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Summary

� The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms

that play critical roles in ecosystem function. However, the ecological niches of individual AM

fungal taxa are poorly understood.
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� We collected > 300 soil samples from natural ecosystems worldwide and modelled the

realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups).
� We found that environmental and spatial variables jointly explained VT distribution world-

wide, with temperature and pH being the most important abiotic drivers, and spatial effects

generally occurring at local to regional scales. While dispersal limitation could explain some

variation in VT distribution, VT relative abundance was almost exclusively driven by environ-

mental variables. Several environmental and spatial effects on VT distribution and relative

abundance were correlated with phylogeny, indicating that closely related VT exhibit similar

niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche

optima, Acaulosporaceae generally had niche optima in low pH and low temperature condi-

tions, and Gigasporaceae generally had niche optima in high precipitation conditions.
� Identification of the realised niche space occupied by individual and phylogenetic groups of

soil microbial taxa provides a basis for building detailed hypotheses about how soil communi-

ties respond to gradients and manipulation in ecosystems worldwide.

Introduction

The concept of the ecological niche provides a framework for
understanding resource partitioning by organisms and emergent
patterns of coexistence and distribution (MacArthur & Levins,
1967; Tilman, 1982). Realised niches define the conditions
under which organisms can survive and reproduce in the pres-
ence of biotic interactions. Niche optima (the most favourable
environmental conditions for an organism), and widths (the
range of environmental conditions in which the organism can
persist) describe different aspects of the way organisms interact
with the environment (Ozinga et al., 2013; Gerz et al., 2018).
Estimates of such niche parameters are available for some
regional floras (Ellenberg et al., 1991; Ozinga et al., 2013).
However, we are unaware of analogous attempts to quantify the
realised niche characteristics of low-level taxa (e.g. species or
molecular taxa of similar resolution) throughout the diversity of
any microbial organism group. For estimated niche parameters
to have applicability beyond individual studies requires a consis-
tent taxonomic framework (Llado et al., 2018), which is a chal-
lenge in microbial ecology.

Arbuscular mycorrhizal (AM) fungi (phylum Glomeromycota;
Tedersoo et al., 2018) represent a key group of microbial organ-
isms. They form a widespread symbiosis with plants (Smith &
Read, 2010) that shapes the composition of plant communities
(Klironomos et al., 2011) and the functioning of ecosystems
(Wurzburger et al., 2017). They also represent a microbial group
for which a widely used taxonomic classification is available in
the form of the small subunit rRNA gene-based virtual taxonomy
of the MaarjAM database ( €Opik et al., 2010). The units of this
taxonomy, virtual taxa or VT, represent well supported mono-
phyletic clades where within-clade sequence similarity exceeds a
threshold of 97%. The resolution of VT corresponds approxi-
mately to that of AM fungal morphospecies (i.e. species described
on the basis of morphological characteristics; €Opik & Davison,
2016), while the estimated divergence times of sister VT are on
average intermediate (18 million years ago (Ma)) between those

of plant species (16 Ma) and genera (19 Ma) (Davison et al.,
2018; although see Bruns & Taylor, 2016, €Opik et al., 2016).

The composition of AM fungal communities is driven by cli-
matic and edaphic factors at a range of scales from local to global
(Dumbrell et al., 2010; Kivlin et al., 2011; Lekberg et al., 2011;
Hazard et al., 2013; Davison et al., 2015; V�etrovsk�y et al., 2019).
Such community-level responses to environmental conditions,
with the same taxon combinations re-occurring in analogous
environments, appear symptomatic of niche-related processes
(Leibold & McPeek, 2006; Kraft et al., 2008). There have been
earlier attempts to model the distributions of two AM fungal
families (Veresoglou et al., 2013) and to calculate a nitrogen-as-
sociation index for AM fungal genera (Treseder et al., 2018). Yet,
besides a study modelling the distribution of one abundant and
widespread species (Rhizophagus irregularis; Kivlin et al., 2017),
there is little detailed information about organism–environment
relationships among approximately species-level AM fungal taxa.

Many AM fungal VT are geographically widespread and have
been shown to occur in multiple habitat types (Davison et al.,
2015; Savary et al., 2018; Kivlin, 2020). However, these observa-
tions are coarse summaries of occurrence data and it is unknown
to what extent individual VT vary in abundance along potential
niche axes. AM fungal taxa have also been classified into different
ecotypes (Alzarhani et al., 2019) and into generalists and special-
ists, based on geographic (Moora et al., 2011; Bouffaud et al.,
2016), habitat (S�ykorov�a et al., 2007; Oehl et al., 2010; V�alyi
et al., 2015) or host plant species (Helgason et al., 2007) ranges,
but these niche descriptions only apply to limited ranges of con-
ditions covered by single studies.

Certain functional attributes are similar among related AM
fungal morphospecies (Powell et al., 2009; Hoeksema et al.,
2018). Patterns of phylogenetic conservatism in niche attributes
may inform about selective pressures, while considering organ-
ism–environment relationships at different taxonomic or phylo-
genetic resolutions may minimise potential biases connected with
molecular marker selection or the definition of taxonomic units.
However, taxonomically described AM fungal morphospecies
represent a small fraction of the AM fungal molecular diversity
recorded in natural environments ( €Opik et al., 2014), and
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attempts to describe the functional characteristics of molecular
taxa have so far been limited to a very small number of variables.
Several authors have suggested that VT comprising sequence data
collected from spore-producing morphospecies, described as cul-
tured VT, represent the so-called ruderal life history strategy (van
der Heijden et al., 2008; Ohsowski et al., 2014; Garc�ıa de Le�on
et al., 2016, 2018), while the spore diameters of component mor-
phospecies may be correlated with dispersal ability of VT (Davi-
son et al., 2018; Chaudhary et al., 2020). In contrast to this
fragmentary information, realised niche data covering the full
molecular diversity of AM fungi could provide ecologists with a
set of tools with which to study mycorrhizal fungi and mycor-
rhizal interactions in far greater detail.

Here, we address the realised niches of AM fungal VT and
higher-order phylogenetic clades along major climatic and
edaphic axes using a set of > 300 soil samples collected world-
wide. Our approach is based on the theoretical expectation that
the response of organisms to environmental gradients reflects the
realised ecological niche sensu Hutchinson (Ara�ujo & Guisan,
2006; Zimmermann et al., 2010; Wasof et al., 2015). We model
the distribution and relative abundance of AM fungal VT in rela-
tion to a range of abiotic environmental and spatial variables
(species distribution models; SDMs), and describe the width and
volume of AM fungal niches with respect to these environmental
characteristics. On the basis of widespread distribution patterns
among AM fungal VT (Rosendahl et al., 2009; Davison et al.,
2015; Savary et al., 2018; Kivlin, 2020), we expect weak associa-
tions with climatic variables and little large-scale spatial structure.
By contrast, evidence from community-level studies (Lekberg
et al., 2011; Hazard et al., 2013) suggests that there should be
clear niche optima along soil gradients. Correspondingly, we
expect narrower niche widths along axes reflecting soil variables
than in relation to climatic gradients. Earlier case studies demon-
strated that among the few available trait proxies for VT, cultured
status may predict disturbance tolerance in VT (Ohsowski et al.,
2014), while spore diameter may predict dispersal ability
(Chaudhary et al., 2020). Here we assess how those characteristics
correlate with niche optima and widths. Evidence of phylogenetic
conservatism in functional attributes (e.g. Powell et al., 2009)
leads us to expect higher-order phylogenetic correlation in niche
properties.

Materials and Methods

Sample collection

This study made use of 327 soil samples from locations world-
wide, including 84 previously published samples (Tedersoo et al.,
2014; Gazol et al., 2016; Garc�ıa de Le�on et al., 2018) and 243
newly collected samples (including six for which AM fungal
DNA in plant roots from the same sites has been published previ-
ously; Davison et al., 2015, 2018) (Supporting Information
Fig. S1; Table S1). Sampling was generally conducted at sites
with little disturbance from human activities, including forest
(n = 236), grassland (n = 35), scrub (n = 41) and semidesert
(n = 15) ecosystems (Table S1). Soil sampling largely followed

the approach described in Tedersoo et al. (2014). Briefly, c. 300 g
of topsoil was collected from up to 40 points within about a
509 50 m sampling area and then pooled. The soil samples were
dried within 24 h using silica gel or at room temperature and
then carefully homogenised. Preservation with silica gel appears
to maintain high concentrations of good quality AM fungal
DNA in environmental samples (Bainard et al., 2010), although
there is some evidence that it may yield relatively low estimates of
fungal richness (U’Ren et al., 2014). Subsamples (2 g) of soil
were extracted for further molecular analysis; the remainder was
stored for geochemical analysis (for variation in the protocol see
Table S1).

Soil chemical analyses and climatic variables

Sieved soil samples (2 mm) were used for analysis of soil chemical
properties: pH, total N, organic C, Na, P, Mg and K. Soil pH
was measured in 1M KCl solution following ISO 10390:2005,
using a Seven Easy pH meter with an InLab Expert Pro electrode
(Mettler Toledo, Malaysia). The content of total N in soil was
determined using the Kjeldahl method with a DK-20 digestion
block and a UDK-126 distillation unit (Velp Scientifica Srl,
Italy). To determine the organic carbon content of soils Tjurin’s
method was used, with oxidation provided by boiling samples in
H2SO4 and K2Cr2O7 solution. For determination of P, K, Mg
and Ca, the Mehlich III extraction method was used, with the
content of elements determined using an MP-4200 microwave
plasma atomic emission spectrometer (Agilent, USA). Chemical
analyses were performed at the Institute of Agricultural and Envi-
ronmental Sciences, Estonian University of Life Sciences, Tartu,
Estonia. Estimates of mean annual temperature (MAT) and
mean annual precipitation (MAP) at sample locations were taken
from the CHELSA database (Karger et al., 2017). Abiotic envi-
ronmental measures are shown in Table S1.

Molecular methods and bioinformatics

DNA was extracted from 2 g of dried soil using the PowerMax®

Soil DNA Isolation Kit. AM fungal DNA was amplified from
soil DNA extracts using AM fungal-specific primers for the
small-subunit (SSU) ribosomal RNA gene: WANDA (Dumbrell
et al., 2011) and AML2 (Lee et al., 2008) that were both
equipped with unique 12-base Golay barcodes for multiplexing.
The PCR mixture contained 5 µl of 5XHOT FirePol Blend
Master Mix (Solis Biodyne, Tartu, Estonia); 0.5 µl of each
20 µM primer; 1 µl of template DNA; and nuclease-free water to
reach a total reaction volume of 25 µl. The PCR was performed
in two replicates per sample under the following thermocycling
conditions: 95°C for 15 min, 30 cycles of 95°C for 30 s, 55°C
for 30 s, 72°C for 30 s followed by 72°C for 5 min. PCR prod-
ucts from replicate samples were pooled and the amplification
success was checked on 1% agarose gel. Samples with no visible
gel band were re-amplified with 35 or 40 cycles. PCR products
were pooled into seven libraries at approximate ratios as deter-
mined by the gel band strength. Libraries were purified using the
FavorPrep Gel/PCR Purification kit (Favorgen Biotech Corp.,

© 2021 The Authors
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Vienna, Austria), following the manufacturer’s instructions. Both
negative (distilled water) and positive (synthetic double-stranded
DNA with relevant priming sites) controls were included in PCR
and sequencing runs (one run did not contain a positive control;
see Notes S1). Each library was ligated with Illumina adaptors
using the TruSeq DNA PCR-free library prep kit (Illumina Inc.,
San Diego, CA, USA). Libraries were sequenced on the Illumina
MiSeq platform, using a 29 300 bp paired-read sequencing
approach, at Asper Biogene (Tartu, Estonia).

Demultiplexed paired-end reads were analysed following the
bioinformatics steps described by Vasar et al. (2017). Primer
sequences were matched allowing one mismatch for both pairs,
and primers were removed from the paired-end sequences. After
removal of barcode and primer sequences, only pairs where both
reads had an average quality score of > 30 were retained. Quality
filtered paired-end reads were combined using FLASH (v.1.2.10,
Mago�c & Salzberg, 2011) with the default parameters (10–
300 bp overlap with at least 75% identity). Orphan reads
(paired-end reads, where one pair had low average quality) and
unpaired reads (paired-end reads that did not meet the condi-
tions for combination) were removed from the analyses. The
VSEARCH (v.2.14.1, Rognes et al., 2016) reference-based chimera
filtering algorithm was used to remove putative chimeric reads
using the default parameters with the MaarjAM database as a ref-
erence set. Retained reads were subjected to a BLAST + search (v
2.8.1, Camacho et al., 2009) against the MaarjAM database using
97% identity and 95% alignment length thresholds, revealing
327 VT in 327 samples. Samples were retained if they con-
tained > 100 reads, while global singleton VT were omitted, leav-
ing 278 VT in 286 samples. The full data set was then
normalised to the median read count (3385) using resampling
with replacement (Veresoglou et al., 2019), leaving a final data
matrix with 268 VT and 286 samples. This normalising
approach has the benefit of correcting the number of taxa
recorded in samples to account for differential sampling depth
while maintaining the abundance relationships between remain-
ing taxa. Raw reads from this Targeted Locus Study have been
deposited in the NCBI SRA (BioProject PRJNA659159), and
representative sequences of each VT were deposited in the NCBI
GenBank under the accession no. KELL00000000 (the version
described in this paper is the first version, KELL01000000).

Analysis of AM fungal VT niches

Species distribution modelling To investigate VT environmen-
tal niche axes while simultaneously identifying and accounting
for spatial correlates of VT occurrence and relative abundance,
we used a subset of sites for which there were complete environ-
mental data (266 out of 286 sites) and VT that were present at
≥ 20 of these sites (137 VT out of 268 VT in the final data
matrix). The threshold of 20 was chosen as a minimum to allow
construction of models containing multiple predictor variables
(see below). We used a two-step modelling approach: (1) first
modelling the occurrence (presence/absence) of VT at sites using
generalised linear models (binomial error structure); then (2)
modelling the logit-transformed relative abundance (the

proportion of reads per sample belonging to each VT) of VT at
sites where they were present using Gaussian linear models.

For each modelling approach and for each VT, a spatial vari-
able set was constructed by first using Moran’s Eigenvector Map-
ping (MEM) to define spatial vectors from site coordinates, with
spatial weighting according to a range of neighbourhood connec-
tivity measures: sites within {10, 50, 100, 200, 500} km; and the
nearest {1, 5, 10, 20, 50} sites (Dray et al., 2006). For each con-
nectivity measure an optimal set of MEM vectors was identified
using stepwise selection based on AIC in a model containing VT
occurrence or relative abundance as the response variable
(Blanchet et al., 2008). Then, the best fitting of the optimised
MEM sets was selected on the basis of AIC (Table S2).

In parallel, sets of abiotic environmental predictors were
defined among the measured abiotic variables: pH, P, N, K, Mg,
Ca, organic C, MAT, MAP. These variables include abiotic envi-
ronmental gradients known to correlate with AM fungal diversity
and community composition (Davison et al., 2015). For each
environmental variable we used AIC to determine whether VT
occurrence or relative abundance was better explained by the lin-
ear or quadratic form of the variable. Then, analogous to the pro-
cedure for selecting spatial MEMs, we applied principal
components analysis followed by AIC-based stepwise selection to
the full environmental variable matrix (including quadratic forms
when selected) to define for each VT a set of well supported,
orthogonal environmental vectors.

Finally, the occurrence or relative abundance of each VT was
modelled, using linear or GLM models, in relation to: (1) the
spatial MEM set, (2) the environmental variable set; (3) the com-
bined MEM and environmental variable sets; and (4) each envi-
ronmental variable in isolation (including quadratic forms when
selected). The explanatory power of models was estimated using
explained deviance (adjusted D2; analogous to the coefficient of
determination (R2) used for linear models; Guisan & Zimmer-
mann, 2000) for GLM models or adjusted R2 for linear models.
Model comparison was used to partition D2 and R2 between spa-
tial and environmental sets. Model fits were assessed by visual
inspection of representative residual plots. GLM model fit was
assessed from Pearson residuals and Q–Q plots based on quantile
residuals (Augustin et al., 2012; Figs S2, S3). Leave-one-out
cross-validation was used to assess model accuracy (Hastie et al.,
2009). Using observed and cross-validation predictions, the area
under the receiver operating characteristic (ROC) curve was cal-
culated for GLM models; and the root squared mean error
(RSME) and median absolute error (MedAE) were calculated for
linear models; Table S3).

Niche widths and volumes of AM fungal VT We defined the
widths of VT niches in relation to individual environmental vari-
ables for those VT occurring at ≥ 5 sites (n = 230 out of 268 VT
in the final data matrix). The threshold of five was taken as the
minimum necessary for estimation of a niche width parameter (s-
tandard deviation), and assessed using a sensitivity analysis
(Fig. S4). Each environmental variable (the full data set) was first
scaled by one standard deviation. Then for each VT we estimated
niche width as the standard deviation of the variable, weighted by
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the relative abundance of the VT at the respective sites (the
weighting modulates the contribution of individual observations
to the calculation of the standard deviation). Total abiotic niche
volume for each VT was then calculated as the product of the
width estimates for different environmental variables. We used a
null model approach to assess whether standardised niche widths
and volumes for VT were larger or smaller than expected if occur-
rence of VT at sites were random. We used the ‘quasiswap’ algo-
rithm as implemented in the R package VEGAN (Oksanen et al.,
2019) to generate randomised matrices. This algorithm preserves
matrix row and column sums and matrix fill (i.e. the proportion
of nonzero cells). We then calculated standardised effect sizes
(SES; (observed value – mean of randomised values)/SD of ran-
domised values). SES values above zero indicate wider niches
than expected; values below zero indicate narrower niches than
expected. SES values with absolute magnitude > 1.96 were taken
to indicate significantly narrower or wider ranges than expected.

For display purposes and to produce estimates of VT niche
optima and widths that might serve as explanatory variables in
future analyses, we also estimated the unstandardised niche opti-
mum and width for each VT and abiotic variable as the mean
and standard deviation, respectively, of the variable, weighted by
the relative abundance of the VT at the respective sites.

Correlation of VT niche characteristics with phylogeny and
traits Parameters describing AM fungal niches resulting from
the previous analyses were placed in the context of phylogenetic
relationships between VT and correlated with previously
described VT characteristics (cultured status, spore diameter).

Following the approach used by Davison et al. (2015) we con-
structed a phylogenetic tree of the aligned VT type sequences of
all AM fungal VT (MaarjAM status January 2020) using BEAST

(v.1.8.0; Drummond et al., 2012). Phylogenetic analysis was con-
ducted using the GTR + I + G nucleotide substitution model
and a log-normal relaxed clock model with a coalescent tree
model. Three separate chains of 30 000 000 iterations were con-
structed and combined after removal of burn-in. A Gaussian
prior (mean = 505 Ma, standard deviation = 54 My) was used for
the age of the root (see Davison et al., 2015 for details of this tree
calibration). The results were summarised on a maximum clade
credibility tree (see Fig. S5).

Phylogenetic correlograms (Gittleman & Kot, 1990) were
constructed to identify correlation in niche parameters in relation
to the phylogenetic relatedness of VT. VT relatedness is esti-
mated from the phylogenetic distance (tree branch length) sepa-
rating pairs of VT, or equivalently, the age of the most recent
ancestral node in the tree. The correlogram approach then esti-
mates correlation at different ‘lags’ of relatedness (e.g. common
ancestors 0–5 Ma, 5–10 Ma, 10–15 Ma etc.). A confidence
envelope around the null expectation (correlation = 0) is then
constructed using bootstrapping (n = 500), and where observed
correlation exceeds the envelope, correlation was considered sig-
nificant. Correlation was measured using Moran’s I (for individ-
ual parameters) or Mantel r (where multiple related parameters
were simultaneously investigated). As final species distribution
models for different VT contained different spatial and

environmental predictor variables, individual coefficients could
not be uniformly compared with assess phylogenetic correlation
in effects. Instead, we assessed multivariate correlation in the fit-
ted values (for each VT an estimate of probability of occurrence
(GLM) or abundance (linear models) for each site) returned by
models containing only the variables of interest (i.e. only envi-
ronmental variables or only spatial variables). The fitted values
for each VT were first divided by the VT sum to provide a rela-
tive estimate of probability of occurrence or abundance at differ-
ent sites, independent from overall VT abundance.

Correlations with cultured status and mean spore diameter for
certain cultured VT (using data from Davison et al., 2018) were
examined for AM fungal niche parameters measured in this anal-
ysis. Mantel tests were used for multivariate correlations; Pear-
son’s correlation was used to correlate single variables (in both
cases treating cultured status as a binary (0,1) variable).

Results

Sample characteristics

Analysis of soil samples (n = 327) collected worldwide yielded
AM fungal sequence data of sufficient quality from 284 samples
(Table S1; Fig. S6). The measured abiotic environment at sample
locations broadly reduced to two axes: high temperature/low C/
low N on the one hand; high precipitation/low pH/low P/low K
and several other soil nutrients on the other (Fig. 1). The samples
yielded 268 AM fungal VT belonging to nine families
(Acaulosporaceae = 22, Ambisporaceae = 3, Archaeospo-
raceae = 9, Claroideoglomeraceae = 10, Diversisporaceae = 15,
Gigasporaceae = 7, Glomeraceae = 189, Pacisporaceae = 1, Para-
glomeraceae = 11; Table S4). Taxa included in the distribution
modelling (i.e. those that were present at ≥ 20 sites; n = 137 VT)
belonged to eight families (Pacisporaceae missing), while all sam-
pled families were included in estimates of niche dimensions
(present at ≥ 5 sites; n = 230 VT; Table S4).

Distribution modelling

More variation in site-level occurrence was explained (i.e. D2) by
spatial compared with environmental variables for 64% of VT
(88 out of 137 VT); by contrast in models of site-level relative
abundance, the variance explained (i.e. R2) by environmental
variables was higher for 97% of VT (133 out of 137 VT)
(Table S3). There was marginally significant positive phyloge-
netic correlation in the relative importance of spatial vs environ-
mental variables in determining VT occurrence (the confidence
interval around the point correlation estimate excluded zero at
some phylogenetic scales; Fig. 2); but not in determining relative
abundance (Fig. S7). Therefore, the distributions of closely and
moderately related VT (diverging up to around 200Ma) were
similarly influenced by different limiting factors, in the forms of
the abiotic environment and spatial constraints.

In models of VT occurrence, the selected neighbourhood con-
nectivity measure used to generate spatial MEMs comprised a
small number of close sites (< 10 nearest neighbours or < 10 km)
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for 75% of VT (104 out of 137 VT) and as such reflected local-
scale rather than large-scale spatial correlation (Table S2); in
models of VT relative abundance the corresponding figure was
somewhat lower at 52% (71 out of 137 VT).

MAT and soil pH were the most influential environmental
variables explaining VT occurrence (MAT highest D2 for 47%
(64 out of 137 VT); pH highest D2 for 36% (49 out of 137 VT))
(Fig. 3; Table S3). In models of relative abundance, these two
variables remained the most important, but variable importance
was more evenly spread (Fig. S8; Table S3). There were some cor-
relations between VT cultured status and spore diameter on the
one hand and the variation in VT relative abundance explained
by different variables on the other hand, such that MAP
explained more variation in relative abundance among cultured
VT, while pH and Ca explained more variation in relative abun-
dance among large-spored VT (Table S5).

There was significant positive phylogenetic correlation in the
influence (D2) of P, pH and MAP on VT occurrence (Table S5).
In all cases correlation reflected within-family clades exhibiting
similar variable explanatory power. In general, Acaulosporaceae
was characterised by niche optima in low pH conditions (the
median niche optimum was 4), while a clade of Glomeraceae
containing no recorded morphologically described species was
characterised by the highest pH niche optima (median niche
optimum of 6; clade 4 in Figs S5, 4; estimated niche optima for
each VT are shown in Table S6). Acaulosporaceae niche optima
were also characterised by low temperature (median niche opti-
mum just below 10°C), while Gigasporaceae was characterised
by high temperature niche optima (median niche optimum c.
21°C) and there was considerable variation within Glomeraceae:

in a clade containing Glomus hoi, G. indicum, G. macrocarpum
and G. perpusillum the median temperature niche optimum was
also c. 21°C (clade 2 in Fig. S5), while in the clade containing no
morphospecies (clade 4 in Fig. S5), the median niche optimum
was around 12°C (Fig. 4). Gigasporaceae were also marked by
notably high niche optima in relation to precipitation (the
median value was over 2000 mm). There was significant positive
phylogenetic correlation in the fitted values produced by environ-
mental and spatial models of VT occurrence but not those of rel-
ative abundance (Fig. S9; Table S5). Positive correlation
indicated generally similar responses to environmental and spatial
variables among taxa that diverged up to c. 150 Myr BP (approxi-
mately the family-level or among within-family clades). The
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fitted values from environmental and spatial models of VT rela-
tive abundance were significantly correlated with estimated VT
spore diameter (Table S5), such that VT of similar spore size
responded similarly to environmental conditions and spatial con-
straints.

AM fungal niche width

VT niches were often narrower than expected based on compar-
ison with a null model, but the fractions of VT exhibiting narrow
or significantly narrow niches varied between measures of VT
niche width and volume (Fig. 5). pH and MAT niches systemati-
cally exhibited the lowest SES values, with c. 50% of taxa exhibit-
ing significantly narrow niches, indicating that VT often
associated with a particularly narrow range of pH and tempera-
ture conditions. Furthermore, P niche width was positively corre-
lated with VT spore diameter (Table S5). Estimated niche
volume exhibited phylogenetic correlation, such that some
within-family clades had similar niche volumes (clades 3 and 4
within Glomeraceae (cf. Fig. S5) appeared to exhibit systemati-
cally large niche volume; Fig. 6), as did the width of niches along
the P, K and Mg axes (Table S5; Fig. S10; estimated niche widths
for each VT are shown in Table S6).

Discussion

Global sampling detected around 70% of recorded virtual taxa
and incorporated all AM fungal families recorded in the
MaarjAM database except Geosiphonaceae and Pervetustaceae; as

such the study provides a first detailed characterisation of realised
niches throughout the known diversity of AM fungi. We found
that the characteristics of AM fungal VT niches varied between
niche axes. In general, the narrowest niches and most pronounced
optima were apparent with respect to temperature and soil pH.
There was also significant phylogenetic clustering in relation to
spatial constraints and multiple niche properties, including niche
optima and dimensions. The results provide insight into the pro-
cesses shaping AM fungal diversity and a resource, in the form of
VT-level niche parameters, to underpin future analysis of AM
fungal communities.

Spatial vs environmental constraints on AM fungal
occurrence and abundance

It has been suggested that the distribution of AM fungi bears the
footprint of dispersal over geological time (Morton et al., 1995;
see also Fitter, 2005). However, our findings are largely consis-
tent with recent large-scale studies indicating near-global distri-
butions among many morphospecies (St€urmer et al., 2018), VT
(Davison et al., 2015) and even genotypes within an AM fungal
morphospecies (Savary et al., 2018). The best fitting spatial vari-
able sets in VT distribution models predominantly reflected spa-
tial relationships between small numbers of neighbouring sites,
rather than regional-scale or larger-scale spatial patterns. As such,
they may have reflected small-scale dispersal limitation (Gr€unfeld
et al., 2020) or, perhaps, local environmental differences that
were not captured in the environmental variable set (Rasmussen
et al., 2018). It was also apparent that while spatial variables
explained some variation in VT occurrence, VT relative abun-
dance at sites showed little spatial pattern, however it was driven
by environmental variables. Previous work has shown dispersal
limitation of the occurrence of AM fungal taxa in landscapes
(Lekberg et al., 2011; Bouffaud et al., 2016; Torrez et al., 2016;
Gr€unfeld et al., 2020), but our results clearly show the role of the
environment in shaping local relative abundance.

We expected clearer niche optima in relation to local soil vari-
ables than climatic variables, where gradients occur at larger spa-
tial scales. However, the best predictors of VT occurrence and
relative abundance in species distribution models were one cli-
matic and one soil chemical variable: temperature and pH. An
earlier attempt to model the distribution of Rhizophagus
irregularis (member of Glomeraceae clade 3 in this study) found
that climatic variables were important predictors (Kivlin et al.,
2017), and the importance of temperature has been demon-
strated by warming experiments that elicited changes in the com-
position of root colonising AM fungal communities (Cotton,
2018; Rasmussen et al., 2018). Indeed, previous authors have
noted that temperature strongly regulates the physiological devel-
opment of certain AM fungi (Tibbett & Cairney, 2007), with
variation in temperature responses apparent in comparisons
between small numbers of taxa (Helgason & Fitter, 2009). More-
over, Antunes et al. (2011) reported different symbiotic function
in isolates of the same AM fungal taxon originating from con-
trasting climates. Here, we demonstrate the general importance
of temperature in defining the niches of c. species-level AM
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Fig. 3 Explanatory power of different environmental variables in
generalised linear models of virtual taxon (VT) presence–absence in soils
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determination (R2) used for linear models and provides a measure of how
much variation in the dependent variable was explained by the model. The
curves show the probability density of the data at different values of D2.
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fungal taxa. Several case studies have also shown that soil pH
importantly influences the community composition of AM fungi
(Dumbrell et al., 2010; Lekberg et al., 2011; Hazard et al., 2013;
Davison et al., 2015; van Geel et al., 2018), and of fungal com-
munities in general (Glassman et al., 2017). Experiments show-
ing that liming can strongly modulate AM fungal spore number
and root colonisation suggest that pH may have an important
direct influence on AM fungal growth and performance (Siqueira
et al., 1984; Wang et al., 1993; Coughlan et al., 2000). Our

results indicate an important influence of soil pH on individual
taxa throughout the phylum. Given the limited evidence of dis-
persal limitation and larger spatial resolution of climatic vari-
ables, it seems probable that soil pH is the most important
abiotic determinant of relative abundance at the local scale.

Our results demonstrating the important role of temperature
and pH are consistent with those previously reported for bacteria
and other fungi (Bahram et al., 2018) and for protists (Oliverio
et al., 2020), although both studies identified precipitation as an
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Fig. 4 Niche optimum estimates along different environmental axes for virtual taxa (VT) in different families and clades (see Supporting Information
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important additional driver. At the same time, it is clear that
there remain unmeasured soil parameters in this and former stud-
ies that may be important drivers of AM fungal performance or
may underlie associations with other variables, such as those iden-
tified here (V�etrovsk�y et al., 2019). For example, soil bulk den-
sity, a potential determinant of AM fungal distribution, is
strongly correlated with temperature (Zhao et al. 2019). Aspects
of the methodology used for extensive global sampling (including
single-time soil analysis, pooling of soil samples within plots, the
detection of dead or dormant organisms) may also have influ-
enced the precision and generality of the findings. Furthermore,
there is a theoretical possibility that some records of VT occur-
rence reflect only nonviable propagules arriving at a location. We
anticipate that such records are generally uncommon, with bias
potentially highest where such records arise in otherwise sparsely
recorded taxa, however the least frequently recorded taxa were
not included in niche analyses.

AM fungal niche dimensions

There is virtually no previous information about the niche
dimensions of AM fungi, in addition to a handful of attempts to
classify AM fungal taxa into categories of generalists and special-
ists based on the observed geographic (Moora et al., 2011; Bouf-
faud et al., 2016) or habitat (S�ykorov�a et al., 2007; Oehl et al.,
2010; V�alyi et al., 2015) range used by taxa within single studies.

Our results confirmed that, on average, AM fungal VT are more
specialist than expected along all measured axes, on the basis of
null model analysis. Estimated niche widths were narrowest, in
relation to the null model, for the two most important gradients
emerging from the distribution modelling: temperature and pH.

Phylogenetically conserved AM fungal niche properties

Certain functional attributes, as well as the extent of geographic
distribution, of AM fungal taxa are similar among related taxa
within broad phylogenetic groupings (Powell et al., 2009; Bouf-
faud et al., 2016). Similarly, a recent analysis showed that differ-
ent ecogroups of fungi, defined on the basis of their responses to
abiotic and biotic environmental gradients, predominantly com-
prise different functional groups (e.g. symbiotic, pathogenic;
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Alzarhani et al., 2019). We identified phylogenetic clustering in
AM fungal niche properties at the level of higher taxonomic
ranks, such as the approximate family level. Such niche conser-
vatism is encountered in the functional traits of many organism
groups, and is relevant to a range of ecological questions, includ-
ing community assembly, responses to environmental change
and species richness patterns (Wiens et al., 2010). For example,
among AM fungi, niche conservatism is likely to drive observed
patterns of phylogenetic clustering among local communities
(Davison et al., 2016) and relationships between species pool size
and historical habitat availability (P€artel et al., 2017).

We found that VT within some approximately family-level or
within-family clades had similar niche volumes and responses to
spatial and environmental constraints. In the case of spatial con-
straints, this may indicate conserved responses to unmeasured
environmental gradients or conserved dispersal traits, such that a
given landscape configuration imposes a similar degree of disper-
sal limitation on closely related taxa. Some but not all clades
within Glomeraceae appeared to exhibit systematically large
niche volume. Therefore, despite being characterised as possess-
ing low capacity for dispersal (Hart & Reader, 2002), and allo-
cating the majority of biomass into hyphae growing inside plant
roots (Maherali & Klironomos, 2007), this large family com-
prises multiple ecological strategies. Specifically, in relation to the
most important niche axes, pH and temperature, it was also clear
that major clades within Glomeraceae exhibited varying niche
properties. For example, clade 3 (containing widespread species
Glomus irregularis) had a median temperature optimum c. 5 °C
lower than that of clades 1 and 2 (which include Glomus mosseae
and Glomus hoi among other species); while clade 4 (DNA-based
only) had a median temperature optimum nearly 10°C lower,
and a pH value c. one unit higher, than clade 2 (it also had
markedly higher P and Ca optima). It was also notable that
Acaulosporaceae generally had niche optima in low pH and low
temperature conditions, while Gigasporaceae generally had niche
optima in high precipitation conditions. These latter patterns
closely mirror the findings of Veresoglou et al. (2013), who iden-
tified the same environmental drivers for the occurrence of these
families in database records. Finally, it should be acknowledged
that analysis of relationships at the VT level and above may
neglect meaningful within-VT or genotype-level niche character-
istics. While local adaptation in mycorrhiza is an established phe-
nomenon (Johnson et al., 2010), the challenge of experimentally
manipulating individual AM fungal taxa from natural environ-
ments (most taxa are not present in culture collections; Ohsowski
et al., 2014) means that little information is known about adapta-
tion among the fungal partners.

Realised niches in the context of functional characteristics
and the biotic environment

We expected niche optima and widths to vary between cultured
VT, presumed to represent the so-called ruderal life history strat-
egy (van der Heijden et al., 2008; Ohsowski et al., 2014) and
uncultured VT. Indeed, temperature was a relatively more
important driver of the distribution of cultured VT compared

with uncultured VT. Also, within the group of cultured VT, large
spore size was more characteristic of VT preferring high pH and
Ca soils. Generally, little information is known about the ecologi-
cal significance of AM fungal spore size (Aguilar-Trigueros et al.,
2019), although aerially distributing spores tend be smaller than
average among AM fungi (Chaudhary et al., 2020). However, in
general, differences between cultured and uncultured taxa, and in
relation to spore size, were limited, suggesting that these charac-
teristics may capture different aspects of the organism–environ-
ment relationship than the abiotic niche axes described here.

We studied realised niches that reflect the distribution of
organisms relative to abiotic gradients in situations where they
are exposed to various biotic interactions (Ara�ujo & Guisan,
2006; Wasof et al., 2015). At the same time, we did not specifi-
cally incorporate any of the biotic drivers that potentially influ-
ence AM fungal distribution and abundance. Most obviously,
AM fungi are obligately symbiotic organisms, obtaining carbon
from a host plant, and distinct AM fungal assemblages associate
with different plant functional groups (Davison et al., 2020).
Furthermore, AM fungi coexist with complex communities of
interacting soil organisms. AM fungal communities are known to
be sensitive to interactions with bacteria, other mycorrhizal fungi
(Frey-Klett et al., 2007; Tedersoo et al., 2020) and other soil
organisms, including nematodes (Rodr�ıguez-Echeverr�ıa et al.,
2009) and earthworms (Paudel et al., 2016), while AM fungal
competition may also limit the occurrence of taxa (Engelmoer
et al., 2014; Knegt et al., 2016). Therefore, observed environ-
mental and spatial effects on AM fungal distribution and abun-
dance are mediated by biotic interactions, such as the
environmental preferences of a preferred host plant. As such, the
relationships identified here serve as practical, empirical measures
of AM fungal realised niches, but do not provide information
about fundamental abiotic niches (e.g. how certain abiotic condi-
tions directly constrain AM fungal distribution and abundance).

Conclusion

This analysis provides a detailed and comprehensive overview of
realised niche attributes among a group of essential plant-symbi-
otic fungi. These generally widespread organisms have distinct
requirements along realised niche axes reflecting large-scale and
local-scale environmental conditions. There was clear phyloge-
netic signal in the variation of niche parameters, with closely
related VT exhibiting similar abiotic niche optima and widths.
The general importance of temperature and pH among niche
axes of AM fungal VT may signal the sensitivity of these organ-
isms to changing climate and soil management. We also provide
quantitative measures of various niche parameters that may serve
as explanatory variables for future investigations of AM fungal
community ecology (Table S6).
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