(FireFly Energy and Temperature aware based VM Consolidation). Six parameters are investigated for the proposed

algorithms: energy efficiency, number of migrations, SLA (Service Level Agreement) violation, ESV, time and space

complexities. Using the CloudSim simulator, it is found that energy consumption can be alleviated 42% and 54% in

HET-VC and FET-VC, respectively using our proposed methods. The number of VM migrations is reduced by 44% and

52% under HET-VC and FET-VC, respectively. The HET-VC and FET-VC can improve SLA violation by 62% and 64%,

respectively. The Energy and SLA Violations (ESV) are improved by 61% under HET-VC and by 76% under FET-VC.

Keywords: Cloud computing, Consolidate virtual machines, Energy consumption, Meta-heuristic method, FireFly

algorithm

Introduction
Today cloud computing is an important extensible

computing method in information technology. In cloud

computing, virtualized resources are often provided as

processing services through communication networks.

Cloud computing delivers three basic services:

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS) [1]. The basis of

giving services to a customer is to provide on-demand

resources based on pay-as-you-go without requiring any

especial equipment by the customer or being aware of

the location of these processors [1, 2]. The main purpose

of cloud computing is to attain a huge amount of

virtualization computing resources.

Cloud computing has significant benefits, especially

for IT industry, mainly reducing cost, providing scalability

tailored to the needs of customers’ service requirements,

and so on [2]. The trend of customer increase using cloud

services has forced cloud service providers to extend

capacity and the number of data centers in world [3]. On

the other hand, this growth has led to consumption of

gallons of energy to supply power consumption [4]. A data

center on average consumes energy approximately equal

to 25,000 households [5]. This increase in energy con-

sumption and cost is not suitable for a cloud service

provider. In addition, energy consumption results in

considerable carbon dioxide (CO2) dissemination that

increases the greenhouse effect. It is predicted that data

centers in USA will consume 140 billion Kilowatts per

year by 2020 [6]. Therefore, governments increase pres-

sure on cloud service providers to optimize energy con-

sumption in order to reduce CO2 effecting the climate

change [7]. As a result, researchers have decided to study

cloud computing environment to address this challenge.

Data centers waste energy due to the inefficiency of

hardware resources such as shortage and inadequacy of

cooling system [8], network equipment [9], servers [10].

and software resources [11]. Servers are the main
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resources of energy usage and their performances must

be optimized through software management in order to

reduce energy consumption.

Virtualization technology is the inseparable part of

cloud computing, where hypervisor allows to create

multiple Virtual Machine (VM) instances on a Physical

Machine (PM), thus providing improved utilization of

resources [4]. When a customer needs more resources,

his/her request must be resolved swiftly. Since there

are multiple VMs on a PM, increase of resources for

one or more VMs may lead to exceed the amount of

load on the PM beyond its capacity. This situation of

PM, called overload, can increase response times,

time-outs or failure. On the other hand, if a customer

has some unused resources, they must be released.

However, releasing resources from many VMs may in-

tensively decrease the usage of resources so that the

PM tends to the idle state. This situation of PM is

called under-load.

The research conducted on more than 5000 servers

over a period of 6 months indicate that most servers are

usually active, but most of the time their utilization are

10%–50% of their total capacity [12]. Another research

expresses that energy consumption of idle servers is

about 70% rather than full capacity [13]. Therefore,

avoiding servers from being over-loaded can save energy,

decrease SLA (Service Level Agreement) violation, and

reduce temperature. In addition, recognition of idle and

under-loaded PMs and switching them into either sleep

mode or hibernate mode could be another utility for the

purpose.

Thus, there will be a small number of active servers

that can help for better energy management. Timely

migration of VMs can prevent from overloading and

under-loading states. Live migration reallocates run-

ning VMs dynamically from one PM to another PM.

Migration can consolidate VMs to minimal PMs. Mi-

gration tries to keep application performance require-

ments and delivers services to the customer with

minimal side effects. However, migration provides

downtime on the delivered services considering its

low impact. Although a user may not understand this

downtime, there is a violation for SLA [14, 15]. An-

other effect of migration is an increase in utilization

of resources and all chips, thus increasing energy con-

sumption. Therefore, the best solution is to find a

trade-off between the number of migrations and

energy consumption and SLA.

Some researches [16, 17] indicate that high number of

migrations either increases costs of computing resource

and decreases performance of systems, thus affecting

quality of service (QoS). It is essential for cloud comput-

ing environments to protect QoS defined by SLAs

between a provider and a customer; therefore, the cloud

provider must minimize energy consumption while

meeting SLAs.

Keeping a trade-off between the number of migrations,

performance and energy is an optimization problem.

Since regulating workloads on servers is an NP-Hard

problem (Man, 2011) [18], heuristic and meta-heuristic

methods are often proposed for solving them.

Zahedi et al. [19] have proposed the Dynamic Threshold

Maximum Fit (DthMf) algorithm that considers

temperature and classification of servers. It can re-

duce energy consumption and number of migrations.

The DthMf can reduce energy consumption rather

than the method in [7, 20]. In [19], servers are di-

vided into three categories based on their speeds in

Million Instruction Per Second (MIPS), and their

energy consumption as:

(1) High performance server: with high MIPS and less

heat produced compared to other categories.

(2) Low performance server: with low MIPS and more

heat produced compared to high performance

server.

(3) Medium performance server: less heat produced

rather than low performance server and more heat

rather than high performance server. It has lower

MIPS than high performance server and higher

MIPS than low performance server.

If VMs are to be consolidated into low performance

servers in comparison with high performance servers,

their whole energy consumption comes close together.

However, the heat problem will reduce dramatically

using high performance servers [19].

The DthMf tries to migrate VMs from low perform-

ance servers to high performance servers, and switches

almost all low performance servers to the sleep mode.

The migration problem is divided into four sub-prob-

lems as [20]:

1 Overload Server detection: select PMs with higher

temperature rather than a given threshold temperature.

2 Under-load server detection: select servers with the

lowest CPU utilization. This sub-problem selects

low utilized servers from firstly low performance

servers, then medium, and finally from high

performance servers.

3 VM selection: Zahedi et al. [19] has introduced a

new algorithm for this selection called Maximum

Fit (MF) that selects the VM with the lowest

deviation between its utilization and threshold.

4 VM placement: select destination server for the

VM, where it is tried to choose from high

performance servers primitively, then medium, and

finally low performance servers.

Yavari et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:13 Page 2 of 16



Many researches have been carried out in the field of

energy optimization, but most of them do not consider

the effect of multiple resources. Moreover, they try to

reduce energy consumption without focusing on the

temperature and type of servers. This has motivated us

to introduce two heuristic and meta-heuristic methods

that reduces energy consumption by considering mul-

tiple resources.

The objective of this work is to propose two energy

and temperature-aware algorithms based on heuristic

and meta-heuristic (based on nature-inspired Firefly

Optimization (FFO)) methods that can reduce energy

consumption in cloud computing environments. In this

paper, CPU, memory and temperature performances are

considered and it is tried to optimize their usages. Some

challenges about energy management are discussed and

two policies and algorithms for making better

virtualization and reducing energy consumption in cloud

data centers, are proposed, thus getting closer to green

cloud computing.

The main contributions of this work are as follows: (1)

propose two heuristic and meta-heuristic algorithms for

the problem of efficient dynamic VM consolidation, and

(2) consider temperature and type of servers in the pro-

posed algorithms for reducing temperature of data

centers and improving resource utilization.

The rest of this paper is organized as follows. The

related works are studied in Section 2. In Section 3, the

system model is presented. Section 4 presents the firefly

algorithm. The proposed methods are described in

Section 5. Section 6 shows simulation results and evalu-

ation of the proposed methods. Finally, conclusions are

proposed in Section 7.

Related work
In past years, many researches have been carried out in

the field of energy efficiency and resource utilization for

cloud computing environments. Researches are either

based on building less consuming equipment, [16, 21],

or based on optimization of resource allocation [22, 23].

Wang et al. (Wang, Liu, Chen, & [24]) have proposed

a distributed approach, where the VM placement phase

is based on a non-centralized agent algorithm that

makes a local negotiation for the migration phase. This

algorithm considers an agent on every PM, where the

agent tries to select the biggest VM to host. The agent

determines a bid about its suggestion for the VM that

tends to host, and broadcasts that bid to all other agents.

If an agent has a lower bid rather than the arrived bid, it

sends an acknowledgment message for the sender agent;

otherwise, it sends a negative acknowledgment. In the

mentioned algorithm, VMs are placed on the PM with

the best bid. This method provides high traffic between

PMs because of bids, acknowledgment and negative-

acknowledgment messages, thus increasing energy con-

sumption and temperature of network devices.

The work in [16] has presented a Modified Particle

Swarm Optimization (MPSO)-algorithm for VM consoli-

dation and live migration. It considers the multiple-re-

source threshold and Euclidean distance as an optimum

factor. The lower the factor, the more optimal VM

placement. It considers a fixed threshold for processor

and disk. However, the cloud environment is a dynamic

environment and fixed parameters cannot behave as well

as dynamic thresholds.

Younge et al. [22] have proposed green cloud comput-

ing framework to reduce power consumption. Two

power-based and temperature-based approaches for

reducing total power of servers and temperature of data

centers have been introduced. The authors have also

proposed a new approach to reduce the size of VM in

order to reduce migration time.

Beloglazov and Buyya [20] have defined several forms

of optimal online and offline algorithms for VMs migra-

tion and the consolidation problem. They have proposed

a novel adaptive heuristic solution for the problem of

energy consumption and efficient dynamic VMs consoli-

dation, where upper and lower thresholds are set period-

ically based on the recent resource utilization, thus

providing a tradeoff between performance and energy

consumption. They have also introduced a dynamic

server consolidation framework [7] that tries to keep

server utilization between upper and lower thresholds of

CPU utilization. This algorithm is Modified Best Fit

Decreasing (MBFD) for the VM placement problem in

order to reduce energy and minimize the number of

SLA violations. [25] have worked on dynamic upper

and lower thresholds algorithms with an approach to

reduce energy consumption without considering

trade-off between performance and migration, and

migration cost.

The work in [26] considers heat island for servers,

where in a high-temperature environment, it can

cause serious problems. This work proposes a virtual

machine placement algorithm for energy saving con-

sidering server reliability. The authors try for rapid

elimination of a server heat by placing virtual ma-

chines on few servers. It considers relationship be-

tween server utilization and power consumption, the

relationship between server utilization and server heat, the

relationship between server utilization and power con-

sumption of cooling systems, the relationship between ser-

ver heat and server reliability and availability of system at a

specific time. Also, it considers redundancy of the servers

in order to secure the reliability of servers operating in a

high temperature environment. This work has introduced a

heuristic approach to solve virtual machine placement with

trying to find the best solution based on power
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consumption and temperature of the server rack to avoid

of heat island.

Research in [27] is based on fast and accurate models

with awareness of the relationships with power of non-

traditional parameters (such as temperature and fre-

quency). This work combines both energy and thermal-

aware strategies. The authors work on a set of single-ob-

jective and multi-objective best-fit decreasing based pol-

icies and a meta-heuristic-based optimization policy that

relies on the simulated annealing algorithm. All methods

optimize the energy consumption of the data center con-

sidering both IT and cooling parameters. A cooling

strategy based on VM placement is another contribution

of the paper that tries to maintain overall data center at

a safe temperature. The algorithm aims to find the high-

est cooling set point of the computer room air condi-

tioning units to ensure a safe operation for the data

center infrastructure. Finally, the cooling set point is set

to the lowest value within the maximum cooling set

point for all the servers, guaranteeing that the infrastruc-

ture operates below the maximum safe CPU temperature.

Authors work on VM placement and only detect overload

servers.

The problem of dynamic placement of applications in

virtualized heterogeneous systems has been formulated

in [28] as continuous optimization with considering

power consumption and performance. The placement

problem is based on the bin-packing problem with vari-

able bin sizes and costs. This work uses a heuristic

method to solve the problem. Live VM migration has

been performed at each time frame for obtaining a new

placement. However, the proposed algorithm does not

consider SLA.

The authors in [29] have proposed new strategies for

VM consolidation. They consider three types of consolida-

tions: static (monthly, yearly), semi-static (days, weeks)

and dynamic (minutes, hours). However, they only con-

sider static and semi-static consolidation techniques,

whereas the studied environment is completely dynamic,

and therefore, the static and semi-static evaluation cannot

result in realistic results.

Since nature inspired computing (such as Ant Colony

Optimization (ACO) [30], Artificial Bee Colony (ABC)

[31] and Firefly Optimization (FFO) [32]) are self-organ-

izing, self-repairing, navigating and flourishing with their

local knowledge and without any centralized control

[33], many researchers choose them to solve the VM

consolidation and energy management problems.

Farahnakian et al. [34] have proposed a method for

improving consolidation of VMs for green cloud

computing using the ant colony system named ACS-

VMC. They use Linear Regression based on CPU Usage

Prediction (LIRCUP) to detect overloaded hosts, and

then find the best PM for VM placement using the ant

colony. Finding near-optimal solution can improve

energy consumption, while maintaining the agreed level

of performance with users.

Kansal and Chana [35] have designed an artificial bee

colony based on energy-aware resource utilization tech-

nique to allocate jobs to resources. Their model manages

cloud resources and increases their utilization. This

model can also reduce energy consumption by proper

VM consolidation based on the past resource utilization

and energy consumption data. It also tries to maintain

the performance of user applications and to sleep idle

nodes.

In [36], an energy-aware virtual machine migration has

been introduced based on the Firefly algorithm. Their

problem formulation and energy model are based on

[35]. This technique considers two different types of

workloads as CPU-intensive and memory-intensive. It

migrates most-loaded VMs from a node with high-en-

ergy consumption to an active node with the least-en-

ergy consumption, where the selection criteria are based

on the firefly algorithm.

In Fathi, Khanli (Fathi, Khanli 2018) [37] an energy-

aware virtual machine consolidation method has been

proposed using Harmony Search Algorithm (HSA). They

claim that HSA has proven its efficiency in power prob-

lems. However, their simulations are weak and have only

evaluated one model of random workload.

System model

The simulation system is in the IaaS environment with k

data centers each containing N disparate physical Each

PM is defined by three resources as: CPU, memory and

network bandwidth. There are two characteristics for a

CPU: number of cores and computation speed as million

instructions per second (MIPS). Servers do not have

local disks, and their storages are located on a storage

area network (SAN). This easily enables live migration

of VMs.

The types of application workloads are not considered.

Properties of PMs are given in Table 1 based on [22]

and properties of VMs are based on the Amazon EC2

instance type, but with this difference that all VMs are

single core (see Table 2).

Table 1 Characteristics of servers (PMs)

Server HP ProLiant
ML110 G5

HP ProLiant
DL360 G7

HP Proliant
DL360 Gen9

Processor (MIPS) 2660 3067 2300

Number of core 2 12 36

Memory (GB) 4 16 64

Network BW (GB/s) 1 1 1
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In this paper, the system model is based on [19, 20].

The mentioned system model has two managers: global

and local. The local manager is one part of VMM

(Virtual Machine Manager) and gathers information of

each PM such as resource utilization, resizing VMs

based on user needs, decides for migrating VMs (but

VMM migrates VMs) and so on. The global manager is

on the master node and collects information of all local

managers. The proposed optimization algorithms are

executed on this manager.

Energy consumption metric

In a server, CPU is the basic power consumer resource

compared to other resources such as memory, disk

storage and network interfaces. The work in [28, 38]

indicates that Application on Dynamic Voltage and

Frequency Scaling (DVFS) has near linear power-to-fre-

quency relationship for CPU. Hence, the power

consumption of other resources can be ignored. Anton

Beloglazov in [7] has proposed Eq.(1) for power

consumption:

p uð Þ ¼ K � pmax þ 1−Kð Þ � pmax � u ð1Þ

where pmax is the power consumption of server when its

CPU utilization is 100%, K is the power consumption of

an idle server expressed in percentage, and u is the CPU

utilization. Workload varies during time so that CPU

utilization may be variable. Therefore, total energy con-

sumption is defined as a function of time as follows:

E ¼

Z

t1

t0

p u tð Þð Þdt: ð2Þ

VM migration cost metric

In live migration, a VM is reallocated from its PM

to another suitable PM when both of PMs and VM

are at the running state. Although there is not con-

siderable effect at user level, live migration provides

bad impact on the performance of running applica-

tion at the migration phase, and therefore, the less

time for migration is better. In addition, migration

affects both performance of source and destination

PMs. The work in [20] shows that a single live mi-

gration approximately has 10% CPU overhead that

leads to violation of SLA. Since migration causes

degradation of performance and SLA violation, the

number of live VM migrations must be reduced. The

work in [20] defines migration time and performance

degradation experienced by VM j as follows:

Tm j
¼

M j

B j

ð3Þ

Ud j
¼ 0:1

Z

t0þTm j

t0

u j tð Þdt ð4Þ

where Ud j
is total degradation of performance by VM

j, parameter t0 is the start time of migration, Tm j
de-

notes the finish time of migration, uj(t) is the CPU

utilization of VM j, Mj is the amount of memory

used by VM j, and Bj is the available network

bandwidth.

Service level agreement (SLA) violation metric

SLA has a direct relation with provided QoS, where

high QoS is one of the basic parameters for holding

and attracting customers. In the cloud environment,

SLA includes different parameters such as minimum

throughput, minimum bandwidth, maximum re-

sponse time and maximum downtime. Since these pa-

rameters are dependent on the application type, a definition

for autonomous metrics for SLA assessment in the IaaS level

is required. Two parameters have been defined in [20] for

SLA:

1. SLA Violation Time per Active Host (SLATAH):

percentage of time that the CPU utilization of a

server is 100%. This is defined because at the full

CPU capacity, a PM cannot provide the required

performance by VMs (see Eq.(5)).

2. Performance Degradation due to Migration (PDM):

total performance degradation due to live migration

experienced by VM j (see Eq.(6)):

SLATAH ¼
1

N

X

N

i¼1

T si

Tai

ð5Þ

PMD ¼
1

M

X

M

j¼1

Cd j

Cr j

; ð6Þ

where N is the number of servers, T si is total time

that CPU utilization of server j is 100%, Tai is total

time that server j is active, M is the number of

VMs, Cd j
is the estimated performance degradation

of VM j during migration time, and Cr j is total

Table 2 Characteristics of Virtual Machines (VMs)

Virtual machines Large Medium Small Micro Nano

Processor (MIPS) 2000 1000 1000 500 250

Memory (GB) 2048 2048 1024 1024 512

Network BW (GB/s) 1 1 1 1 1
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amount of CPU capacity requested by VM j. In [10],

Cd j
is set to 10% of CPU utilization in MIPS during

all migrations of VM j. Authors in [20] have defined

a new combined metric that encompasses both per-

formance degradation parameters as in Eq.(7):

SLAV ¼ SLATAH � PDM ð7Þ

The ESV metric

The fourth parameter is Energy and SLA Violations

(ESV) introduced in [20] and used in [19] defined as

Eq.(8), where the energy consumption parameter

(Energy) was defined in Section 3.1. Note that energy

consumption and SLAV are the main metrics because

they must be in the minimum state to improve efficiency

of resources.

ESV ¼ Energy� SLAV ð8Þ

Time and space complexity

Time complexity describes the amount of time that

takes to run an algorithm and is based on the number of

steps that an algorithm uses on a particular input to

obtain result. Space complexity is the amount of space

or memory that an algorithm needs for gaining results

for a particular input set. Both of the time and space

complexities for the meta-heuristic algorithm will be

computed.

Firefly optimization algorithm
The Firefly Optimization (FFO) algorithm has been

developed by Xin-She Yang in 2008. It is based on

the social behavior of fireflies and inspired from their

flashing property [32]. The author has simplified their

bioluminescent communication as the subsequent

rules:

(1) Attraction of a firefly to another firefly has nothing

to do with its sex and all fireflies are considered

unisex.

(2) Attraction is proportional to the brightness of

fireflies in a way that a less-brighter firefly can be

absorbed to a brighter firefly and moves toward it.

If a firefly cannot find a firefly brighter than itself, it

moves in an optional way.

(3) An objective function specifies brightness or light

intensity of a firefly.

When two fireflies have distance r from each other,

their attractiveness parameter (β) is defined as [39,

40]:

β ¼ β0e
−γ:r2 ð9Þ

where both β0 and γ parameters are predestined pa-

rameters of the algorithm. Parameters β0 and γ de-

note attractiveness at r = 0 and absorption coefficient,

respectively. When firefly i is attracted to brighter

firefly j, its amount of movement is computed by [39,

40]:

xtþ1
i ¼ xti þ β0e

−γ:r2 xtj−x
t
i

� �

þ αtε
t
i ð10Þ

where αt ∈ [0, 1] is the randomization parameter and

εti is the vector of random variables calculated from

either a Gaussian or uniform distribution at time t.

If β0 = 0, movement becomes a simple random

move.

Energy and temperature-aware Algorithms
In the proposed work, servers are considered based

on three categories introduced in [19] as high,

medium and low performance servers (see Section 1).

As mentioned in Section 1, an idle server consumes

high power proportional to the server running at full

utilization. The work in [7] expresses that power con-

sumption of an idle server is close to 70% of power

consumption of a full running server. Therefore,

switching an idle server to sleep mode can save en-

ergy efficiently. This fact results in consolidating of

VMs in fewer servers with full utilization. Moreover,

selecting servers from high performance ones can sig-

nificantly benefit for optimal consolidation problem,

because they are the main consumers of the datacen-

ter. Therefore, consolidating of VMs on high per-

formance servers can reduce energy consumption and

heat.

The VM consolidation problem is complex and is

divided into four sub-problems, server overload detec-

tion, server underload detection, virtual machine se-

lection, and virtual machine placement. In the

following, four steps of the VM consolidation prob-

lem are detailed.

Over-load server detection

In this section, the first part of dynamic VM consoli-

dation problem (i.e., whether a server is overloaded

or not) will be proposed (see Algorithm 1). When

the load on a server exceeds its capacity, it is

considered to be overloaded, resulting in fault of

services in the server. Therefore, this situation must

be prevented before occurrence. Some works [16, 41, 42]

have defined an upper threshold for finding an over-

load server, where this threshold could be either

static or dynamic. Since cloud computing environ-

ment is completely dynamic, it is best to consider

dynamic upper threshold. First, among all servers in

a data center, the sever with the highest maximum
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Operation Per Second (OPS) per watt is chosen,

called as optimum server. As described before (see

Section 3.2), 10% of CPU utilization is required for

completing VM live migration. Thus, 90% of CPU

utilization could be considered as an upper-bound

threshold and its temperature is determined at 90%

CPU utilization based on (“https://www.spec.org/

power_ssj2008/results/”). This temperature is called

Thresholdtemperature. In [18], an overloaded server is

selected only based on temperature and other re-

sources are not considered.

In the proposed work, all three parameters of

CPU utilization, memory utilization and temperature

of server are considered as the main parameters that

affect energy consumption. However, there is an ex-

ception in some cases about temperature and re-

sources utilization. For example, the temperature of

a server may be higher than Thresholdtemperature in

some optimal utilizations (“https://www.spec.org/

power_ssj2008/results/,”), where the CPU and memory

utilization could be low. This situation leads to

additional VM migrations causing an increase in

CPU overhead and energy consumption. For this

reason, overloading has three conditions: temperature of

the server is higher than Thresholdtemperature, CPU

utilization is higher than 50%, and memory utilization is

higher than 50%. The complexity of Algorithm 1 is

O(m+m) = O(m), where m is the number of servers.

Underload server detection

The second step in the VM consolidation problem is to se-

lect the server that its utilization of resources is very low. By

migrating all the VMs running on the server and switching

it to the sleep mode, energy consumption can be reduced.

For this sub-problem, Algorithm 2 is proposed in which for

the low performance servers, the server with CPU utilization

fewer than 50% and memory utilization fewer than 20% is

selected. For the medium performance servers, 30% and

10% lower bound thresholds are considered, respectively, for

CPU and memory utilization for choosing an underload ser-

ver. Finally, for the high performance servers, the server with

10% and 5% lower bound thresholds, respectively, for CPU

and memory utilization is selected.

At the end, the algorithm tries to first select the under-

loaded server from the low performance, then from the

medium performance, and finally from the high perform-

ance servers if there is no choice in the other two categories.

The objective of this algorithm is to cause to put to sleep

low and medium performance servers as far as possible be-

cause they consume more energy in the comparison with

high performance servers. This algorithm has time complex-

ity equal to O(m), where m is number of servers.

Virtual machine selection

When an underloaded server is selected, all VMs running

on it should be migrated to another suitable server. How-

ever, when an overloaded server is selected, only one VM
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on it must be migrated. After this migration, if the server is

still overloaded, then another VM is chosen for migration.

This process is repeated until the server is no longer

overloaded. The Maximum Fit (MF) algorithm [19] for VM

selection (stated in Section 1) is chosen.

Virtual machine placement

The last step in VM consolidation is to select a suitable

server for the selected VM in the migration list that con-

sists of all VMs in the queue of migration. Since the VM

consolidation problem is an NP-Hard problem, finding

an exact solution requires a lifetime. Therefore, heuristic

and meta-heuristic methods should be used to solve it.

Two new methods are introduced in this paper as heur-

istic-based and meta-heuristic based.

Heuristic energy and temperature-aware virtual machine

consolidation (HET-VC)

In this section, our first heuristic algorithm is introduced

that can find near optimal solution in a tolerable time. It

has an objective function as Eq.(11):

F ¼ ∂� UCPU þ β� URAM þ κ � Temp ð11Þ

where ∂, β and κ are coefficients and their summation is 1.0.

Parameter UCPU is the utilization of CPU, URAM is the

utilization of RAM, and Temp is the normalized temperature

of the server that is between 0 and 1 based Eq.(12):

Temp ¼
X−a

b−a

�

�

�

�

�

�

�

�

ð12Þ

where Temp is positive normalized temperature, X
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is temperature of the given server, a is the mini-

mum temperature of server among all temperatures

experienced, b is the maximum temperature of ser-

ver among all temperatures experienced both based

on the information obtained from ("https://www.

spec.org/power_ssj2008/results/").

The proposed Heuristic Energy and Temperature

Aware Virtual Machine Consolidation (HET-VC)

calculates the amount of objective function based

on Eq. (11) for all servers that are not overloaded /

underloaded in a data center (see Algorithm 3).

Then, the server with the lowest F is chosen. An-

other point considered in this algorithm is server

classification. The algorithm tries to select a high

performance server first, then a medium perform-

ance, and finally a low performance server.

The complexity of HET-VC in Algorithm 3 is

O(mN + m) = O(mN), where N is the number of

server classifications. In this paper, we have N = 3

(low, medium and high), and m is the number of

checked servers. Therefore, the complexity is O(3

m +m) = O(m).

Firefly energy and temperature aware virtual machine

consolidation (FET-VC)

A heuristic method has two main problems: trapping

at local optimum points and early convergence to

these points. On the other hand, a meta-heuristic

method can resolve these problems. The Firefly algo-

rithm is a meta-heuristic method used in this section.

First, it calculates the intensity of servers using

Eq.(11). If there is a server with lower intensity than

the server that VM is running on it now, FET-VC

updates new position parameters based on the steps

of the Firefly algorithm, where position parameters

are utilization of resources and temperature. Therefore,

the candidate server and its utilizations and temperature

must be updated.

Finally, the algorithm selects a server with mini-

mum F and utilization and temperature. In the Firefly

algorithm, Eq.(10) is used for calculating parameters

for movement to new position. Here, Eq. (13) is used

for updating utilization and temperature of a server:

Unew ¼ Upast þ Fpast Uafter−Upast

� �

þ α ð13Þ
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where Unew is the new utilization of each resource

(CPU and RAM), and Upast is past utilization of

resource mapped to the first term in Eq.(10) as the

last position of firefly. Parameter Fpast is the intensity

before allocating VM to PM that is set instead of the

attractiveness parameter (i.e., β) in the firefly algo-

rithm, Upast is the utilization of the resource before

allocating VM, and Uafter is utilization of the resource

after allocating VM. They are set instead of each term

in Eq.(10). Parameter α is a random number between

0 and 1 based the Gaussian distribution, set for the

third term in Eq.(10). Generally, it is an error param-

eter because fireflies do not move directly in the real

world. Hence, this parameter sets their movement to

be closer to the real world. Note that utilization

should always be less than 1. Besides, a new

temperature is calculated as:

Tnew ¼ Tpast þ Fpast Tafter−Tpast

� �

þ α ð14Þ

where Tnew is temperature of the server after migra-

tion, Tbefore is the temperature before allocating VM,

and Tafter is an estimation of temperature after allocating

VM. Algorithm 4 describes the FET-VC method step

by step.

The complexity of FET-VC in Algorithm 4 is

O(mN +m) = O(mN), where N is the number of server

classifications. Here N = 3 (low, medium and high),

and m is the number of checked servers. Therefore,

the complexity is O(3m +m) = O(m).

Experimental setup
As mentioned in Section 3, the environment for this

paper is IaaS, and it is required to be evaluated on a

large scale virtualized infrastructure data center. Surely,

the proposed algorithm evaluation is so difficult on real

infrastructure. Simulator software (e.g., Cloudsim, Sim-

Grid, GangSim and so on) are one way to prove the

efficiency of the proposed work. The Cloudsim toolkit is

chosen as our simulation platform because it can simu-

late cloud environments very well [43]. Besides, it can

adapt with dynamic workloads. In this paper, the imple-

mented extensions have been included in the 3.0.3

version of Cloudsim toolkit.

In the simulation process, one data center that

comprises 300 heterogeneous physical machines is

adapted, where 100 of them are HP Proliant ML 110 G5,

100 are HP Proliant DL360 G7 and the remaining are

HP Proliant ML110 G9. The characteristics of the

servers are given in Table 1. The number of VMs is var-

ied based on data workloads. Ten days of them are
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chosen randomly for evaluation as shown in Table 3.

The workload data are based on the CoMon project

[44]. The interval of measurements is 5 min.

Performance metrics

To prove the efficiency, the proposed algorithms are

compared with the DthMf algorithm. These compari-

sons are based on several metrics. First metric is total

energy consumption by PMs expressed in Section 3.1.

Second metric is the number of migrations and the

number of VM replacements accomplished by VM man-

ager. The third metric is SLA violation based on the

model stated in Section 3.3 and the fourth metric is the

ESV metric detailed in Section 3.4.

Simulation results

Here, HET-VC, FET-VC and DthMf algorithms are

compared. Based on Eq.(11), there are three coefficients

that sum of them must be one. Different combination of

these coefficients are considered as combination 1: (α =

1/3, β = 1/3, κ = 1/3), combination 2:(α = 0.5, β = 0.25,

κ = 0.25) and combination 3:(α = 0.25, β = 0.25, κ = 0.5).

In the following subsections, confidence intervlas (CI) of

95% are also provided for performance evaluatiosn

parameters during 10 days of simulations.

Energy consumption

As shown in Fig. 1, HET-VC can decrease energy

consumption, displayed in kilowatt hours (kWh) very

well. The HET-VC under combination (α = 0.25, β =

0.25, κ = 0.5) works better than the other two combina-

tions of HET-VC algorithms. Energy consumption is

affected from resource utilization and temperature. On

the other hand, CPU utilization and temperature have a

direct connection with each other. Therefore, by increas-

ing temperature coefficient in combination (α = 0.25, β =

0.25, κ = 0.5) and selecting servers with the lowest

temperature, energy consumption can be decreased. The

FET-VC has the best performance totally because of

trying to find the best solution. The HET-VC tries to

find the PM with the best F (see Eq.(11)) based on the

current condition. However, FET-VC decides based on

the current and future conditions in order to find the

best solution. On average, FET-VC has the lowest energy

consumption (7.65 kWh) with CI: (7.45,7.86) rather than

three combinations of HET-VC (8.59 kWh with CI:(8.27,

8.92), 8.13 kWh with CI:(7.72,8.51) and 7.97 kWh with

CI:(7.81,8.14)) and DthMf (14.89 kWh) with CI:(14.02,

15.75).

Number of migrations

Live migration is one of the best tools of virtualization

for improving the consolidation problem. However, if

the number of migrations is very high, energy

Table 3 Characteristics of workload data

Date Number of Virtual Machines

2011/03/03 1052

2011/03/06 898

2011/03/09 1061

2011/03/22 1516

2011/03/25 1078

2011/04/03 1463

2011/04/09 1358

2011/04/11 1233

2011/04/12 1054

2011/04/20 1033

Fig. 1 Energy consumption
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consumption will increase. Therefore, an efficient solu-

tion must decrease energy consumption with the lowest

number of live VM migrations.

Figure 2 depicts the number of VM migrations. The

FET-VC and all of three coefficient combinations of

HET-VC have lower migrations than DthMf. Besides,

FET-VC provides the lowest number of migrations

because of finding the best solution space that avoids

from extra migrations. On average, FET-VC has 1259

migrations with CI:(1168,1350), combination 1 of

HET-VC has 1412 migrations with CI:(1301, 1522).,

combination 2 of HET-VC has 1315 migrations with

CI:(1200, 1429), combination 3 of HET-VC has 1279

migrations with CI:(1181,1378), whereas DthMf has

3455 migrations with CI:(2973, 3936). Combination 3

of HET-VC has lower migration than two other com-

binations. This is because combination 3 selects the

servers with the lowest temperature. Recall that a

lower temperature server has a lower CPU utilization,

and therefore, this server rarely enters in the overload

status, thus reducing the number of migrations.

SLA violation

As described in Section 3.3, SLA violation is originated

from SLATAH and PDM. Both HET-VC and FET-VC

can reduce the number of VM migrations. Since migra-

tion has bad effect on performance and services, less mi-

gration decreases PDM and lower PDM leads to lower

SLA violation. The FET-VC tries to find the best solu-

tion between all possible solutions and considers the

current and the next positions, thus providing mostly

lower number of migrations.

Therefore, its SLA violation is better than HET-VC.

As shown in Fig. 3, FET-VC has near SLA violation

value with combinations 2 and 3 of HET-VC, but FET-

VC totally is better than the others. On average, the SLA

Fig. 3 SLA Violation

Fig. 2 Number of live migrations
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violation of FET-VC, combination 1 of HET-VC, com-

bination 2 of HET-VC, combination 3 of HET-VC, and

DthMf are 1.66 × 10−5 with CI:(1.38 × 10−5, 1.93 × 10−5),

3.4 × 10−5 with CI:(2.49 × 10−5, 4.3 × 10−5), 1.94 × 10−5

with CI:(1.43 × 10−5, 2.46 × 10−5), 2.43 × 10−5 with CI:

(1.96 × 10−5, 2.91 × 10−5), and 6.6 × 10−5 with CI:(5.46 ×

10−5, 7.73 × 10−5), respectively. In the previous parame-

ters, combination 3 of HET-VC provided the best re-

sults, but here combination 2 provides the best result.

This is because SLATAH and PDM that are the main

parameters for calculating SLAV are based on CPU (see

Eq.(7)) and in this combination CPU has more

coefficient.

ESV

Recall ESV is based on energy consumption and SLAV.

Hence, if one of them decreases, ESV goes down as a

result. As described in Sections 6.3.1 and 6.3.3, both of

the energy and SLAV parameters have been reduced by

three combinations of HET-VC and FET-VC. Thus, ESV

is reduced as a result as displayed in Fig. 4.

Figure 5 illustrates the threshold of three types of

servers in different methods. As one can observe in

the DthMf method, upper threshold is 90% for G7

and G9 and about 70% for G5 servers. The proposed

methods have the same threshold because the over-

load and underload server detection is the same for

both HET-VC and FET-VC but are different from

DthMf. Upper threshold is close to 70% for G5

servers, 80% for G7 and 90% for G9. The proposed

threshold is better than DthMf because both of HET-

VC and FET-VC consider resources utilization and

temperature to find servers with high temperature

and utilization.

Fig. 5 Thresholds of servers in different load and different methods

Fig. 4 ESV parameter
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Space and time complexities

Two important parameters to be evaluated for any algo-

rithm are time complexity and space complexity. Some-

times one algorithm has very good results but its time or

space complexity is very high and unacceptable. Al-

though, it is shown that FET-VC has very good perform-

ance results, it is still required to check time and space

complexities. Therefore, these parameters for the FET-

VC algorithm are measured. A personal computer with

8GB memory, Intel CPU core i5–3210 2.50 Ghz was

used for the simulation of the proposed algorithms.

Figure 6 shows the diagram of time complexity param-

eter (in milliseconds) about simulation time of FET-VC.

Time consumption of FET-VC was measured at the end

of each time interval and at the end of simulation of

each day, and calculate mean of all gained times. As one

can see, the time complexity of the proposed method is

very low. Hence, time complexity of FET-VC is

acceptable.

Figure 7 depicts space complexity parameter in

percentage (i.e., the ratio of used memory over total

memory). The amount of memory usage of the PC for

calculating this complexity was measured. Each point is

gained based on the average memory usage within a day

of simulation with respect to total memory. Measure-

ments show that our space complexity is relatively low

and it is a strong point for the FET-VC algorithm.

Conclusion and future works
In this paper, two novel algorithms as heuristic energy

and temperature aware based virtual machine consolida-

tion (HET-VC), and Firefly energy and temperature

aware based virtual machine consolidation (FET-VC)

were introduced to improve the consolidation problem

of VMs. They can reduce energy consumption of servers

while decreasing the number of migrations and SLA

violation. On the other hand, a trade-off is obtained

among the number of migrations and SLA violation.

Fig. 7 Space Complexity

Fig. 6 Time Complexity
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Based on performance evaluation results, both of the

proposed algorithms outperform DthMf since DthMf

considers only CPU as resource, but HET-VC and FET-

VC consider CPU and RAM as resources. The DthMf

tries to consolidate VMs on high performance servers

with the lowest CPU utilization, but HET-VC and FET-

VC consolidate VMs on high performance servers with

the lowest CPU utilization, the lowest RAM utilization

and the lowest temperature. The HET-VC and FET-VC

find the best solution in the solution space. In addition,

FET-VC considers current position and position after

migration with updated distances.
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