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Abstract—The temperature and dV/dt dependence of
crosstalk has been analyzed for Si-IGBT and SiC-MOSFET
power-modules. Due to smaller Miller capacitance resulting
from a smaller die-area, the SiC-module exhibits smaller
shoot-through currents compared with similarly rated Si-IGBTs
in spite of switching with a higher dV/dt and a lower
threshold-voltage. However, due to high voltage overshoots
and ringing from the SiC-Schottky diode, SiC modules often
exhibit higher shoot-through energy density and cause voltage
oscillations in the DC-link. Measurements show that the
shoot-through current exhibits a positive temperature coefficient
for both technologies the magnitude of which is higher for the
Si-IGBT i.e. the shoot-through current and energy shows better
temperature stability in the SiC-power-module. The effectiveness
of common techniques of mitigating shoot-through, including
bipolar gate drives, multiple gate resistance switching paths as
well as external gate-source and snubber capacitors have been
evaluated for both technologies at different temperatures and
switching rates. The results show that solutions are less effective
for SiC-MOSFETs because of lower threshold voltages and
smaller margins for negative gate bias on the SiC-MOSFET
gate. Models for evaluating the parasitic voltage have also
been developed for diagnostic and predictive purposes. These
results are important for converter designers seeking to use SiC
technology.

Index Terms—Crosstalk, Silicon Carbide, Temperature
Dependence, Ringing, Shoot-through Energy

I. INTRODUCTION

C
ROSSTALK is an important factor that must be evaluated

when using power semiconductor devices in converters.

Crosstalk has also been referred to as parasitic turn-on,

false turn-on, self-turn-on, etc. [1] Crosstalk occurs when

a device is unintentionally switched on as a result of the

intentional switching of the device in the same phase leg.

This unwanted turn-on can impose serious reliability concerns

since it can result in semi-short-circuits with high currents

flowing through the power devices thereby resulting in high
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thermal losses and unnecessary electro-thermal stresses on the

device wire-bounds and die [2]. Crosstalk normally happens

in synchronous DC-DC converters or in three-phase DC-AC

inverters where the devices are intended to turn on with

appropriate dead-times allocated between the switching edges

[3], [4]. As one device is turned on, the dV/dt imposed

on the complimenting device in the same phase leg causes

the Miller capacitance to discharge a current into the gate

resistance which causes a voltage drop capable of triggering

the device if it is greater than its threshold voltage [5].

The main contributors to crosstalk are the magnitude of the

Miller capacitance and its ratio compared with the input

capacitance of the device, the gate resistance connected to

the device (which includes the internal gate resistance of

the module), the switching rate, the threshold voltage of the

device and its operating temperature. Equation 1 shows the

parasitic gate-source (VGS for MOSFET) or gate-emitter (VGE

for Si-IGBT) voltage as a function of the gate resistance (RG),

Miller capacitance (CGD) and turn-on dV/dt.

VGS = RGCGD

dVDS

dt






1− e

−t

RG(CGD + CGS)






(1)

Fig. 1 shows an example of a parasitic (unintended) gate

voltage across a SiC MOSFET during turn-on and turn-off of

a complementing device.

Fig. 1. Measured parasitic gate voltage across a Si-IGBT switched with a
dV/dt of up to 10 kV/µs.

The positive spike in VGS during turn-on and the negative

spike during turn-off is due to the polarity of the Miller

capacitance charge and discharge current. The mechanism



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2

is explained in [6]. To mitigate this problem, techniques

like negative gate bias and multiple resistive paths for

turn-on/turn-off have been developed. This paper aims to

evaluate the problem of crosstalk as well as the effectiveness

of the solutions for SiC MOSFETs compared with silicon

IGBTs [7]. The desire to maximize power density by

increasing the switching frequency gives SiC an advantage,

however, crosstalk is expected to cause problems since the

shoot-through energy is proportional to the switching rate

[8]. SiC MOSFETs have lower threshold voltages and switch

with higher dV/dt both of which should contribute to higher

shoot-through currents. However, the Miller capacitance in

SiC MOSFETs is significantly smaller than that in silicon

IGBTs because of its smaller die area [9]. The temperature

coefficients of the threshold voltages in both technologies

will also be critical for the crosstalk performance at higher

temperatures. Furthermore, the impact of oscillations in the

SiC Schottky diode [10] on the DC link voltage and the

shoot-through energy also needs further characterization. This

paper presents a comprehensive analysis of crosstalk in

both technologies. Section II presents a modeling approach

for predicting crosstalk, Section III will provide details

of the experimental measurements performed and analyze

the switching rate (dV/dt) and temperature dependence of

crosstalk. Section IV will study the effectiveness of the

mitigation techniques that are applicable while Section V

concludes the paper.

II. CROSSTALK MODELS

To develop a diagnostic tool for the prediction of the

crosstalk, several modeling approaches are considered, all of

which are based on the capacitive divider in the device.

• The first modeling approach is described in [11] by using

the maximum possible voltage at turn-ON as Vm of the

device, along with time instance it occurs as tm as in

Equation 2. This approach is the simplest method of

modeling and does not consider the parasitic elements in

the circuit. Also it does not consider the changes in the

dV/dt of the circuit. Hence despite being straightforward,

it lacks accuracy. An example of this method is shown in

Figure 2. This method results in the following expression

for the parasitic VGS:

VGS = RGCGD

Vm

Tm






1− e

−t

RG(CGD + CGS)






(2)

Fig. 2. Modeled and measured induced VGS using method one for (a) Si-IGBT
and (b) SiC-MOSFET with top RG = 10 Ω and bottom RG = 100 Ω.

• The second approach is to use the dV/dt measured from

the transient of the device to estimate the induced gate

voltage. This method is more accurate as it considers

the dynamic changes of the dV/dt in the circuit and also

indirectly considers the impact of parasitic elements in

the circuit. However, using this method requires having

the voltage transient measurements of the circuit requires

some initial characterisations. An example of this method

is shown in Figure 3.

Fig. 3. Modeled and measured induced VGS using method one for (a) Si-IGBT
and (b) SiC-MOSFET with both top and bottom RG = 10 Ω.

• The third method, which is common, uses simulation

software such as PLECS or SPICE to model the

characteristics of the device in a circuit emulator. This

method is capable of providing the characteristics of the

induced gate voltage as a function of the parasitic circuit

components (inductances and capacitances) and is user

friendly. However, the temperature dependency of the

shoot-through current is not modelled accurately because

the temperature coefficient of the threshold voltage and

on-state resistance is not properly accounted for. An

example of this method is shown in Figure 4.

Fig. 4. Modeled and measured induced VGS using method one for (a) Si-IGBT
and (b) SiC-MOSFET with top RG = 10 Ω and bottom RG = 47 Ω.

• The last method is the method proposed here. The

parasitic voltage is modeled by developing a transfer

function of the equivalent circuit shown in Figure 5. In

this figure, the power device that is intentionally switched

is modeled as an ideal switch however with a finite

dV/dt that falls on the low side power device causing

it to be parasitically triggered. In this case, first the

equations for the VGS are developed. This is done by

using the Kirchhoff law in the circuit. Then, having the

numerator and denominators of the transfer function, and

by using the dV/dt of the intentionally switched device as

an input to the transfer function, the induced voltage can

be calculated. Details of this method is described next.

The circuit shown in Figure 5 includes the parasitic

capacitances of the device, the stray inductances as well

as the parasitic resistances and inductances resulting from
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the circuit layout. These parasitic elements are critical for

accounting the possible oscillations in the parasitic voltage

transient characteristics [12]. Hence, the model developed can

be used to predict the possibility of crosstalk, if a voltage

above the threshold voltage of the device is induced on the

gate. The model can be used to predict the severity of the

shoot-through current (to a certain extent) by comparing the

level of the VGG with VTH. The average values for the parasitic

elements are used for the development of the model [13], and

are applicable when devices are switched with no mitigation

technique applied.

Fig. 5. Equivalent circuit schematic for developing parasitic voltage model
for the bottom power device with the top device as an ideal switch.

Applying KCL at the gate, source and drain terminals of

the circuit in Fig. 5 will yield 3 equations as shown in 3- 5.

VG

RG + sLG

+(VG−VS)sCGS+(VG−VD)sCGD = 0 (3)

(VS − VG)sCGS +
VS

sLS

+ (VS − VD)sCDS = 0 (4)

(VD − VG)sCGD + (VD − VS)sCDS

+
VD − VDD

RCr + sLCr

= 0 (5)

Solving the equations above for the gate-source voltage will

yield the transfer function shown in 6 as:

VG =
N4s

4 +N3s
3 +N2s

2 +N1s

D4s4 +D3s3 +D2s2 +D1s+ 1
(6)

where the numerators are given by:

N4 = LGLSVDD × (CDSCGD + CDSCGS + CGDCGS)

N3 = LSRGVDD × (CDSCGD + CDSCGS + CGDCGS)

N2 = CGDLGVDD

N1 = CGDRGVDD

And the denominators are given by:

D4 = (LCrLG + LCrLS + LSLG)×

(CDSCGD + CDSCGS + CGDCGS)

D3 = (CDSCGD + CDSCGS + CGDCGS)×

(LCrRG + LGRCr + LSRCr + LSRG)

D2 = LCR(CDS + CGD) + LG(CGS + CGD)

+ LS × (CDS + CGS)

+RCrRG × (CDSCGD + CDSCGS + CGDCGS)

D1 = RCr × (CDS + CGD) +RG × (CGS + CGD)

The dV/dt of the intentionally switched device is used as an

input to the model. The values of the capacitances used in the

model are obtained from the datasheets as shown in section

III and the inductances are measured directly from the test rig.

The results of the model are shown together with experimental

measurements in Fig. 6(a) and 6(b) for a silicon IGBT and

SiC MOSFET half-bridge power module respectively switched

with a gate resistance of 10 Ω and a dV/dt of up to 10

kV/µs. Fig. 6(c) and 6(d) show the results of the model

with experimental measurements with a higher bottom side

gate resistance of 47 Ω but with the same switching dV/dt.

The ringing in the gate characteristics of the SiC module is

modulated by the parasitic inductances and the switching rates.

It can be seen from Fig. 6 that the model is able to replicate

experimental measurements with good accuracy.

Fig. 6. Modeled and measured parasitic gate voltage transients for Si-IGBT
and SiC-MOSFET with (a,b) top bottom RG = 10 Ω and bottom RG = 47 Ω

and in (c,d) top RG = 47 Ω and bottom RG = 10 Ω.

III. EXPERIMENTAL MEASUREMENTS

To evaluate the temperature and switching rate dependence

of crosstalk in silicon IGBT and SiC MOSFET power

modules, a dedicated test rig has been developed and

equipped with a hot plate as well as temperature

control and measurement equipment. Since crosstalk entails

short-circuiting a high voltage power supply, extra protection

has been applied to the test rig. In this section, first the

details of the set-up is presented, then the analysis of the

switching rate dependence of the crosstalk is discussed. This

is done by changing the range of RG on both top and bottom

device to vary the applied dV/dt and the induced voltage.
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The rate at which the output voltage rises/falls (dVDS/dt for

MOSFETs and dVCE/dt for IGBTs) depends on the rate at

which the Miller capacitance is charged/discharged through

the gate resistance. Hence, dV/dt is inversely related to RGCGD

[14] through the Miller capacitance’s dependence on the output

voltage i.e. the Miller capacitance is partially comprised of

a depletion capacitance whose value depends on depletion

widths modulated by the output voltage. Therefore the value

of RG directly impacts the dV/dt and dI/dt rates [15], [16].

The temperature dependence of crosstalk is alo analyzed by

mounting the modules of a thermal plate and ranging the

temperature from room temperature to 120 °C. It should be

noted that the SiC module has used 5 dies per device in

parallel, each die with an area of 16.6 mm2, resulting in a

total die are of approximately 83 mm2 (0.83 cm2), whereas

the Silicon module is a single die per device with a die

area of approximately 105 mm2 (1.05 cm2). Given that the

modules are of the same power rating, this shows that the

SiC module has a higher power density. In the next sections,

this information has been used to estimate the shoot-through

energy per die area of the devices for a comparable evaluation.

A. Set Up

The schematic of the test rig is shown in Fig. 7. The applied

voltage is 650 Volts and the load is a 1 kΩ resistor with

a 1 kW power rating connected in parallel to the bottom

device. The top device is switched while the bottom device is

monitored for induced switching. The DC link capacitors have

a total capacitance of 320 µF with a voltage rating of 1.2 kV.

The silicon IGBT half bridge module is DM2G100SH12AE

with a Miller capacitance (CGD) of 0.34 nF and the SiC half

bridge module is CAS100H12AM1 with a Miller capacitance

of 0.037 nF. The threshold voltage of the silicon IGBTs

range from 5 to 8 V, whereas in the SiC MOSFET it

ranges around 2 V. The gate signal is generated by Agilent

AFG3022C controller while the waveforms are captured by

LeCroy 104MXs-B digital oscilloscope. The current and

voltages waveforms are also captured via calibrated current

clamped (Tektronix TCP303 15 MHz) and differential high

voltage probes (Rapid GDP-100 100 MHz) as shown in Fig. 8.

The temperatures are ranged from room temperature to 120

°C while the switching rate is controlled by a range of RG

from 10 to 100 Ω. This range of RG is intentionally chosen

wide because, as will be analysed in the next sections, the

shoot-through current increase with the applied dV/dt on the

bottom device, the Miller capacitance of the bottom device and

the gate resistance on the bottom device. The peak parasitic

gate voltage is given by RG.CGD.dVDS/dt, hence, an increase

in any one of the parameters will affect the shoot-through

current in a similar way. While further increase of the dV/dt

or changing the device’s miller capacitance has not been

an option, to investigate the performance of the device and

also the effectiveness of the mitigation techniques in higher

shoot-through currents, the bottom-side RG has been increased

from 10 to 100 Ω to replicate these situations [17].

Fig. 7. Schematic of the measurement circuit.

Fig. 8. Measurement Test rig set-up.

B. Switching Rate Dependence

Fig. 10 shows the results of the measurements for the

switching rate dependence of the crosstalk where the dV/dt is

modulated by a single gate resistance on the top side device

which is intentionally switched and the parasitic voltage is

measured on the bottom device by the connection of a range

of gate resistances. Fig. 10(a) shows the induced gate voltage

on the bottom device in the silicon IGBT module while the

top device is switching with a high dV/dt modulated by a

gate resistance of 10 Ω. Fig. 10(b) shows the corresponding

shoot-through current. It can be seen from these two figures

that increasing the bottom side RG at a constant dVDS/dt

causes a corresponding increase in the induced voltage turn-on

duration although the peak is relatively the same at about

13 V which is well above the threshold voltage of 5 V.

Fig. 10(c) shows the induced parasitic voltage on the bottom

side SiC MOSFET while Fig. 10(d) shows the corresponding

shoot-through current. For the SiC MOSFET power module,

oscillations occur in the gate characteristic due to the ringing

in the bottom side VDS characteristics which feedback to the
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Fig. 9. The PCB design schematic of the gate drivers; top: Unipolar Driver,
bottom: Bipolar Driver with extra gate resistance slots for two resistive paths.

gate drive through the Miller capacitance. The ringing, which

is due to RLC resonance, has an oscillation frequency that

is proportional to the switching dV/dt. It can be seen from

Fig. 10 that the peak shoot-through current is approximately

70% higher for the Si-IGBT power module compared to the

SiC power module. This is due to the 10 times higher Miller

capacitance in the Si-IGBT which according to (1) will cause

a higher parasitic gate voltage.

The impact of shoot-through on the DC link voltage and

the diode voltage is shown in Fig. 11. Fig. 11(a) shows

the voltage measured across the bottom side Si-IGBT/PiN

diode for the different gate resistances while Fig. 11(b)

shows the measured DC-link voltage during the short circuit.

Fig. 11(c) shows the measured voltage across the bottom

side SiC-MOSFET/Schottky diode while Fig. 11(d) shows the

corresponding DC link voltage. It is seen that the SiC device

exhibits ringing which is connected to the ringing in the gate

characteristics and shoot-through currents in Fig. 10(c) and

. 10(d). The ringing is exacerbated by higher dV/dt as expected.

Fig. 12(a) shows the shoot-through energy density for the

Si-IGBT power module for a matrix of gate resistances ranging

from 10 Ω to 100 Ω while Fig. 12(b) shows the same for the

SiC-MOSFET. The best combination to achieve the smallest

Fig. 10. (a). The induced parasitic turn-on voltage on the gate of the Si-IGBT
power module at different gate resistances with a constant turn-on dV/dt. (b).
The corresponding shoot-through current through the Si-IGBTs at different
gate resistances. (c) The induced parasitic turn-on voltage on the gate of
the SiC power module at different gate resistances with a constant turn-on
dV/dt. (d). The corresponding shoot-through current through the SiC MOSFET
module at different gate resistances

Fig. 11. Bottom diode and DC link voltage with measurements at 650 volts
and 25 °C, (a,b) Si-IGBT (c,d) SiC-MOSFET.

shoot-through energy density is to switch the devices on

more slowly than switching the devices off. The shoot-through

energy density is higher for the SiC power module because of

the diode turn-off voltage overshoot.

Fig. 12. (a). The shoot-through energy density for different combinations of
gate resistances in the Si-IGBT power module (b). The shoot through energy
density for the SiC power module.
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C. Temperature Dependence

The temperature dependence of the shoot-through current

and energy has also been investigated experimentally for both

technologies. Fig. 13(a,c) shows the parasitic induced voltage

on the gate of the Si-IGBT at different temperatures and

Fig. 13(b,d) shows the corresponding shoot-through current

at different temperatures. As can be seen in Fig. 13(a),

the parasitic voltage characteristics are temperature invariant

whereas in Fig. 13(b), the peak shoot-through current can be

seen to increase by 60% (80 A to 130 A) as the temperature

is increased from room temperature to 120 °C. Fig. 13(c)

shows the induced parasitic voltage in the SiC power module

whereas Fig. 13(d) shows the corresponding shoot-through

currents. The shoot-through currents in the SiC power module

are smaller and show more temperature stability compared to

the Si-IGBT module. For the same temperature range, the peak

shoot-through current in the SiC power module increases from

40 A to 60 A. Fig. 14 shows the bottom side diode voltage

and its consequent DC link voltage for both silicon and SiC

power modules where both devices are connected to low RG,

resulting in high switching rates. It is seen that they are nearly

temperature invariant at high switching rates. The reason is

explained in [18]–[20].

Fig. 13. (a). The induced parasitic turn-on voltage on the gate of the Si-IGBT
power module at different temperatures with constant turn-on/off dV/dt. (top
RG = 10 Ω, bottom RG = 100 Ω) (b). The corresponding shoot-through current
through the Si-IGBTs at different temperatures. (c). The induced parasitic
turn-on voltage on the gate of the SiC power module at different temperatures
with a constant turn-on dV/dt. (d). The corresponding shoot-through current
through the SiC at different temperatures.

The shoot-through switching energy density is shown in

Fig. 15 as a function of temperature for the 2 technologies with

different bottom side gate resistances. The SiC module shows

better temperature stability because the negative temperature

coefficient of the threshold voltage is lower in SiC compared to

silicon. Due to the wider bandgap in SiC, the rate of threshold

voltage decrease with temperature is lower because the thermal

energy needed to increase the intrinsic carrier concentration by

generating electron-hole pairs is higher.

Crosstalk can be investigated by different approaches.

The direct approach is to evaluate it through shoot-through

current in the device. This shoot-through current can cause,

for example, the circuit protection to activate. However the

Fig. 14. The impact of temperature on the diode and DC link voltage at high
switching rates (both top/bottom devices are connected to RG = 10 Ω) (a,b)
silicon devices (c,d) SiC devices showing invariance with temperature at high
switching rates.

Fig. 15. The shoot-through energy density at different temperatures and
bottom side gate resistances in (a) the Si-IGBT power module (b). the
SiC-MOSFET power module.

amplitude of the current is not a sufficient method for

understating the consequences of crosstalk, since the duration

of the shoot-through current is also a critical parameter.

Hence, the shoot-through charge which incorporates both

the peak amplitude and the transient duration should

be used to understand the severity of the consequences.

Also the shoot-through energy density, as a result of the

dissipated power during crosstalk resulting from simultaneous

voltage/current per die should be analyzed, since reliability

issues and device failures are often caused by the excessive

heat generated within the device junction. Therefore the

shoot-through current measured at each temperature for

each technology has been integrated over time to get the

shoot-through charge. The shoot-through charge increases

approximately linearly with temperature as a result of the

corresponding decrease in the threshold voltage. That rate

of change of shoot-through charge with temperature has

been calculated so as to evaluate the temperature dependence

for both technologies. Fig. 16 shows a comparison of the

shoot-through charge (integrated shoot-through current over

time) temperature coefficient for both technologies where it

can be seen that the SiC MOSFET module is more temperature

invariant. Fig. 17 shows the corresponding shoot-through

energies. It can clearly be seen that the SiC module exhibits

better temperature stability compared to the Si-IGBT module.

A typical example of result of this shoot-through energy is
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shown in Fig. 18.

Fig. 16. Shoot-through charge temperature coefficient (µC/°C) as a function
of the bottom-side gate resistances, showing that the silicon IGBT device is
more temperature variant compared with its SiC counterpart.

Fig. 17. Shoot-through energy of Silicon device compared with its SiC
counterpart, showing that the shoot-through energy of the silicon device is
more dependent on change of switching rate compared with SiC device.

IV. EVALUATION OF CROSSTALK MITIGATION

TECHNIQUES ON SI-IGBT AND SIC-MOSFET MODULES

To mitigate the induced parasitic voltage and its subsequent

consequences, including the shoot-through current and the

DC link voltage ripple, several correction techniques can

be employed [21]–[23]. However not all these techniques

are applicable for all cases. The correction techniques to be

analyzed for effectiveness include (i) the use of a bipolar gate

driver instead of a unipolar driver (negative voltage offset) (ii)

using two different gate resistors for turn-on and turn-off (iii)

using an external gate-source capacitor and (iv) using a DC

link snubber capacitor. Other correction techniques include the

use of the Miller clamp which is not suitable for SiC power

modules [23]. Several publications proposed advanced gate

drive techniques to mitigate the crosstalk. However the aim of

this paper is to compare the basic techniques applied to the

basic gate drivers.

A. Negative offset Gate Bias from Bipolar Gate Drives

The basic idea behind the negative gate bias is to increase

the margin required for current flow from the threshold voltage

Fig. 18. A typical temperature rise as a result of continues occupance of
crosstalk; Thermal camera image of the SiC MOSFET module switching at
8 kHz with low RG of (left) 10 Ω and (right) 100 Ω with high side device
switched with 10 Ω in less than 8 minutes.

VTH to the sum of the negative gate bias and the threshold

voltage (VGB+VTH). However, this requires gate driver circuits

capable of providing negative bias (bipolar gate drivers) which

are more complicated and expensive compared to unipolar

gate drivers. Furthermore, subjecting SiC power MOSFETs

to negative stress across the gate oxide is a reliability concern

since threshold voltage shift can cause the devices to become

normally on. In this paper, the effectiveness of this correction

technique is evaluated for both technologies. The negative bias

voltage applied to both devices is equally set as -5 Volts

and the same unipolar and bipolar drives are used in both

cases to provide a fair comparison. This voltage is chosen

as it is the maximum negative gate voltage that SiC device

can withstand during continues operation based on the device

datasheet. Fig. 19(a) shows the induced parasitic voltage on

the bottom side Si-IGBT for both unipolar and bipolar gate

drives whereas Fig. 19(b) shows the shoot-through current.

Similar plots are shown for the SiC module in Fig. 11(c) and

Fig. 11(d). It can be seen that the induced voltage is suppressed

and the peak shoot-through current is significantly reduced

(from 80 A to 5 A) for the Si-IGBT module whereas for the

SiC module, the peak shoot-through current is reduced from

45 A to 20 A. Hence, while the bipolar gate drive solves the

problem for the Si-IGBT module, it does not completely solve

it for the SiC module. This is thought to be due to the higher

dV/dt coupled with the lower threshold voltage of the SiC

module.
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Fig. 19. Measurements in 25 °C with a RG = 10 Ω (top), RG = 100 Ω

(bottom) (a). Impact of the bipolar driver on the biasing the induced voltage
on Si-IGBT (b). Impact of the biased induced voltage on the shoot-through
current on Si-IGBT (c). Impact of the bipolar driver on the biasing the induced
voltage on SiC-MOSFET (d). Impact of the biased induced voltage on the
shoot-through current on SiC-MOSFET.

B. Use of two resistive paths for turn-on and turn-off

The basic concept behind this technique is using two

different resistive paths for the turn-on (RGON) and turn-off

(RGOFF) as shown in Fig. 7. The result of applying this is

shown in Fig. 20. As can be seen, the turn-on and turn-off

rates are controlled by the different resistances. A lower

parasitic voltage is induced by using a diode to ensure that

the capacitive Miller current flows through the lower RGOFF.

Looking at Fig. 21(a) and (b) for Si-IGBT and Fig. 21(c)

and (d) for SiC module, it is seen that this technique has

significantly lowered the shoot-through current.

Fig. 20. The gate signal for two resistive paths technique. As seen the turn-on
is done by different rates, while the turn-OFF is consistently fast.

C. External CGS

An external gate-source capacitance can be used to reduce

the induced voltage as it will consume part of the current

through the Miller capacitance, resulting in lower currents

flowing through the gate resistance, causing lower induced

voltage. This method also causes a lower dV/dt on top device

turn-on as the external capacitance also consumes part of the

gate current and therefore slows down the device. As a result,

it is not preferable in SiC-MOSFETs where the switching rate

Fig. 21. Measurements in 25 °C with a unipolar driver (a). Impact of
the two resistive paths technique on the induced voltage on Si-IGBT (b).
Impact of the two resistive paths technique on the shoot-through current of
Si-IGBT (c). Impact of the two resistive paths technique on the induced
voltage on SiC-MOSFET (d). Impact of the two resistive paths technique
on the shoot-through current of SiC-MOSFET.

is aimed to high values. Looking at Fig. 22(a) and (b) for

the Si-IGBT and (c) and (d) for the SiC-MOSFET, it is seen

that connecting a 10 nF external source-gate capacitance has

reduced the induced voltage and shoot-through current by a

small degree and the impact is relatively low compared with

other correction techniques examined. Increasing the external

CGS causes lower dV/dt and higher switching energies and

therefore is not recommended.

Fig. 22. Measurements in 25 °C with a bipolar driver (a). Impact of external
CGS on the induced voltage on Si-IGBT (b). Impact of external CGS on the
shoot-through current on Si-IGBT (c). Impact of external CGS on the induced
voltage on SiC-MOSFET (d). Impact of external CGS on the shoot-through
current on SiC-MOSFET.

D. Snubber Capacitor

The shoot-through current causes a significant voltage dip

on the DC link which destabilizes the voltage on the DC link

capacitors. Stabilizing the DC link voltage using a snubber

capacitor on the half bridge module can reduce the high

frequency ringing in the shoot-through current, resulting in less

oscillation in the induced voltage. This in turn will reduce the

shoot-through switching energy as well. As seen in Fig. 23,

the snubber capacitor (here with a value of 100 nF) has
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stabilized the DC link and consequently, the overshoot in the

voltage of the silicon modules diode. The snubber capacitor is

particularly effective for the SiC power module since as seen in

Fig. 14(c) and (d), the oscillation on the DC link voltage of the

SiC power module is significant. Fig. 23(c) and (d) shows that

the snubber capacitor filters out the oscillations and stabilizes

the DC link as well as the bottom side SiC MOSFET/Schottky

diode voltage. This also stabilizes the induced parasitic voltage

as well as the shoot-through current as seen in Fig. 24.

Fig. 23. The impact of the snubber capacitor on the voltage dip and
oscillations on the bottom diode voltage and DC link in silicon and SiC.

Fig. 24. Measurements in 25 °C with a bipolar driver (a). Impact of
the snubber capacitor on the induced voltage fluctuations on Si-IGBT (b).
Impact of the snubber capacitor on shoot-through current of Si-IGBT (c).
Impact of the snubber capacitor on the induced voltage fluctuations on
SiC-MOSFET (d). Impact of the snubber capacitor on shoot-through current
of SiC-MOSFET.

To provide a comprehensive and comparative analysis on

the effectiveness of the correction techniques, Fig. 25 to 28

have been produced. Fig. 25 shows the effectiveness of using

a (a) unipolar gate driver compared with the (b) bipolar driver

for two bottom side gate resistances (10 Ω and 100 Ω) while

the top switch is switched at a high rate with RG of 10

Ω. It is seen here that although the Si-IGBT module has a

higher shoot-through charge compared with the SiC MOSFET

module at bottom side RG = 100 Ω and it is lower at bottom

side RG = 10 Ω. It can also be seen that the shoot-through

charge of the SiC MOSFET module is less dependent on RG

as is expected due to its lower Miller capacitance. By applying

a bipolar gate driver as seen in Fig. 25(b), the shoot-through

charge is reduced in both devices; however, the effectiveness

of the Bipolar gate drive is less in the SiC MOSFET module

as a result of its lower threshold voltage and higher dV/dt. As

can be seen from Fig. 25(b), the shoot-through charge for both

RG cases is minimal in the Si-IGBT module with Bipolar gate

drive compared with the SiC MOSFET module. This is shown

in terms of charge reduction percentage for RG = 10 Ω.

Fig. 25. Shoot-through charge of different RG on bottom device, with (a)
Unipolar and (b) Bipolar Gate drivers in Silicon and SiC devices.

Fig. 26 shows the percentage reduction of shoot-through

charge from the use of the bipolar gate drive for both

technologies i.e. a measure of its effectiveness.

Fig. 26. Percentage reduction of shoot-through charge in both silicon and
SiC device with RG = 10 Ω showing that using a bipolar driver has a better
impact on silicon IGBT device than the SiC device.

It can be seen from this figure that reduction of charge in

Si-IGBT module is higher than the SiC MOSFET module.

This can be seen by comparing Fig. 19(b) and 19(d). Fig. 27

and Fig. 28 show the results of all correction techniques
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applied to each device technology at 25 °C and 120 °C using

the shoot-through energy density as the indicator. As was

explained in the Section III.A, to provide a fair comparison the

shoot-through is represented by the energy density (mJ/cm2)

instead of energy (mJ). As can be seen from Fig. 25, although

the Si-IGBT module initially exhibits a higher shoot-through

charge, using a Bipolar gate drive is more effective in reducing

the shoot-through charge and energy. In Fig. 27 and 28,

it can be seen that applying a snubber capacitor does not

have a considerable impact on reduction of the shoot-through

energy density, although as it was seen previously, the use

of the snubber capacitor mainly in the SiC MOSFET module

is required for preventing ringing/oscillations in the turn-on

of the bottom device. As these Figures show, the use of two

resistive paths results in a very significant reduction of the

shoot-through energy density and has the same effectiveness

as a the use of a Bipolar gate drive in the Si-IGBT module.

However, for the SiC MOSFET module, both techniques

together the use of a snubber across the DC link is required.

Fig. 27. Shoot-through energy density as a result of crosstalk in bottom device
in 25 °C with RG = 10 Ω (or its equivalent) in top and bottom devices.

Fig. 28. Shoot-through energy density as a result of crosstalk in bottom device
in 120 °C with RG = 10 Ω (or its equivalent) in top and bottom devices.

V. CONCLUSION

Crosstalk has been modeled and experimentally

characterized for SiC MOSFET and Si-IGBT power modules.

It has been experimentally demonstrated that SiC devices

normally have a lower shoot-through charge although often

exhibit higher shoot-through energy. The lower shoot-through

charge is due to a considerably smaller Miller capacitance in

SiC MOSFETs compared with Si-IGBTs in spite of switching

with higher dV/dt and having a lower threshold voltage.

However, the higher shoot-through energy in SiC MOSFET

modules is due to the ringing in the Schottky diode turn-off

transient resulting in oscillations in the DC link voltage. It

has also been demonstrated that the shoot-through charge

in Si-IGBT module has a higher temperature coefficient

for all conditions, meaning that it is more sensitive to

ambient temperature rise. The temperature coefficient of the

shoot-through charge in SiC is lower as a result of the lower

threshold voltage temperature coefficient resulting from the

wide-bandgap characteristics. Various correction techniques

have been examined to mitigate the problem. For the Si-IGBT

modules, the traditional solutions of negative gate bias and/or

2 resistive paths are sufficient in mitigating the problem.

However, for the SiC MOSFET modules, the bipolar gate

driver is not sufficient to completely solve the crosstalk

problem since the threshold voltage of SiC devices is low and

the dV/dt remains high. Furthermore, negative bias rating of

the SiC MOSFET is lower than that of Si-IGBTs, hence, the

margins for negative bias are smaller. It has also been shown

that the presence of the snubber capacitor is required to damp

the high frequency oscillations in the DC link resulting from

diode ringing, in the case of SiC devices. Therefore, for the

Si-IGBT modules, the bipolar gate driver with a negative

bias value of at least five Volts should suffice to mitigate the

possibility of shoot-through, whereas for SiC devices, due to

the restrictions over the negative bias gate voltage, the two

resistive path method in conjunction with the bipolar gate

driver and the snubber capacitor are recommended.
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