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Abstract. Consideration is given to problems of unsteady forced convection heat
transfer in the presence of either time-invariant or time-dependent surface temperatures.
The transient is initiated when a solid body is exposed to a fluid having a temperature
different from its own. In the first part of the paper, a solution method is developed for
determining the surface heat transfer for the case of steady, uniform surface temperature.
Then, attention is turned to the determination of the temperature history of non-intern-
ally-heated bodies of high thermal conductance, which lose heat by convection to the
fluid environment. A numerical scheme for deducing results for the temperature history is
described, while analytical expressions appropriate to the initial and quasi-steady stages
of the transient are presented. Detailed consideration is given to the case of a sphere in a
low Peclet number flow, for which an exact solution for the temperature history is worked
out. The results from the numerical scheme are found to be in excellent agreement with
those from the exact solution, while the expressions for the initial and quasi-steady
stages, when taken together, serve to establish the general behavior of the solution over
the entire transient period.

Introduction. In this paper, consideration is given to two classes of problems which
involve time-dependent heat transfer between a solid surface and a moving fluid. ODe
of these classes is characterized by steady, uniform surface temperatures. The other
includes non-internally-heated, high-conductance solid bodies having a spatially uniform
temperature which changes 'with time as a result of heat exchange "with the fluid environ-
ment. For both classes of problems, the transient is initiated when the body is exposed
to a fluid whose temperature is different from that of the body.

Upon considering the problem areas just described, it is apparent that the analysis
of the first is less demanding than the analysis of the second. This is because, for the
solution of problems in the first group, it is necessary to consider only the energy equa-
tion for the fluid environment (assuming that the velocity field is known). On the other
hand, for problems in the second group, the energy equation for the fluid must be solved
simultaneously with the energy balance for the solid.

The foregoing observation motivates one of the objectives of this research. A solution
method is to be developed for determining the timewise temperature variation of a non-
internallv-heated solid of high conductance situated in a conducting-convecting fluid
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environment, given the surface heat transfer solution for the same solid but with a
steady, uniform surface temperature. In principle, the method is able to accommodate
arbitrary body shapes.

There are a number of approaches that may be employed to generate the input
information needed to apply the solution method; that is, to obtain the surface heat
transfer corresponding to the condition of steady, uniform surface temperature. These
approaches will be discussed in a later section. In the first section, however, a new series
solution, possessing considerable generality, is presented for problems of steady, uniform
surface temperature.

The second section is devoted to a description of the method for determining the
timewise temperature variation of the non-internally-heated, highly conducting solid.
The method makes use of integral transforms. This section also presents an account of a
highly serviceable numerical inversion technique which facilitates the practical realiza-
tion of the solution. In the last section of the paper, a specific problem is solved to illus-
trate and test the method.

Series solution for steady, uniform surface temperature. Consider a body having
steady, uniform surface temperature T0 ■ At time t = 0, the body is exposed to a laminar
forced convection flow whose initial temperature is uniform and everywhere equal to

. The fluid freestream temperature for all subsequent times is also T„ . The velocity
field is presumed known. For these conditions, regardless of whether the fluid velocity is
steady or unsteady, the temperature field in the fluid about the sphere will undergo a
timewise development from its initial uniform state. In the event that the velocity
field is steady, then, after a sufficiently long time has elapsed, a thermal steady state
is attained in the fluid. It is the objective of the analysis to determine the timewise
variations of the local and area-integrated instantaneous heat transfer rates at the
surface.

To facilitate the analysis, let |, 17, f denote a set of dimensionless orthogonal co-
ordinates (reference length L), such that 77 is directed along the local normal to the
surface, while £ and f lie in the surface y = 0. The local instantaneous fluid tempera-
ture is represented by Tf.(£, 77, f, r), where r is a dimensionless time. The asterisk is
employed to distinguish the case of steady, uniform surface temperature that is now
under study. It is also convenient to define a dimensionless fluid temperature 8f. as

»/.(?, V, f, t) = (Tf. - r.)/(r0 - sr.). (i)
The first step in the analysis is to write the appropriate energy equation. For a

steady, laminar boundary layer flow about a two-dimensional or axisymmetric body and
for steady flow (without boundary layer assumptions) about a sphere or cylinder, the
dimensionless energy equation can be written in the form

1 iry d&f d2df, . , d2df, , . d28f.
~d7 + m'v'f) 77 ~ ~e7~+ 9l(r,) If2' + 9v) "ap"

+ v, t) + g*(£, v, f) (2)

with initial and boundary conditions

Ml, r, 5* 0, r, 0) = 0, *,.({, 0, f, t) = 1, 6,.(S, «, f, r) = 0. (3)
In Eq. (2), the function / includes the Tj-component of the fluid velocity and, depending
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on the particular case, some power of the 77 coordinate which stems from the heat con-
duction term. The functions g, contain velocities and/or coordinates. Evidently, various
of the gj are zero for two-dimensional flow, axisymmetric flow, or boundary layer flow.
The / and <7,- are regarded here as known functions of position.

To initiate the solution, the Laplace transform of the energy equation (2) is taken with
respect to r, with #/,(£, v> s) denoting the transform of the fluid temperature distribu-
tion. Next, to eliminate the term d0r,/d?? from the thus transformed energy equation,
one introduces the $ function as follows:

M*. V, r, s) = ^ r' s) exp fo M, v, r) dr^ , (4)

and with this, the Laplace transformed version of (2) becomes

~2 - [s + h&, m
1 iTr h A \T/ A if/ = 0. (5)+ , 0.G, 17) 0 , MS, 5, f) H , hS, v. r)

In addition, under the transformation, the boundary conditions become

?({, 0, f, s) = 1, ?({, - 0. (6)
The functions A, fej, and are related to the / and g:- of Eq. (2) and can, therefore, be
regarded as known, as can the functional form H.

A series solution of (5) and (6) will now be sought which is valid for large values of s
(large s corresponds to small r). This problem resembles that of the Liouville type [1]
and, correspondingly, an appropriate form for the series solution is assumed to be

n, f, s) = exp (-S1/2v) X 2/.'(£> V, f)s"'/2 (7)
t-0

from which it follows, in conjunction with (6), that

0, f) = 1, yt<£, 0, r) = 0 for i > 1. (8)
The substitution of (7) into (5) and subsequent grouping of terms according to

powers of s yields

2/o(|, v, f) = 1 (9)
where the boundary condition (8) has been satisfied. For the other y* , i > 1, one finds

+ W ( \ ^ Vi — \ /£ \ d Vi — 1 r (i. — l 1 /f. t.\ dyi —giW-^r , g'Ak, v) sv' at-' j = 0. (10)

Of particular interest to the present study are the derivatives (dyi/drj)vm0, which are
involved in the determination of the local surface heat flux q. These derivatives can be
determined from Eq. (10). Then, by employing Fourier's law, q = —(kf/L)(dT/dri),.0 ,
in conjunction with Eqs. (1), (4), (6), (7), (8), (9), and (10), one obtains

q*L _ _1_ _ f($, 0, f) h(f, 0, r) ,±(dh\ _ A _J_ (dju
kf(T0 — T„) s1/2 2s + 2s3/2 ^ 4s2 Wi.o.r hsl + t/2\dv (ID

i.o.r



228 N. KONOPLIV AND E. M. SPARROW

or, after inverse transformation into the time domain,

q*L
-)-<pr~ + *«• °- + 5 -''' ■ <12>k,(T0 - TJ) (ttt) 2 1 4'W/ ' 4Wt.

It can be verified that /(£, 0, f) and /i(|, 0, f) do not contain any convective ingredients
in the absence of surface mass transfer. Therefore, the first three terms are purely con-
ductive, and convection enters in the fourth or subsequent terms.

For later application in the next section of the paper, the Laplace transform of the
surface-integrated heat transfer rate Q = JA q dA is needed. After integration of Eq. (11)
over the surface and introduction of the Nusselt number, there follows

Nujf) = (QJA)(2L)/(kf(To - TJ)

= _2,± f [ J a. A. + JL^"
s1/2 + liJ L S + s3/2 + 2s2 dv.

(13)
dA + 0(s~5/2)

i.o.r

with a corresponding expression in the time domain.
As an illustration of the foregoing, consider flow over a sphere without boundary

layer approximation. For this case, the local heat flux representation (12) reduces to
(with L — r0 , the sphere radius)

 Mn = 1 .-.ggfgV) T+... (14}
kf(T0 - Ta) (ttt)i/2 + 1 16 V dWi.o.r ' 1 j

In (14), Pe is the P6clet number ( = 2raU„/af), r is the Fourier number (= aft/r\), u,
is the dimensionless radial velocity (relative to freestream Um), v = (r — r0)/r0 , and $
and f are the cone and azimuth angles respectively. It is seen that the first influence of
convection is manifested via the wall value of the derivative d2u^/drj2, the magnitude of
which generally depends on surface location. This derivative can be evaluated for the
various flow regimes for which velocity solutions exist, e.g. Stokes or Oseen.

The foregoing solution method was limited to laminar external flows. Provided that
the eddy conductivity for heat is a known function of position, then it appears possible,
in principle, to extend the method to turbulent external flows.

Now that the development of the series solution for the case of steady, uniform
surface temperature is complete, attention can be turned to the main concern of the
paper, that is, solids with time-varying temperatures.

Temperature history of a highly conducting solid. In this section, a solution method
is presented for determining the timewise temperature variation of a solid situated in a
forced convection flow. The method makes use of the heat transfer results corresponding
to the condition that the solid is maintained at a steady, uniform surface temperature.

The temperature history of the solid is controlled by an instantaneous balance be-
tween the conductive-convective heat transfer to (or from) the fluid environment and
the change of internal energy of the solid. It is postulated that the conductance of the
solid is sufficiently high so that its temperature is spatially uniform at any instant of time.
There are no internal sources of heat within the solid. Initially, at time t — 0, the solid
and fluid are at different uniform temperatures, T0 and Ta , respectively. The fluid free-
stream temperature is Ta for all time.

To begin the analysis, dimensionless temperatures are defined as

9.{t) = (T. - T.)/(T0 - Tm), 8XS, v, r, r) = (Tf - T.)/(T0 - T„), (15)
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where T,(t) is the spatially uniform temperature of the solid and Tf(%, r?, f, r) is the
local temperature of the fluid. Temperature continuity at the surface of the solid re-
quires that

9.M = 0, f, r) (16)
for all t > 0.

At any instant of time, the rate of change of the internal energy of the solid is equal
to the rate of conductive-convective heat transfer at the surface, so that

-e--I|(f),./<*■ (17)

in which V is the volume of the solid. When Eq. (17) is recast into dimensionless form,
one gets

^.2 ftajA- f f (jr dA• (I8)dr A JA \d-ri /,.0 LA pjCf

Attention is now turned to the surface derivative of the fluid temperature, dd,/d
and its elimination from the problem. To this end, we note that the temperature 0,(£, rj,
f, t) at any point in the fluid can be represented, via Duhamel's integral, in terms of the
temperature solution v> r) for the case of steady, uniform surface temperature,
that is

0/(£. V, t) = es(\) [#,.(£, jj, r — X)] d\. (19)

The application of Duhamel's integral is well established in heat conduction problems,
but its use in convection problems is much less common. Integration by parts of the
right-hand side of Eq. (19) and application of the condition 0,(0) = 1 lead to

#/(£, V, i", r) = £,.(!, T], r) + #/«(£. v, t — d\, (20)

which satisfies the initial and boundary conditions on 6f . The elimination of 6f and
ddf/drj between Eqs. (18) and (20) yields

(21)

where

- -! L dA ■ (22)
The quantity Nu^(t) represents the Nusselt number for the case of steady, uniform
surface temperature.

Eq. (21) is an integral equation for the time-derivative of the temperature of the
solid. The solution of (21) might be attempted by the application of various available
methods. Here, a different approach, based on integral transforms, is employed. As will
be demonstrated in the next subsection, one of the advantages of the present approach is
that input information on Nu^ (s) (Laplace transform of Nu^ (r)) is needed only for a
discrete number of values of s.
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The basic equation for the new solution method is deduced by taking the Laplace
transform of Eq. (21), which yields

Us) = , . , (23)
VS + SJ\ 11^(3)

where 6s(s) and Nu^is) are the transformed counterparts of 6,(r) and Nu^t). Upon
inspection of Eq. (23), it is seen that the nature of the task of determining 6,(t) is al-
together different from that embodied in Eq. (21). According to Eq. (23), the input
information is fed into the problem in terms of Nu^(s), and the major task is to per-
form the inverse Laplace transform of the right-hand side. The inversion can expediti-
ously be carried out numerically as described later, but in some cases is capable of being
performed analytically. On the other hand, the task embodied in Eq. (21) is the solution
of an integral equation, followed by integration to obtain 6, (r).

Relevant to Eq. (23), it is appropriate to discuss (a) methods for determining the
input function Nu^(s) and (b) methods for inverting the equation in order to find

With respect to the function Nu^s), there are several approaches which appear to
be serviceable. One is to perform a finite-difference solution of the Laplace-transformed
energy equation. Such a transformed energy equation resembles that for steady-state
convection with a heat source proportional to s6f. ■ The numerical solution need be
performed for only a small number of discrete values of s. Another way of generating
Nu%(s) is by a series solution such as that given in an earlier section of this paper.
For solids with relatively small heat capacity (rapid transients for 03(t)), the 9,(r) re-
sults which are deduced from a series input for Nu^is) will cover most of the transient
period. On the other hand, for solids with relatively large heat capacity, the series input
provides a small time solution for

A third approach to obtaining NuAs) is to take

Nu^s) = Nujl.(co)/s (24)

where ArM^.(=») is the steady-state Nusselt number corresponding to the case of steady,
uniform surface temperature. This approach is relevant to the situation in which the
convective heat transfer is essentially quasi-steady. As is shown later, the 6s(r) deduced
by using (24) as input is of satisfactory accuracy over most of the transient period for
solids of relatively high heat capacity and otherwise serves as a large time solution. In
any case, Eq. (24), taken together with the aforementioned series input for Nu^(s),
provides an effective means of establishing the behavior of 6,(t) over the entire transient
period. Finally, in some cases, Nu# (s) may be obtained by an exact solution (see, for
example, [2]).

Attention is now turned to the inverse transformation of Eq. (23) to determine
0,(t). A highly serviceable numerical inversion technique can be utilized for this purpose.
This technique, which is described in the next subsection, appears to be quite promising,
but it has yet to be widely exploited in heat transfer applications. The inverse transform
can be carried out exactly to yield the aforementioned initial-stage and quasi-steady
solutions for a task accomplished in the second subsection. Also, in certain special
cases, the inverse transformation can be performed exactly for all time, as is exemplified
in the last section of the paper.

Determination oj 6,{r) by numerical inversion. If Nu# is a known function of s
then from Eq. (23), 6, (s) is also a known function. The relationship between the known
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0,(s) and the unknown time-dependent temperature 9,(t) is embodied in the definition
of the Laplace transform

0,(s) = f exp (—st)6s(t) dr (25)

Introduction into (25) of a change in the time variable from r to A

r = — a In A/b (26)

along with a new unknown function 9 s which is related to 9, by

6„(t) = b exp (ct)03(&t) (27)

leads to the following:

6,(sb + c) = a f A"'~19s(—a In A) dA. (28)
J 0

In (28), a, b, and c are prescribable real constants selected to facilitate stability of the
solution. Although there exists no theoretical prescription for an optimum choice of
a, b, and c [3], some pertinent observations about their selection, drawn from the authors'
experience, will be given later.

Eq. (28) is an integral equation for 9, . Its solution is found here with the help of the
Gaussian quadrature integration formula. For a preselected number of points N in the
interval 0 < A < 1, the integral is approximated by N terms, each term containing a
known weight w( and known abscissa A,- , where i = 1,2, • • • , N. Experience suggests
that a maximum value of 10 for N is quite sufficient for most applications. The inte-
gration procedure introduces N unknowns, 6 J —a In A,), i = 1, 2, • • • , N. Since one is
at liberty to assign N real values to s, say s,-, j = 1, 2, • • • , N, the N unknown values of
9, are thus found with the aid of N linear equations,

N

9,(s,b + c) = a X) WiA"' 10s( — a In A,), j = 1,2, • • • , N. (29)
i-1

Once the 6, are determined, the dimensionless temperature 0,(t) of the solid is found
with the help of Eqs. (26) and (27).

The authors have inverted numerous functions from the complex s-plane. In all of the
cases investigated, the s,- which appear in Eq. (29) were selected to be s, = 0, 1, • • • , 9.
The constant a, in Eqs. (26) and (29), was taken as one. A numerical value of b was
chosen in order to provide the desired range for r, as calculated from r = —a In A/b
and from the A< of the Gaussian integration procedure. The remaining constant c was
selected by trial and error, in such a way that the 9,(t) results were in agreement for
more than one value of b.

Solutions jor the initial and quasi-steady stages. The series solution for Nu^(s),
Eq. (13), can be used in conjunction with Eq. (23) to generate a representation for 6,{r)
for the initial stage of the transient period. If the l/s1/2 and 1/s terms of the series are
employed, one finds, after inverse transformation, respectively for /(£, 0, f) ^ 0 and = 0,

0,(r) = — [ exp (— x2•>-)[(/(£, 0, f) + vx)2 + 4xTy* 0 (30)

= exp (4r/p) erfc (2 Vt/p).
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Insights into the range of r for which Eq. (30) is applicable, with particular reference to
the influence of heat capacity, -will become evident during the presentation of results for
the forthcoming example problem.

To obtain the quasi-steady representation, Nu^(s) from (24) is introduced into (23).
This yields, after transformation,

0,(t) = exp [-Nu^(co)t/v]. (31)

Further insights into the utility of (31) will be provided by the example problem.
Sphere in a uniform velocity field. In order to amplify and illuminate the solution

method described in the preceding portion of the paper, application is made to the
problem of a sphere situated in an everywhere uniform velocity field. In the range of low
Peclet numbers, it was shown in [2] that the Nu^t) results from this model are in good
agreement with those corresponding to the Stokes velocity field.

This problem admits an exact solution for the time history 0,(r) of the highly con-
ducting sphere. In addition to those of the exact solution, results for 8,(r) are also ob-
tained by numerical inversion and from the initial-stage and quasi-steady representations.
Comparisons with the exact solution provide insights into the utility of these other
approaches for determining 0,(t).

The initial and boundary conditions for the temperature are the same as those stated
earlier in the paper.

Attention is first focused on the case of steady, uniform surface temperature, for
which the solution is given in [2] for the range of low Peclet numbers. The closed-form
representation for Nu^s), taken from [2] and reproduced here for convenience, is

Nu^s) = i - g ± (- l)"(2n + 1 )ll+1/2[~)KLUsl/2)/K„+l/2(S1/2) (32)

where s = s + Pe2/16. The Peclet number Pe is equal to 2r0Um/af . I and K are the
modified Bessel functions, respectively of the first and second kind, while K' is the
derivative of K with respect to its argument.

Next, consideration is given to determining the exact solution for 0s(r). To this end,
the Nu^(s) of Eq. (32) is introduced into (23), giving

«.(«) = v/(vs + B + S1/2 ± BnKn+3/2(SU2)/K„+1/2(?W2)) (33)

where now

" = (I )(p,c,/pfcf) (34)

and

B = 1 ~ v% ~ Fe to (~!)"(2W + 1)2/Ll/2(?) '

= " <35)

The inverse transform of (33) was obtained by contour integration performed in
the complex s plane. Upon inversion, the result is multiplied by exp ( — PeV/16) to give
0,(t). Since the denominator of (33) possesses a branch point at s = 0, the contour for the
inversion integral does not cross the negative real axis nor the origin. It is a standard
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contour, arising in other applications, and is depicted, for example, by Carslaw and
Jaeger [4, p. 303]. In addition, the denominator may possess, at most, a pole which is
denoted by . If it exists, the pole is of order one and is located on the positive real
axis. Values of Sp and the corresponding residues Res of the right-hand side of (33) are
presented in Fig. 1 as a function of the heat capacity ratio p,c,/pfcf , with the P£clet
number Pe as curve parameter.

The end result of the inverse transformation is

„ . . 2v ( Pe~ \ r . 2 .8.M = 7 exp r) Jo exp (-x r)

x2 it, BnVn(x)

2
X X £„rn(x)l + f"kx2 — B — x it A"(x)

n-0 J L n-0

(„ Pe2 \+ Res-exp - — r) ,

-dx (36)

in which r„ and A„ represent expressions which involve the Bessel functions J and F,
that is,

^ \   J n 3 /2 (x) Fn ^l/a(x) Jn+l/2 (x)F„+3/2(x)r-w j;,„m +  ■ (37)

60 80 100 " 200 400 600 800 1000 2000 4000
ps Cs /pf Cf

Fig. 1. The pole SP and the corresponding residues.
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, / •> Jn+3/2(x)J^l/l(x) + Y„ + 3/2(x)Yn + 1/2(x) + YUM  (38)

Temperature histories, evaluated from the exact solution (36), are plotted as solid
lines in Fig. 2 for parametric values of the ratio p,c,/pfcf ranging from 10 to 4,500 and
for a P£clet number equal to unity. The figure shows that the extent of the transient
period increases significantly as the heat capacity of the solid grows larger relative to that
of the fluid. This trend is reasonable on physical grounds.

The numerical inversion technique described in the preceding section of the paper
was applied to obtain 6,(t) results from Eq. (33). The results from the numerical in-
version, shown as darkened points in Fig. 2, are in excellent agreement with those from
the exact solution. This level of agreement helps to establish the numerical inversion
technique as a viable approach for obtaining results of good accuracy for the tempera-
ture history.

Results for 6, (r) have also been evaluated from the initial-stage and quasi-steady
solutions, Eqs. (30) and (31) respectively. In the first of Eqs. (30), the function /(£,
0, f) = —2, while in Eq. (31), Nu^( <=°) = 2.46 • • • 6, which corresponds to the steady-
state Nusselt number for a sphere in a uniform velocity field with Pe = 1. The initial-
stage and quasi-steady solutions are respectively depicted in the figure by dot-dashed
and dashed lines.

Inspection of the figure reveals that for the smaller values of p,c,/pfcf , the initial-
stage solution provides an accurate representation of 6,(t) over most of the transient
period, and only at the larger p,c,/pfcf is its accuracy limited to the first part of the
transient period. In general, for a given pacjp,ct , this solution is valid for
r < [1.7(psc3/pfcf)]1/2. On the other hand, the quasi-steady solution is virtually in-
distinguishable from the exact solution over the entire transient period when p,c,/pfcf
is large; at the smaller values of pscjprc,, its validity is confined to the final phases of the

100 1000 10000

a,t/r02=r

Fig. 2. Temperature histories for a sphere in a uniform velocity field.
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transient. It is evident that, taken together, the initial-stage and quasi-steady solutions
effectively serve to establish the behavior of 0,(t) over the entire transient period.
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