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Temperature and water stress during
conditioning and incubation phase
affecting Orobanche crenata seed
germination and radicle growth
Juan Moral*, María Dolores Lozano-Baena and Diego Rubiales

Rubiales Laboratory, Department of Plant Breeding, Institute for Sustainable Agriculture, Consejo Superior de

Investigaciones Científicas, Córdoba, Spain

Orobanche crenata is a holoparasitic plant that is potentially devastating to crop yield of

legume species. Soil temperature and humidity are known to affect seed germination,

however, the extent of their influence on germination and radicle growth of those of O.

crenata is largely unknown. In this work, we studied the effects of temperature, water

potential (� t) and the type of water stress (matric or osmotic) on O. crenata seeds during

conditioning and incubation periods. We found that seeds germinated between 5 and

30◦C during both periods, with a maximum around 20◦C. Germination increased with

increasing � t from −1.2 to 0 MPa during conditioning and incubation periods. Likewise,

seed germination increased logarithmically with length of conditioning period until 40

days. The impact of the type of water stress on seed germination was similar, although

the radicle growth of seeds under osmotic stress was lower than under matric stress,

what could explain the lowest infestation of Orobanche sp. in regions characterized by

saline soil. The data in this study will be useful to forecast infection of host roots by

O. crenata.

Keywords: broomrape, water potential, matric and osmotic stress

Introduction

The holoparasitic weedOrobanche crenata Forsk. is responsible for important crop losses across the

Mediterranean andWest Asia where it parasitizes mainly Fabaceae species such as faba bean (Vicia
faba), grasspea (Lathyrus sativus), lentil (Lens culinaris), pea (Pisum sativum), and vetches (Vicia

sp.), but also Umbelliferae such as carrot (Daucus carota) (Grenz and Sauerborn, 2007; Parker,
2009). Because each Orobanche plant produces 1000s of minute seeds that persist viable in the soil

for many years increasing the parasite seedbank in the soil and because infection and pathogenic
process takes place underground (Joel et al., 2007) the effective control of this weedy species is

extremely difficult (Rubiales et al., 2009).
Orobanche seeds germinate under favorable environmental conditions and the presence of

chemical stimulants in the root exudates of proper plant species (Fernández-Aparicio et al., 2009).
Before this, theOrobanche seeds are in an inactive state. Only after a conditioning period of several

days that follows seed imbibition, O. crenata seeds can respond to germination stimulants (Van
Hezewijk et al., 1993). However, this is not the case for other Orobanche species such as O. cumana

andO. aegyptiaca (syn. Phelipanche aegyptiaca) in which this conditioning helps, but is not essential
for stimulant receptivity (Plakhine et al., 2009). During the conditioning period, temperature (T),
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water potential (� t), oxygen availability and growth regulators

are known to affect the seed viability of several species of
Orobanche and their germination response (Van Hezewijk et al.,

1993; Kebreab and Murdoch, 1999; Gibot-Leclerc et al., 2004;
Song et al., 2005).

Environmental factors, especially T and � t, affect the
germination of conditioned seeds during incubation after

exposure to germination stimulants (Kebreab and Murdoch,
2000). Once the parasitic seed germination is induced, an

infective radicle arises from the seed coat and grows, following
a positive gradient of germination stimulants until the host root,

to which it can adhere and penetrate (Fernández-Aparicio et al.,
2010). Therefore, the seeds, which show a large radicle, reach

far roots what increases the infection efficiency. Temperature
and � t can also affect the seed radicle elongation (Dodd and

Donovan, 1999). Nevertheless, the impact of both T and � t on
radicle elongation of Orobanche seeds are little understood. This
information is essential for the development of germination and

infection submodels, critical components to forecast effects of
O. crenata on legume hosts.

Water potential quantifies the tendency of water to move
from one point to another. In the soil, � t is mainly the sum

of: (i) the gravitational potential (�g); (ii) osmotic potential
(�o) as a consequence of the presence of ionic changes due

to salts and non-ionically due to water binding by components
on plant parts or other solutes; and (iii) matric potential (�m)

caused by water adsorption and surface tension phenomena in
soil (Papendick and Campbell, 1980). Whereas �m and �o

can change substantially and therefore affect seed germination,
gravitational potential is determined solely by elevation of a

point to some arbitrary reference point being negligible in near
points (i.e., seed and adjacent water). In non-saline soils, �m

is the dominant component (Papendick and Campbell, 1980;
Chowdhury et al., 2011).

Furthermore, seed germination is differently affected
by comparable �m and �o, although their free energy
measurements are equal (Hillel, 1972; Schmidhalter and

Oertli, 1991). Thus, the seeds of different plants (Meiri, 1984;
Schmidhalter and Oertli, 1991) and several microorganisms

(Ramirez et al., 2004; Chowdhury et al., 2011) have been
demonstrated to be more sensitive to low �m than low �o.

However, very little attention has been given to study the impact
of �m and �o on seed germination of Orobanche species.

In this study, our objectives were to determinate the influence
of temperature (T), water stress (� t), and type of water stress (�m

and �o) on seed germination and radicle length of O. crenata
during both the conditioning and the incubation periods. These

results will be of value for development of predictive infection
models.

Materials and Methods

Orobanche Seeds
Seeds were collected from O. crenata plants infecting faba

beans during 2010 in Córdoba (37.51◦N, 4.80◦W, elevation
of 110 m), southern Spain. Dry seeds were stored in glass

containers in the dark at room temperature until use. Before

use, seeds were disinfected with formaldehyde as described by
González-Verdejo et al. (2005). To ensure that all germination

requirements other than T and � t were satisfied, we included
exogenous application of 1.2 mL of water or solution per 5-

cm Petri dish, with 10 ppm GR24, a synthetic germination
stimulant (Johnson et al., 1976) that was applied after

conditioning period in the three experiments. In addition, we
included seeds which were not exposed to GR24, which were

incubated at 20◦C at water potential value of 0 MPa, for
assuring that this stimulant, is needed to seed germination

in O. crenata. For each treatment, three replicate Petri dishes
were used and the experiments were carried out twice. In all

experiments, control seeds were conditioned with sterile distilled
water.

Water Potential Treatments
Because polyethylene glycol (PEG) solutions are relatively non-
toxic to seeds (Song et al., 2005), aqueous solutions of PEG 8000
(Sigma 25322-68-3), or Milli-Q water were used for producing

a range of matric potentials (0, −0.3, −0.6, −0.9, −1.2, and
−3 MPa). The amount of PEG required for each combination

T – � t was calculated using the polynomial equation of Michel
and Kaufmann (1973) and revised by Michel (1983).

Likewise, sterile milli-Q water was modified osmotically by the
addition of non-ionic glycerol (Panreac 56-81-5) to 0,−0.3,−0.6,

−0.9, −1.2, and −3 MPa (Dallyn and Fox, 1980). The quantity of
glycerol used to adjust the water activity (aw) of each solution was

calculated using the Norrish’s equation (Harris, 1980) modified
by Baeza et al. (2010). Finally, for a sample at given T, the � t was

uniquely related to the aw through the Kelvin equation:

Ψt =
RTk

Mw
Ln aw (1)

where R is the universal gas constant, Tk is Kelvin temperature
andMw is the molecular mass of water (Papendick and Campbell,

1980).
The� t of all solutions was then confirmed by measurement in

a dewpoint potentiameter (WP4Aqua LabWaterMeter, Decagon
Devices, Pullman,WA,USA) and subjected to a slight adjustment

when necessary.

Effect of Temperature and Water Potential
During the Conditioning Period
Experiment 1

Around 150 seeds of O. crenata were sown per 10-mm disks of
glass fiber filter paper (WHATMAN 3645, 175 g m−2). Three

disks (pseudoreplicates) were placed in a sterile 5-cm Petri dish
lined with two layers of 50-mm diameter glass filter paper wetted

with 1.5 mL of sterile milli-Q water or different conditioning
media as described by Song et al. (2005). These media were PEG

or glycerol solutions at −0.3, −0.6, −0.9, −1.2, and −3 MPa.
The Petri dishes were sealed with Parafilm and wrapped with

aluminum foil to provide absolute darkness. The Petri dishes
were then placed in growth chambers at different temperatures (5,
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10, 15, 20, 25, 30, and 35◦C). After 5 days, other 0.6 mL of sterile

water or conditioning medium was added to each Petri dish to
maintain the � t and the dishes were placed back in the chambers

for two more days.
After conditioning, the seeds were blotted to remove excessive

water or conditioning media. Each disk from every replicate
Petri dish were then transferred to a separate new 5-cm

Petri dish containing two layers of filter paper wetted with
1.2 mL of sterile milli-Q water with 10 ppm GR24. Petri

dishes were incubated at 20◦C in the dark as describe above.
Germination was examined under a compound microscope

(Nikon Eclipse 80i; Nikon Corp., Tokyo) at 7 days after
GR24 addition counting around 200 seeds per Petri dish.

In addition, we randomly selected 30–40 germinated seeds
per treatment and the length of their emerging radicle was

also measured at this time. In total, 84 treatments [seven
temperatures × six � t × two types of water stress (�m and
�o)] were evaluated. In all experiments, for each treatment, three

replicate Petri dishes were used and the experiment was carried
out twice.

Experiment 2

This experiment was nearly similar to our previous experiment

but seed germination was assessed periodically at 2, 7, 10,
20, and 40 days after GR24 addition allowing calculation of

seed germination percentage. Conditioning temperature was
fixed to 20◦C, maintaining the PEG and glycerol solutions

at 0, −0.3, −0.6, −0.9, −1.2, and −3 MPa. In this case,
between 0.1 and 0.3 mL of sterile water or conditioning

medium was periodically added to each Petri dish to maintain
the � t.

Because the germinated seeds were removed to measure
the size of the radicles at 7, 20, and 40 days, this evaluation

corresponds to seeds germinated between 0–7, 8–20, and 21–40
conditioning days (see Evaluation). Therefore, the radicle of seeds
that germinated between the 10th to 20th days had 10 days to

develop, and those that germinated between the 20th and 40th
day had 20 days to develop. In total, the seeds were subjected to

12 treatments [six � t × two types of water stress (�m and �o)]
that were evaluated after five conditioning periods.

Effect of Temperature and Water Potential
During the Incubation Period
Experiment 3

This experiment was similar to Experiment 1 except that

O. crenata seeds were conditioned at 20◦C in the dark for
10 days on the paper disks with sterile distilled water (160 µL

per disk). Then the disks were blotted and transferred to new
Petri dishes containing filter paper wetted with 1.2 mL of PEG

or glycerol solution (0, −0.3, −0.6, −0.9, −1.2, and −3 MPa).
Petri dishes were then incubated at 5, 10, 15, 20, 25, 30,

and 35◦C in the dark. The seed germination was evaluated
at 7 and 10 days and the length of the emerging radicle of

30–40 seeds at 7 days as described above. In this case, 84
treatments [seven T × six � t × two types of water stress (�m

and �o)] were evaluated and the experiment was conducted
twice.

Evaluation
In all cases, the germination of O. crenata seeds were directly
quantified on the Petri dishes using a magnification of 40× with

the aid of a compound microscope (Nikon Eclipse 80i; Nikon
Corp., Tokyo). For that, we counted the total of seeds of several

fields of view that was taken at random. Seeds were considered
germinated when the length of the emerging radicle was equal
to or longer than its width. Length of the emerging radicle of

seed was measured at a magnification of 200× with the aid of
a compound microscope using the NIS-Element software (Nikon

Corp., Tokyo, Japan).

Statistical Analysis
Analysis of variance (ANOVA) was performed on germination
percentage or radicle length depending on the design of each

experiment. Both germination percentage and radicle length
were log or arcsin-transformed when necessary for normality

or homogeneity of variances. All experiments were repeated
at once, and data from repetitions of each experiment were

combined after checking for homogeneity of the experimental
error variances by the F test (two variances). Because there were

several interactions among independent variables (Experiments
1 and 3), to clarify the effects of � t (water vs. negative

potentials) or type of water stress (osmotic vs. matric) on
the dependent variables, we compared among them using

orthogonal contrasts. When the type of water stress did not
affect to type of water stress, ANOVA or regression analysis

was performed on the whole of data using this variable as
repetitions.

Linear regression analysis was used to evaluate the relationship
between duration of conditioning period (days) and the
cumulative germination percentage (Experiment 2). The duration

of the conditioning period (days) was log-transformed. Various
linear and non-linear regression models were evaluated for

describing the effect of T and � t on seed germination and
radicle length during the conditioning and the incubation periods

(Experiments 1 and 3). The models tested were the generalized
Analysis β model (Hau and Kranz, 1990), the Schödter angular

model (Hau and Kranz, 1990), the Yin’s model (Yin et al., 1995)
and several second- or third-order polynomial equations based

on results of ANOVA analysis. We included the � t on the
models as (� t − � tmin)

c when necessary. The used models were

developed with an empirical approach according to the collected
data. These models have been used to describe the influence of

temperature and water stress on germination of broomrape seeds
for the first time.

The Analysis β model (Hau and Kranz, 1990) was selected
because it provided a good fit for all experiments and because

each parameter has biological meaning. The Analysis β model
uses the following equation:

Y = k × ta × (1 − t)b × (Ψ t − Ψ tmin)
c (2)

in which Y = standardized germination percentage or radicle
length that varied from 0 to 1 (Y = G/Gmax or Y = RS/RSmax );

t = standardized temperature [(t = (T − Tmin)/(Tmax − Tmin)];
� t = water potential (0 ≥ � t ≥ � tmin); and k, a, b, and c are
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unknown parameters. Tmin, Tmax, and � tmin were the minimum

temperature, maximum temperature, and minimum � t for
seed germination, respectively. Maximum Y is reached when

standardized t = a/(a + b). Thus, for a given � t, if the parameter
a < b or a > b, the optimum temperature is shifted to the left

of right, respectively. In this study, Tmin and Tmax were selected
according to the data of our study, and the � tmin used on the

models (−2 MPa) was selected according previous experiments.
A linear regression was applied to test the relationship between

data estimated by non-linear regression and observed data.
In all cases, the best regression model was chosen from

many combinations of terms based on the significance of the
estimated parameters (P ≤ 0.05), Mallow’s Cp statistic, Akaike’s

information criterion modified for small data sets, the coefficient
of determination (R2), R2 adjusted for degrees of freedom (Ra

2),

and the pattern of residuals over predicted and independent
variables.

Results

Both T and � t affected the germination of O. crenata seeds
during conditioning and incubation periods. Overall, the seeds
germinated in a range of T between 10 and 25◦C during

conditioning and incubation periods, being germination strongly
reduced at 25◦C. On the contrary, no germination occurred at

5 or 35◦C or under −3 MPa at any temperature and it was
very limited at 30◦C. For this reasons, equations of models were

developed in all cases considering 5 and 35◦C as Tmin and Tmax,
respectively (Table 1). Moreover, there were several double and

triple interactions among the independent variables depending
on the experiments. No O. crenata seeds untreated with GR24

germinated.

Effect of Temperature and Water Potential
During the Conditioning Period
Experiment 1

Seeds of O. crenata conditioned in water potentials ≥−1.2 MPa

germinated over the glass fiber filter papers at temperatures

between 10 and 25◦C. However, when conditioned at

� t = −1.2 MPa the seeds did not germinate at 10◦C. Maximum
seed germination approached 41% in water at 20◦C. The

germination percentage of seeds conditioned in water was
significantly (orthogonal contrasts, P = 0.035) higher than that

of the seeds conditioned in negative water potentials. Conversely,
the both matric and osmotic stress have similar (orthogonal

contrasts, P = 0.6318) impact on the germination percentage of
the seeds. For example, the mean of seed germination for the

seeds conditioned at 20◦C among −0.3 and −1.2 MPa under
osmotic or matric stress were 25.9 and 23.7%, respectively.

For that, the data from each type of water stress were used as
independent repetitions to fit the models (Table 1). The fitted

Analysis β model of � t-T affecting the germination percentage
is illustrated in Figure 1. The fitted model was highly significant

(P < 0.001; R2 and Ra2 were >0.90) and the standardized
residuals were randomly distributed over predicted values. The
optimum T for maximum seed germination, obtained with fitted

model, was 18.9◦C. Thus, germination higher than 40% is only
obtained with a conditioning at 17–20◦C at water potential value

of 0 MPa (Figure 1).
The effect of T on radicle length followed a similar trend as

percentage of seed germination, although showing an optimum
temperature lower. The largest radicle lengths were observed at

15 and 20◦C for seed conditioned at water potential value of
0 MPa, which showed mean radicle lengths 1170 ± 75 µm and

826 ± 31 µm, respectively. For lower or higher temperatures
the radicle lengths were shorter than previous one. Water

potential (water vs. negative potentials) and the types (matric
vs. osmotic stress) of water stress had significant (orthogonal

contrast, P < 0.001) effect on radicle length of germinated seeds
ofO. crenata. Overall, the radicle length increased with increasing

of � t from −1.2 to 0 MPa. Even so, the radicle length of seeds
that were conditioned under osmotic stress (467 ± 11 µm)

was significantly shorter (orthogonal contrast, P < 0.001) than
those conditioned under matric stress (652 ± 12 µm). For this
reason, two regression models were independently fitted for

the data of each type of water stress. The Analysis β model
showed an excellent fit for the radicle length data of both type of

TABLE 1 | Effect of temperature (T), water potential (�t ), and type of water stress [matric (�m) or osmotic (�o)] during conditioning (Experiment 1) and

incubation (Experiment 3) periods on seed germination and radicle length (0–1) of Orobanche crenata seeds according to the fitted Analysis β models.

Studied

period

Y Water stress Analysis β model parametersx,y R2 T opt (◦C)

K a b c

Conditioning Gemination �m and �o
z 365.071 5.433 4.332 1.016 0.986 18.9

Conditioning Radicle �m 2.393 1.153 0.974 0.595 0.931 18.6

Conditioning Radicle �o 1.588 1.214 1.027 1.222 0.841 18.5

Incubation Gemination �m and �o
z 3.253 2.032 1.479 1.736 0.941 19.5

Incubation Radicle �m 3.436 1.872 0.821 0.5610 0.983 22.4

Incubation Radicle �o 2.241 1.793 0.663 0.808 0.973 24.0

xSeed gemination or radicle length (Y), temperature (T), and water potential (� t ) data were adjusted to a non-linear Analysis β model

Y=k × ta × (1-t)b × (Ψ t -Ψ tmin)c (Hau and Kranz, 1990), the equations of models were developed in all cases considering 5 and 30◦C and −2 MPa as Tmin , Tmax and

� tmin, respectively.
yOrobanche crenata seeds were conditioned, before GR24 (conditioning period) addition, at 5, 10, 15, 20, 25, 30, and 35◦C from −3 to 0 MPa (water) in humid chambers.

Likewise, seeds were incubated, after the GR24 (incubation period), in the same conditions.
zThere was not significant effect of type of water stress (matric or osmotic) on seed germination according to orthogonal contrast at P < 0.05.
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FIGURE 1 | Effects of temperature (◦C) and water potential (MPa) on

seed germination of Orobanche crenata during conditioning period.

The lines were fitted according to Analysis β equation (Hau and Kranz, 1990;

Table 1). Points represent the average of 12 repetitions. Bars represent the

SD of the mean.

water stress (Table 1). The fitted models were highly significant

(P < 0.001; R2 and Ra2 were >0.84) and the standardized
residuals were randomly distributed over predicted values. The

predicted optimum temperatures for maximum radicle length
were around 18.5◦C under both types of water stress. According

to both fitted models, only the seed that were conditioned in
water showed a radicle length over 900 µm (Figures 2A,B;

Table 1).

Experiment 2

Orobanche crenata seeds conditioned at 20◦C and

� t ≥ −1.2 MPa during 40 days, germinated under both types of

water stress. No seeds geminated when they were conditioned at

−3MPa.Maximum germination (57.60± 4.5%) was obtained for
seeds conditioned in water at the end of experiment (Figure 3).

The germination percentage was significantly (orthogonal
contrasts, P = 0.022) lower at negative potentials than water,

but there was not significant differences between both types of
waster stress (orthogonal contrasts, P = 0.411). For this reason,

we used the data from each type of water stress as repetitions
to fit regression lines (Figure 3). The cumulative percentage

germination increased log-linearly (R2 = 0.706; P < 0.001) with
increasing of length of the conditioning period from 0 to 40 days

(Figure 3). The short conditioning period that resulted in seed
germination was the 7 days, with a germination percentage

of ≈18% for the seeds conditioned in water. The comparison
among the linear regression lines of each � t (between −1.2

and 0 MPa) showed equality of variances (P = 0.715), with
significant differences between elevations (P < 0.001) but not
(P = 0.475) among slopes (b = the apparent rate of germination

increase). Thus, significant differences were found in the
line slopes of water potentials 0 and −1.2 MPa (P < 0.05),

which were significantly different (P < 0.05) to the remaining
water potentials that formed a homogeneous group (P > 0.05;

Figure 3).

The mean radicle length of O. crenata seeds germinated in
water during the first week ranged 1165± 68µm (Figure 4). The

effects of type of water stress, germination period and different
interactions among independent variable (type of water stress-

germination period and type of water stress-germination period-
� t) on the radicle length were significant (P < 0.05). The radicle

length of the seeds conditioned in water (863 ± 28 µm) was
higher (orthogonal contrast, P < 0.001) than radicle length of

seeds (605.2 ± 9.5 µm) conditioned in negative water potentials.
Moreover, the type of water stress also had significant (P < 0.001)

effect on the radicle length being 725 ± 13 and 484 ± 11 µm
under matric and osmotic stress, respectively. Overall, seeds

germinated during the first days of the conditioning period

FIGURE 2 | Effects of temperature (◦C) and matric (A) or osmotic (B) potentials (MPa) on radicle length of O. crenata seeds during conditioning

period. The lines were fitted according to Analysis β equation (Hau and Kranz, 1990; Table 1). Points represent the average of six repetitions. Bars represent

the SD of the mean.

Frontiers in Plant Science | www.frontiersin.org 5 June 2015 | Volume 6 | Article 408

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Moral et al. Enviromental factors affecting Orobanche seed germination

FIGURE 3 | Cumulative germination percentage of O. crenata

conditioned at 20◦C under different water potentials (MPa) during

40 days. The lines were fitted according to logarithmic equation

[G (%) = a + log (days)] for each water potential. Points represent the average

of 12 repetitions. Bars represent the SD of the mean.

showed a larger radicle than the later germinated ones. In the

case of seeds conditioned in osmotic solutions, however, the
seeds conditioned at −0.9 and −1.2 MPa showed a radicle length

roughly constant (Figures 4A,B).

Effect of Temperature and Water Potential
During Incubation Period
Experiment 3

The germination percentage of conditioned seeds increased with

increasing incubation period from 5 to 10 days. The maximum
germination percentage increased with the T between 10 and

20◦C and then decreased between 20 and 30◦C. Likewise, the
final germination percentage increased with increasing � t from
−1.2 to 0 MPa, approaching around 43% in water at 15◦C

(Figure 5). The germination percentage of conditioned seeds
incubated in water was significantly higher (orthogonal contrasts,

P < 0.001) than other incubated at negative potentials. On
the contrary, there was no significant (orthogonal contrasts,

P = 0.107) differences on the maximum germination percentage
of conditioned seeds that incubated under matric or osmotic

stress. The Analysis β equations (Table 1; Figure 5) fitted
satisfactorily to the data of final germination percentage at

each T-� t combination (P < 0.001; R2 and Ra2 > 0.93). The
standardized residuals were randomly distributed over predicted

again. The obtained-optimum T for seed germination was 19.5◦C
(Table 1; Figure 5).

Radicle length of seeds of O. crenata was highly affected by
� t and T during the incubation period. For example, in the

case of seeds incubated in water, average radicle length increased
gradually from 304 µm at 10◦C until a maximum of 1991 µm

at 25◦C (Figure 6). In addition, the conditioned seeds, which
were incubated in water, showed higher (orthogonal contrasts,

P < 0.001) radicle length than other incubated at negative
water potentials. The type of water stress had too significant

FIGURE 4 | Effect of the incubation period, during which the O. crenata

seeds germinated (days after GR24 addition), on the radicle length

seeds (µm) under matric (A) or osmotic potentials (B). Points represent

the average of six repetitions. Bars represent the SE of each mean.

(orthogonal contrasts, P < 0.001) effect on the radicle length of
seeds, being higher (1150 ± 588 µm) in the seeds incubated in

PEG solutions than other (975 ± 498 µm) incubated in glycerol
solutions. The curves describing the effect of � t and T on the

radicle length of O. crenata seeds fitted satisfactorily (P < 0.001;
R2 and Ra2 > 0.95) for each type of water stress (Figures 6A,B).

The obtained optimum temperatures for radicle growth were
22.3 and 24.5◦C under matric or osmotic stress, respectively

(Figures 6A,B; Table 1). The same results were obtained when
we studied the germination percentage at seven incubation days.

Discussion

It has widely acknowledged that germination of Orobanche

sp. seeds is influenced by environmental and microbiological
factors, including T, � t (Kebreab and Murdoch, 1999, 2000;

Song et al., 2005) as well as by microbe interactions in the
rhizosphere (Mabrouk et al., 2007; Fernández-Aparicio et al.,

2010). Traditionally, physiology-based models have been used
to describe the effect of the environmental parameters on the
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FIGURE 5 | Effects of temperature (◦C) and water potential (MPa) on

seed germination of O. crenata during incubation period. The lines were

fitted according to Analysis β equation (Hau and Kranz, 1990; Table 1). Points

represent the average of 12 repetitions. Bars represent the SD of the mean.

germination of Orobanche seeds, although they have not been

used to radicle length and have additional limitations. For
example, the hydrothermal time model (Gummerson, 1986)

requires daily evaluations for a good calculation of its rate of
germination and it assumes that there is no interaction between

� t and T. Kebreab and Murdoch (1999) proposed an alternative
model to explain the interaction of � t and T, although it

predicts that the seed population will eventually achieve 100%
germination, which is not the case. To overcome this limitation,

they later refined the model (Kebreab and Murdoch, 2000). Even

so, hydrothermal time is currently the most used model to study
seed germination of different weeds (Finch-Savage and Leubner-

Metzger, 2006; Guillemin et al., 2013). Here we studied the effects
of T, type of water stress (matric or osmotic) and �t on seed

germination and radicle length of O. crenata seeds before and
after exposure to GR24 as necessary exogenous stimulus for

O. crenata germination in the absence of an appropriate host.
For this purpose, we used the Analysis β model (Hau and Kranz,

1990) that has a series of advantages: (i) it provided an excellent
fit for germination of O. crenata seeds after conditioning period

and during the incubation period; (ii) it showed a good fit for
radicle length of the seeds; and (iii) its parameters Tmin, Tmax,

and � tmin have biological significance, although it is mainly
empirical model. Even so, empirical approach may be satisfactory

for ecological modeling of seed germination (Forcella et al., 2000).
Furthermore, mechanistic risk models can be easily developed
considering the normalized rates of seed germination and radicle

growth during conditioning and incubation periods using the
Analysis βmodel. To developmechanistic models, the main steps

of the parasite life cycle Orobanche sp. (i.e., germination, radicle
elongation to the host root, penetration, establishment, and plant

develop) can be organized in a relational diagram according
to the principles of the “systems analysis” and considering the

normalized rates of the these steps (Leffelaar and Ferrari, 1989).
As a new feature, we studied separately the impact of

both matric and osmotic stresses on seed germination of
this parasitic plant due to little attention that has been

paid to the differences between both stresses. For example,
different authors have considered that the water stress

caused by PEG solutions is of osmotic type (Kebreab and
Murdoch, 2000; Song et al., 2005); although it has been

previously shown that the water potential generated by PEG
is predominantly (99%) due to matric forces (Steuter et al.,

1981).

FIGURE 6 | Effects of temperature (◦C) and matric (A) or osmotic (B) potentials (MPa) on radicle length of O. crenata seeds during incubation period.

The lines were fitted according to Analysis β equation (Hau and Kranz, 1990; Table 1). Points represent the average of six repetitions. Bars represent the SD of the

mean.
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During the incubation period, the maximum germination of

O. crenata seeds was obtained at 18–21◦C. These values are
mainly within the optimal range of 15–20◦C for germination

of O. crenata seeds (Van Hezewijk et al., 1993; Kebreab and
Murdoch, 1999, 2000; Song et al., 2005). Small differences in

optimum temperature for seed germination could be due to
genetic variation within and among populations of O. crenata

that attack legumes in different geographic regions (Van
Hezewijk et al., 1993). This is in agreement with the substantial

diversity among O. crenata populations revealed by molecular
analyses (Román et al., 2002). At the optimal temperature

for conditioning (20◦C), the percentage of germinated seed
decreased at both type of water stress from 0 to −1.2 MPa,

the latter which is near to permanent wilting point of soil
that is reached at −1.5 MPa (Cassel and Nielsen, 1986).

Conversely, the seed germination was totally prevented at
� t of −2 MPa in previous experiments. Our results are in
agreement with Kebreab and Murdoch (2000) who showed a

reduction in O. aegyptiaca seed germination when the water
potential decreases from 0 to −1.33 MPa. Conversely, Song

et al. (2005) did not observe significant decrease from 0 to
−1 MPa in O. aegyptiaca and O. ramosa seed germination;

although both species showed a marked reduction in seed
germination at −2 MPa. It is interesting to remark that for

some species as O. ramosa, the duration of the conditioning
period influences the � t effect. E.g., the percentage of seed

germination of this species is close to zero when the seeds are
conditioned at −2 MPa during 4 days, and it is around 77%

for the seed conditioned during 20 days (Gibot-Leclerc et al.,
2004).

Even though the radicle elongation of seeds is an essential
step in the parasite life cycle of Orobanche species, it has been

scarcely studied when compared with seed germination. These
few studies have focused on the effect of environmental and

microbiological factors on radicle elongation. E.g., Westwood
and Foy (1999) observed that radicle ofOrobanche seeds aremore
sensible to nitrogen in ammonium form than nitrate. Barghouthi

and Salman (2010) identified potential Biological Control
Agents (BCAs), mainly Pseudomonas and Bacillus species, which

adversely affected radicle elongation of O. aegyptiaca and
O. cernua. The inhibition of radicle elongation of Orobanche

seeds have also been identified as a resistance mechanism of
red clover (Trifolium pratense) that is activated on plants treated

with salicylate (Kusumoto et al., 2007). Orobanche radicle growth
inhibition has also been reported by a number of plants and

fungal metabolites (Fernández-Aparicio et al., 2013; Cimmino
et al., 2014, 2015). In our study we found differences in

the radicle length of O. crenata seeds in response to T, � t

and type of water stress during conditioning period. Radicle

length was maximum in the treatment of 15◦C/0 MPa. In
addition, at a given �t, radicle length was more sensitive to

changes in osmotic than in matric potential. The effect of low
osmotic potentials on seed germination and radicle elongation

of O. minor during conditioning and incubation periods has
been observed when using NaCl solutions; although the reduced

radicle elongation could also be due to the toxic effect of ions
on seeds (Hassan et al., 2010). In previous reports, matric

stress exerts a more negative effect than osmotic stress on

germination and seedling growth of different plants such as carrot
(Schmidhalter and Oertli, 1991), bean (Meiri, 1984), pepper,

and cotton (Shalhevet and Hsiao, 1986). These results may be
explained by the fact that O. crenata seeds make up for the

water stress in different ways and depending on the type of
stress. For example, the plants can easily adjust their � t using

the solutes under a saline medium, while they are less effective
reducing the � t under matric stress due to a high metabolic

energy requirement (Schmidhalter and Oertli, 1991). Likewise,
fungi are able to reduce their � t by increasing the concentration

of total sugar alcohols, although the patterns of accumulation
of sugar alcohols change depending on the type of water stress

(Ramirez et al., 2004). In addition, at low �o, fungi are able
to take up solutes to reduce their internal osmotic potential, an

unavailable option when the � t is mainly matric (Jones et al.,
2011).

In our experiments, percentage of seed germination increased

logarithmically with the length of conditioning period during
40 days. This is concordant with the observation that O. crenata

seeds reach maximum germination after a period of conditioning
of 18–21 days (Van Hezewijk et al., 1993; Kebreab and

Murdoch, 2000). Nevertheless, we did not distinguish clearly
the secondary dormancy (wet dormancy) of the O. crenata

seeds, i.e., a decreased in germination percentage after 21 or
49 days of conditioning at 20 and 10–15◦C, respectively, as

it has been observed for this species by Van Hezewijk et al.
(1993). According to Kebreab and Murdoch (2000), O. crenata

seeds, however, showed similar germination percentages when
they were conditioned at 20◦C during 20–40 days, and

they needed more than 70 conditioning days to enter in
a state of secondary dormancy. The induction of secondary

dormancy at low temperatures during winter, might explain
the decline in Orobanche infection observed by farmers

in the case of late sowing (Parker and Riches, 1993). In
addition, we have observed that seeds, that need more
conditioning time to germinate, show the smallest radicles. The

latter might also lead to a decline in infection rate of the
crop.

During incubation period, O. crenata seeds germinated in a
similar range of temperatures (10–25◦C) than that which was

required during conditioning, and the thermal optimum was
the same (about 20◦C). Similar optimum temperatures have

been described for this species (Van Hezewijk et al., 1993),
O. aegyptiaca (Jain and Foy, 1992; Kebreab and Murdoch,

2000), and O. ramosa (Gibot-Leclerc et al., 2004). Likewise,
the germination percentage decreased with decreasing � t

from 0 to −1.2 MPa, with no apparent differences between
the types of water stress. According to our data, at given

temperature (20◦C), the percentage of germination of O. crenata
seeds during conditioning period decreased at 16.4% per

MPa, whereas the germination declined a 22.4% per MPa
during the incubation. This fact suggests that O. crenata

seeds appear more sensitive to low levels of � t during
conditioning period than during the subsequent incubation

phase. Water stress may be more limiting in the conditioning
period, during which it is necessary that water enters into the
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seeds, than during the incubation period, when the seeds are

already hydrated (Finch-Savage and Leubner-Metzger, 2006).
The radicle length of O. crenata seeds was shorter of the seed

incubated in osmotic than matric potentials, which has been
previously discussed. This fact, the high sensibility of radicle

elongation to osmotic stress could be related with the lowest
infestation of Orobanche sp. in regions characterized by saline

soil, as the region south to the Dead Sea in Jordan (Abu Irmaileh,
1998).

In summary, the results of this study clearly show that
low matric and low osmotic potential had negative impacts

on seed germination and radicle length of O. crenata seeds.
At given � t, the reduced percentage of seed germination

was similar under matric and osmotic stress during the
conditioning or incubation period. In contrast, our results

show that low �o had a stronger negative effect on radicle

length of O. crenata seeds than low �m during both
periods.
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