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X-ray crystallography is the gold standard to resolve conformational ensembles that are significant for

protein function, ligand discovery, and computational methods development. However, relevant

conformational states may be missed at common cryogenic (cryo) data-collection temperatures but can

be populated at room temperature. To assess the impact of temperature on making structural and

computational discoveries, we systematically investigated protein conformational changes in response to

temperature and ligand binding in a structural and computational workhorse, the T4 lysozyme L99A

cavity. Despite decades of work on this protein, shifting to RT reveals new global and local structural

changes. These include uncovering an apo helix conformation that is hidden at cryo but relevant for

ligand binding, and altered side chain and ligand conformations. To evaluate the impact of temperature-

induced protein and ligand changes on the utility of structural information in computation, we evaluated

how temperature can mislead computational methods that employ cryo structures for validation. We

find that when comparing simulated structures just to experimental cryo structures, hidden successes

and failures often go unnoticed. When using structural information in ligand binding predictions, both

coarse docking and rigorous binding free energy calculations are influenced by temperature effects. The

trend that cryo artifacts limit the utility of structures for computation holds across five distinct protein

classes. Our results suggest caution when consulting cryogenic structural data alone, as temperature

artifacts can conceal errors and prevent successful computational predictions, which can mislead the

development and application of computational methods in discovering bioactive molecules.

Introduction

Rational drug discovery relies on structural data to nd mole-

cules that treat disease. The success of drug discovery hinges on

the quality of the input structure. Oen, crystallographic reso-

lution is the main criterion to judge the quality of a structure,

given that the condence in the position of the atomic coordi-

nates increases with resolution. The underlying assumption is

that the chosen structure captures relevant functional confor-

mations that are useful for molecular discoveries.

With structural information in hand, investigators then use

computational methods to guide structure-based screening and

design. Depending on the application, the choice of computa-

tional approach is a deliberate balance of speed and precision.

High-throughput methods like docking rapidly rank pre-

existing small-molecule libraries to help guide experimental

screening of selected compounds,1 while low-throughput

methods like molecular simulations and free-energy calcula-

tions help prioritize new compounds for synthesis.2,3 Despite

their differences, computational approaches on both ends of

the speed-vs.-precision continuum rely heavily on the quality of

the input structure. Fast docking methods that place exible

ligands in typically rigid or nearly rigid protein structures are

especially vulnerable to the choice of the input structure.4,5

Slower simulation-based approaches allow receptors to relax

and change conformation.6,7 When timescales of the relevant

motions are fast, adding a layer of computationmaymend aws

of experimental input structures. Such experimental blemishes

originate from the misinterpretation of electron density maps,

steric clashes, or, in the pursuit of nding a new chemotype,

from a co-crystallized ligand imprinting its bias upon the

chosen protein structure. To capture long timescale collective

motions of larger domains, simulations have to be either

aDepartment of Chemical Biology & Therapeutics, St. Jude Children's Research

Hospital, Memphis, TN 38105, USA. E-mail: marcus.scher@stjude.org

bDepartment of Pharmaceutical Sciences, University of California, Irvine, CA 92697,

USA

cDepartment of Chemistry, University of California, Irvine, CA 92697, USA

dDepartment of Structural Biology, St. Jude Children's Research Hospital, Memphis,

TN 38105, USA

† Electronic supplementary information (ESI) available: Crystallographic data

collection and renement statistics, results and methods pertaining to the

following topics are reported in the ESI: (1) T4 lysozyme L99A conformational

change upon ligand binding, (2) absolute binding free energy calculations, (3)

enhancing binding mode sampling of T4 ligands, and (4) the impact of

sampling on MD trajectories. See DOI: 10.1039/d1sc02751d

‡ These authors contributed equally.

Cite this: Chem. Sci., 2021, 12, 11275

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 19th May 2021
Accepted 9th July 2021

DOI: 10.1039/d1sc02751d

rsc.li/chemical-science

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 11275–11293 | 11275

Chemical
Science

EDGE ARTICLE

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

3
 J

u
ly

 2
0
2
1
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/2
6
/2

0
2
2
 7

:3
6
:4

1
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0002-5639-549X
http://orcid.org/0000-0003-3157-9425
http://orcid.org/0000-0002-3946-1440
http://orcid.org/0000-0002-2732-457X
http://orcid.org/0000-0002-1083-5533
http://orcid.org/0000-0002-7179-2581
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1sc02751d
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC012034


lengthy or efficient.7–10 In the best-case scenario, this can lead to

insights into the dynamics of how proteins transition from one

functional state to another. In the worst-case scenario, insuffi-

cient sampling results in unequilibrated states that are trapped

in local energy minima.

For better or worse, computation generally leads the struc-

ture further away from the experimental input. Still, when

successful, computational methods can provide valuable

insights for pharmaceutical discovery and design. Docking

methods have been widely used for library-screening

campaigns, yielding different bioactive compounds than those

from experimental high-throughput screening.11 Recent large-

scale tests have substantially advanced the discovery of new

bioactive compounds, compared to picking compounds

randomly,1 even on challenging targets.12 Binding free energy

methods13 have shown promise for guiding lead optimization

efforts2,14 and are beginning to be widely used in industry.15,16

Despite their successes, these computational approaches

have undeniable liabilities that need addressing. For instance,

docking is valuable for ltering libraries, but it is unreliable at

predicting if and how tightly individual compounds are likely to

bind;12 free energy calculations need to overcome errors in the

underlying force elds (FFs) to more reliably reproduce experi-

mental energies.17 Typically, method development goes through

feedback cycles of computational predictions and experimental

validation and benchmarking. Clearly, the ability to improve

a computational method hinges on the quality of the experi-

mental data against which it is tested.18,19 In turn, computa-

tional methods may inherit errors from crystallographic

artifacts. Ultimately, the value of a structure will be measured by

how well it advances our understanding of biology or informs

ligand discovery, not solely by its resolution. Although well-

resolved atoms are precisely dened, they may not be accu-

rate. By the same token, poorly resolved features in high-

resolution datasets may not be unimportant for function.

Along various timescales, the mobility of such exible structural

elements varies from disordered side chains, to loops, to

intrinsically disordered proteins.20–22

Currently, nearly all crystallographic datasets are collected at

cryogenic temperatures (cryo).23 Cryocooling enables conve-

nient collection of datasets to high resolution and completeness

without detrimental effects of radiation damage.24 However,

some important structural states may be missed due to the

cryogenic cooling process.25 Recently, we and others have shown

that by changing to room temperature (RT), we can populate

higher energy conformational states that are hidden under

routine cryogenic conditions.23,25–31 As contributions from

enthalpy versus entropy change with temperature, distinct

conformational ensembles are being trapped, depending on the

speed of cooling.32–34

The realization that data collected 200 K below RT may not

be representative of the ensemble of biologically relevant states

has sparked an interest in interrogating crystallographic elec-

tron density maps for signs of alternate side chain,35 back-

bone,36 and ligand37 conformations in orthosteric and allosteric

sites.38 Recently, we showed that RT crystallography (RTX) can

provide information about exibility and conformational

energy penalties in ligand discovery.27 Although this pioneering

study pragmatically supports the notion that drug discovery

may benet from structures solved at RT, a systematic study

linking the effects of temperature on protein structures to drug

discovery is still missing.

To systematically probe the bias of temperature on the utility

of structural data for ligand discovery and computational

methods development, we collected crystallographic data of 9

structure pairs, i.e. the same protein–ligand complex at 2

temperatures. This is the most expansive temperature series to

date that was deliberately assembled for a set of congeneric

ligands. Such similar ligands are typically encountered in

medicinal chemistry campaigns around a hit series. The

matched datasets of similar ligands at 2 temperatures also

enable us to disentangle whether ligand binding or temperature

is the main contributor to the observed protein response.

We chose the uncollapsed cavity created by the L99A muta-

tion in T4 lysozyme (T4L) as a suitable system to investigate the

impact of temperature on protein–ligand structures by using

crystallography and computation for the following reasons:

many related ligands are available, loops and side chains

respond to the binding of different ligands, and crystals diffract

to high resolution. For several decades, T4L–L99A has served as

a workhorse39 for understanding protein stability,40 rigidity and

hydration,41,42 ligand-binding thermodynamics,43,44 and crystal

forms.45 It has also been used to assist membrane protein

crystallization46 and computational methods development.47

Onemight assume that not much novelty is le to be discovered

about a system that has been studied so exhaustively, with more

than 700 T4L structures deposited to the PDB and more than

130 structures for the L99A cavity alone with different ligands

bound. Here, we collect crystallographic data on 9 matched

dataset pairs collected at 2 temperatures (cryo and RT) to high

resolution (<1.5 Å on average). Despite abundant previous

studies, our datasets provided surprising structural insights

into how T4L structure and ligand binding changes with

temperature.

To evaluate the impact of these temperature-induced

changes on the utility of structural information in computa-

tion we focused on two aspects. First, to understand how

temperature bias affects computational methods development

that employs cryogenic structures for calibration and valida-

tion, we compared simulated structures to experimental struc-

tures solved at low and high temperature. Second, to

understand how temperature affects coarse docking and

rigorous binding free energy calculations, we used different low

and high temperature structures as computational starting

points and monitored performance metrics such as docking

enrichment and RMSD, and errors in calculated absolute

binding free energies.

To test the generality of our observations we further

expanded our computational approach to examine another 4

distinct protein classes for which RT and cryo data are already

available in the PDB. Again, temperature-induced structural

changes are common among all proteins and lead to errors in

validating the success of computational models; when using
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only cryo structures, one would miss both failures and

successes of the computational predictions.

This work addresses 3 fundamental issues that arise when

structural models are used for ligand discovery. First, what

impact does temperature have on the conformations and

occupancies of proteins and their ligands? Second, do these

temperature artifacts affect the accuracy and improvement of

computational methods? Third, do temperature artifacts

mislead structure-based drug discovery and design?

Results
Crystal cryocooling induces global idiosyncratic structural

changes

To systematically study the impact of temperature on protein

structure in the presence of similar ligands, we collected pairs

of crystallographic datasets of the same protein–ligand complex

at 2 temperatures (cryo and RT). We obtained 14 new high-

resolution datasets: 9 at RT and 5 at cryo. Combined with 5

cryo PDB-deposited datasets, this yielded a total of 9 matched

pairs of the T4L–L99A cavity: the apo structure and 8 ligand

complexes, 3 of which were previously unknown (3-iodotoluene,

4-iodotoluene, benzylacetate). For chemical structures, see

Fig. 1E. The 9 structure pairs were solved in the same space

group, P3221, to an average resolution of 1.42 Å at cryo and 1.39

Å at RT. Hence, observed structural differences are unlikely due

to differences in the perceived quality of the data. Despite

higher average resolutions of 1.19 Å for the 5 cryo structures

solved here, nal Rfree values of our 9 RTX structures were lower

by 0.8% on average (Table S1†). This suggests a better t of the

model rened against the RTX data than against the cryo data.

As expected, the crystal unit cell (UC) volumes shrank upon

cooling, on average by 4% (Fig. 1A). The o-xylene complex at RT

was closest to its cryo equivalent with a 2% difference; the apo

UC volume was most dissimilar at nearly 6%. For average UC

volumes of 3.50 � 0.04 � 105 Å3 at cryo and 3.65 � 0.02 � 105 Å3

at RT, the standard deviation at cryo was twice as high as at RT.

Contrary to the expectation that thermal mobility increases

diversity at RT48 and despite higher average Wilson B-factors of

16.9 � 1.7 Å2 at RT (n ¼ 9) vs. 13.6 � 2.9 Å2 at cryo (n ¼ 5), the

cryogenic datasets were more variable than the RT datasets.

To locate temperature-induced changes in the electron

density maps, we calculated isomorphous difference maps by

subtracting the apo cryo map from the RTXmap (Fo� Fo). There

were signicant differences in the peaks of both positive and

negative signs across the entire structures, many of which were

near the ligand-binding site (Fig. 1B and S1†). To reveal areas

that were most affected by temperature across all 9 matched

pairs, we mapped any residue that changed its rotameric state

in response to temperature onto the T4L structure (Fig. 1C). To

provide a conservative estimate, we monitored only those resi-

dues that showed a change in the Chi1 angle of their side chain

in the crystallographic electron density maps. Note that Gly, Ala

and Pro that make up �20% of residues in T4L do not have

a Chi1 angle. Overall, more than a third of the 164 residues in

the protein responded to temperature in at least 1 of the 9

structure pairs. This value is similar to the 35% of residues that

were found to be remodeled upon cryocooling across 30

deposited structures (9). Residues affected by changes in

temperature were distributed across the entire structure and

covered all types of amino acids; bulky aromatic residues (e.g.,

Trp, Phe, and His) were underrepresented most likely due to

steric constraints. Notably, the residues that were most

responsive to temperature change in several structures were

located near the ligand-binding site (Fig. 1B and C). This

suggests that residues critical for accommodating ligand

binding are most affected by temperature changes.

To exclude changes in crystal packing as a major source of

observed structural changes, we compared crystal contacts of the

apo structures that showed the largest UC volume shrinkage upon

cryocooling; mostly, the same residues were involved in crystal

contacts at RT and cryo (ESI Fig. S2†). Although we expected more

residues at the crystal-packing interface to be systematically

affected by the UC compression, only a few surface residues

responded to temperature in several datasets (Fig. 1C and S2†). On

average, all pairwise root-mean-square deviations (RMSDs) were

below 0.3 Å. A residue-resolved RMSDplot showed no clear trend of

temperature changes of any structure pair (ESI Fig. S3†). Very few

residues had RMSD values larger than 0.5 Å; the only residue

exceeding 1 Å RMSDwas Thr109 in the binding site adjacent to the

“F-helix”39 of the 3-iodotoluene complex. To understand if areas of

higher positional variability (RMSDs) coincide with higher mobility

(B-factors), we plotted B-factors of the main chain and side chains

for all residues in each structure (ESI Fig. S4†). Main-chain values

were slightly elevated in 4 areas: 2 distal loops, 1 helix patch close to

the binding site, and the ligand-responsive F-helix, especially for

the o-xylene complex solved at cryo (in 1995 43 (ESI Fig. S4A†). Apart

from the F-helix, these regions did not coincide with the “hotspots”

(identied in red in Fig. 1C). Side chain B-factors followed neither

the pattern shown in Fig. 1C nor that in ESI Fig. S4A.† Rather,

longer side chains, like those in Lys, Arg, and Asn, dominated the

peaks in the plot, as expected for exible residues that are oen on

the protein surface and point into solvent (ESI Fig. S4B†). Hence,

neither B-factors nor RMSDs, as proxies for increased movement,

consistently coincided with protein regions where rotamers most

frequently responded to temperature changes. Although global

indicators of temperature sensitivity illustrate the magnitude of

structural differences upon changing data-collection temperature,

we were especially interested in local differences. During drug

discovery, local conformational states of binding pockets are con-

sulted to screen virtual libraries, optimize hits, and design

compounds de novo.

RTX reveals hidden F-helix conformation in apo structure that

is key for ligand binding

To gain insight into local temperature sensitivities, we interro-

gated electron density maps, especially around the ligand-

binding site. Within the T4L–L99A site, ligands were enclosed

by the dynamic F-helix.49 Despite decades of research on the T4L

model system, only 1 state, the closed conformation, has thus

far been observed for the apo structure. However, at RT, the

difference electron density map of our apo dataset showed clear

evidence of a second F-helix conformation (Fig. 1D). The second

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 11275–11293 | 11277
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Fig. 1 Global and local structural responses to temperature. (A) Globally, structures at cryogenic temperatures (cryo; blue plot) are more variable and
more compact than their room temperature (RT; red plot) equivalents, as shownby average unit cell (UC) volumes across 9matched structures collected
at both temperatures. (B) The isomorphous Fo� Fomap of the apo structure collected at cryo versus RT shows differences in the electron density (green
mesh, positive difference electron density; red mesh, negative difference electron density) that indicate idiosyncratic temperature effects, especially
around the ligand-binding site in the bottom lobe, indicated by the black dotted mesh in panel C (labeled LIG). (C) Occurrence of temperature-
dependent rotamer differences across all 9 structures are projected onto the respective residues in the T4L apo structure; colored by temperature
sensitivity of each residue across all 9 structure pairs: yellow for few structures, orange for several structures, and red for most structures showing
temperature differences of the residue; white patches are Gly and Ala that do not have Chi angles; and grey patches show no rotamer change with
temperature. (D) Locally, RT data of the L99A apocavity reveal an alternative F-helix conformation (conf. B) in the Fo� Fcdifference electron densitymaps
(green and redmesh for positive and negative density, respectively; only cyan conformation Awas included in refinement) that is not visible at cryo; 2mFo
�DFcmap shown as bluemesh; stick thickness represents relative occupancy. (E) All 8 ligand complexes show a shift in preferred orientation in response
to temperature rather than due to ligand binding for at least 1 residue rotamer in the F-helix near the ligand-binding site. Ringer plots for selected residues,
with rotamer differences at RT (red) versus cryo (blue) indicated by arrows.

11278 | Chem. Sci., 2021, 12, 11275–11293 © 2021 The Author(s). Published by the Royal Society of Chemistry
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conformation was equivalent to the “intermediate” state that

has been observed in several ligand complexes,49 in agreement

with the selection of preexisting conformational states upon

ligand binding.50–52 Occupancy renement of the apo structure

in the presence of both F-helix states led to approximately 40%

presence of the second conformation. To conrm that this

conformation had not been missed previously, we inspected the

electron density map of cryo apo PDB structure 4W51 but found

no evidence for an alternate F-helix conformation (ESI Fig. S5†).

To further ensure that the second conformation was not

populated due to changes in our experimental setup other than

temperature, we recollected the cryo apo structure to 1.3 Å with

the same conditions we used for RTX. Again, we observed no

difference in the electron density for the second state at cryo,

indicating that indeed temperature allowed this alternate state

to be partially populated at RT. Revealing this alternate

conformation only at RT is striking, given that this alternate

state becomes relevant, even at cryo temperatures, for the

binding of several ligands.47,49,53,54

Cryogenic cooling distorts the local environment of the

ligand-binding site

Beyond revealing a hidden conformation of the entire F-helix,

we sought to understand the temperature impact on indi-

vidual side-chain rotamers that line the binding site. Analysis of

Chi angles in the apo structure using Ringer55 showed

temperature-dependent remodeling of several binding-site

residues normally associated with ligand binding. Only at RT

did an alternate conformation of Ser90 appear, and in the

closed state of the F-helix, residues Met106, Glu108, Thr109,

and Thr115 occupied new rotameric positions (ESI Fig. S6†).

Nearly all residues of the F-helix with Chi angles were affected to

some degree.

To look for temperature-induced rotamer changes in the

presence of a ligand, we next turned to our 8 pairs of individual

ligand complexes. All structures were affected by idiosyncratic

structural remodeling upon cooling, especially in the exible

ligand-binding site (Fig. 1C). First, in each structure, at least 1

binding-site residue responded to temperature change in

addition to ligand binding (Fig. 1E). Second, across all 8

structure pairs, each F-helix residue changed idiosyncratically

upon cooling in at least 1 ligand complex. The extent of

temperature-induced artifacts was alarming, given that most

studies use only cryogenic data. In the context of a typical

medicinal chemistry campaign, idiosyncratic structural

changes introduced by cryocooling would be mistaken for

genuine responses to ligand binding and unequivocally

considered in ligand design instead of being agged as arti-

facts. The fact that highly similar ligand complexes were

affected to different degrees complicated the derivation of

structure/activity relationships. For instance, at cryo, Met106

appeared to change orientation when o-xylene bound, relative to

the propylbenzene-bound structure (Fig. 1E). However, the

major RT conformation of Met106 was absent in the respective

cryo dataset, both for o-xylene and propylbenzene. Ironically,

the main RT rotamer of o-xylene matched the cryo rotamer of

propylbenzene and vice versa. Of the 2 Met106 conformations

visible for propylbenzene, only the minor one was captured at

cryo. Similar temperature sensitivities were observed for Glu108

in 3-iodotoluene, Thr109 in ethylbenzene, and Thr115 in ben-

zylacetate, to name a few. We paid especially close attention to

the changes in Val111 due to the importance of this residue in

complicating ligand-binding predictions.47,56,57 Ringer plots

documented temperature differences of Val111 for about half of

our complexes, including toluene, iodobenzene, o-xylene, eth-

ylbenzene, and benzylacetate (ESI Fig. S7†). For instance, Val111

in the iodobenzene and o-xylene structures occupied different

conformations at cryo, whereas the RTX conformations were

identical (ESI Fig. S7†).

To illustrate the problems of using cryo data alone for

medicinal chemistry, we focused on 2 neighboring F-helix

residues (Glu108 and Thr109) across 3 structures—apo and 2

ligands (toluene and iodobenzene) (Fig. 2A)—that by Tanimoto

coefficient standards would be considered essentially identical

(Table S2†). In the apo structure, the rotamers for Glu108 and

Thr109 changed upon cryocooling. The main rotamer of Thr109

at RT was the one that stabilized when ligands like toluene or

iodobenzene were bound. At RT, the Chi1 distribution of

Thr109 agreed across the 3 structures (apo, toluene, and iodo-

benzene), whereas at cryo, it did not. Also, while the preferred

Thr109 rotamers matched between RT and cryo in the iodo-

benzene structure, they differed between the 2 temperatures in

the presence of the congeneric ligand toluene and in the

absence of a ligand. At both temperatures, the rotamer distri-

bution wasmore similar between toluene and apo than between

toluene and iodobenzene. Glu108 rotamers agreed for toluene

and iodobenzene at both temperatures, but they shied with

temperature in the apo structure. Hence, a difference was seen

in the preferred Glu108 rotamer upon binding toluene versus

iodobenzene at either temperature, whereas the apo structure

responded both to ligand binding and temperature. This makes

it impossible to deduce from cryo data alone whether residues

respond to ligand binding rather than temperature, even for

related ligands or neighboring residues. Thus, RT data can help

distinguish genuine protein conformational responses to

ligand binding from temperature artifacts.

Cryogenic cooling changes ligand-binding poses and

occupancies

To fathom the impact of temperature on ligand binding, we

looked for temperature-induced changes in ligand poses and

occupancies. During this project, we collected hundreds of

datasets to optimize ligand occupancy. In general, ligand

occupancies were lower at RT under similar soaking conditions.

This observation agreed with more favorable thermodynamics

of ligand binding at lower temperatures, which we previously

derived.27 Nonetheless, we observed new ligand-binding poses

at RT that were not reported previously. For instance, toluene is

modeled as a single conformer in the cryogenic PDB structure

4W53.49 At RT, we noted the presence of signicant difference

electron density, indicating a second ligand conformation

(Fig. 2B). An unbiased Polder-OMIT map conrmed the

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 11275–11293 | 11279
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presence of a second toluene conformation that is rotated by

60�, which is equivalent to the ortho position. When included in

renement, the second conformer converged to 37% occupancy

(Fig. 2B), supported by electron density below the conventional

1 sigma cutoff. The co-existence of a second toluene conformer

is consistent with the observed binding mode for other ligands,

such as o-xylene (Fig. 2C). The o-xylene-binding mode placed

methyl groups simultaneously into both positions occupied by

the 2 binding modes of toluene (Fig. 2B). A protein-based

superposition of the cryo versus RT o-xylene structures showed

that the ligand was rotated by as much as 30�, leading to

a ligand RMSD of 0.41 Å; the protein RMSD was only 0.21 Å.

Given that the o-xylene cryo structure accommodated both

methyl groups, we redetermined the cryo structure of toluene to

atomic resolution of 1.1 Å. Indeed, we also found the second

conformation of toluene in the cryo Fo � Fc maps (ESI Fig. S8†),

where it rened to 43% occupancy. While the major conformer

observed in the deposited structure 4W53 agrees closely, the

RMSD of the minor conformer in our new cryo versus our RTX

structure was 0.22 Å. Even in cases that showed no or insuffi-

cient electron density to model the ligand, RTX data helped

increase condence in cross-modeling minor states explicitly.58

Next, we compared ligand occupancies of the iodobenzene

complex, as it showed 2 ligand conformations at RT and cryo, and

the high map peaks of the electron-rich iodine increased our

condence in determining occupancies. Automatic occupancy

renement revealed substantial temperature differences (Fig. S9†);

relative occupancies changed from 50 : 49 for conformers A : B in

the deposited cryo structure 3dn4 (ref. 59) to 32 : 19 at RT. The shi

in ratio from roughly 1 : 1 to almost 2 : 1 corresponds to a shi in

relative free binding energy DDGA,B from 0.01 kcal mol�1 to

0.31 kcal mol�1. Together, RMSD and occupancy differences

Fig. 2 Temperature sensitivity of binding congeneric ligands. (A) Ringer plots compare rotamers for 2 proximal F-helix residues, Glu108 and
Thr109, across 3 congeneric structures (apo, bound to toluene, and bound to iodobenzene) in response to temperature (cryo in blue, RT in red).
Arrows indicate temperature-sensitive rotamers, and tildes indicate nomajor rotamer change. (B) Toluene's alternative ligand conformation at RT
is indicated by the presence of green Fo � Fc difference density when only the major conformer is included in refinement and confirmed by an
unbiased Polder OMIT map that excludes all ligands (here superimposed onto the map for clarity). (C) o-Xylene experiences a 0.41 Å RMSD shift
upon changing temperature, while the overall protein structure differs by only 0.2 Å.

11280 | Chem. Sci., 2021, 12, 11275–11293 © 2021 The Author(s). Published by the Royal Society of Chemistry
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indicated that temperature induces nonsystematic structural

changes that affect ligand binding. Alarmingly, the residues that

enable and respond to ligand binding appeared to be the ones

most affected by cryocooling artifacts. To understand how detri-

mental such temperature effects are on structure-based ligand

discovery, we next examined the impact of such differences on

computational predictions of ligand binding. First, we compared

experimental protein conformations to simulated ones. Then we

compared their performance in ligand docking and free energy

calculations.

Cryogenic structures mislead the validation of computational

methods

We rst set out to address the following question: are appar-

ently wrong simulations really wrong? Because �95% of all

structures have been collected under cryogenic conditions,23

our results raise the concern that cooling artifacts may misin-

form computational methods development. Success or failure

of computational predictions is typically validated against cryo

structures, which in turn, inform methods development. To

determine whether the current gold standard of validating

against cryo structures misleads computational analyses and

method development, we compared structures from molecular

dynamics (MD) simulations to the matched RT/cryo tempera-

ture pairs of our 9 T4L–ligand and apo structures.

To reveal differences between computational and experi-

mental data, we developed an analysis tool that facilitates

comparing Ringer plots to MD populations, which we call

“Cringer” (available on GitHub, seeMethods for details). Briey,

we used Cringer to plot the side-chain rotameric states and the

respective frequencies for each residue visited during our MD

trajectories using a Gaussian kernel-density estimation (Fig. 3).

For simplicity, we focused only on residues that differed with

temperature. Results t into 4 categories: true positives, true

negatives, false positives, and false negatives (Fig. 3). Speci-

cally, a true positive is when computation and experiment

agree, and a true negative is when they disagree. When

comparing computational results to experimental results, it is

typically assumed that the experiment is accurate and thus all

comparisons of computational to experimental results lead to

true positives and true negatives, which can be used to assess

computational performance. Furthermore, it is typically

assumed that all observed structural changes are responses to

ligand binding. In reality, however, experimental biases due to

temperature effects may lead to false positives and false nega-

tives, which would invalidate this assumption and make it

impossible to distinguish real computational success from

failure if only cryo data were available.

Here we focus on 2 categories, false positives and false

negatives, which mislead computational methods develop-

ment. Using Cringer, we found numerous examples in both

categories across the protein and in the binding site (ESI

Fig. S10 and S11†). For false positives, computational data

agreed with cryo data but disagreed with RTX data, meaning

that agreement of simulation with cryo was present but arti-

factual. For instance, MD simulations match the major Met106

rotamer of the o-xylene-bound structure at cryo, but it differed

from the rotamer at RT (Fig. 3). Although unsuccessful in

recapitulating the RT distribution of this F-helix residue, the

cryo comparison would ag this prediction as a success, which

would be a false positive. The false-negative category contains

cases in which MD simulations disagreed with cryo data but

agreed with RTX data. In other words, false negatives are

successful cases for RTX and MD that are mistakenly agged as

failures in comparison to cryo. This is exemplied by the

simulated Asp72 rotamer distribution in the benzylacetate

complex, which captured both the major and minor rotamers at

RT but only the minor conformation at cryo (Fig. 3).

Overall, none of our 9 temperature pairs were spared from

misleading comparisons. Cringer detected25 false positives and

false negatives across all ligand complexes and apo that would

misinform methods calibration and validation if only cryo

structures were used (ESI Fig. S10 and S11†).

Furthermore, to test the dependence of sampling relevant

conformations on the input structure, we started simulations

from 3 F-helix states—“closed”, “intermediate”, and “open”49

(ESI Fig. S15, S16 and S42–S44†). As expected for sufficiently

converged simulations, differences in Cringer plots were mostly

negligible, with a high agreement in themajor conformation (ESI

Fig. S15†). In some cases, changing the input structure revealed

minor rotamers (ESI Fig. S16†). Although sampling minor, high-

energy conformers was encouraging, we did not count these as

successes; instead, we focused on correctly sampling the major

conformation. In some cases, simulations that started from

different input structures accessed rare higher-energy

conformers otherwise seen only at RT, probably because some

starting structures are more prone to trapping than others. For

instance, Val111 is known to cause problems in computational

sampling by getting “stuck” in local energy minima.56

In the 4-iodotoluene complex, Val111 populated the major

conformation present in both RT and cryo data (i.e., a true

positive) when the sampling was started from the closed F-helix

state to which the ligand preferentially binds. This conforma-

tion faded when the intermediate structure was the starting

point and was not sampled at all when the open structure was

the starting point (ESI Fig. S12†), indicating that high-energy

barriers separating these conformations require extended MD

sampling. Use of enhanced sampling methods like BLUES60,61

can help accelerate crossings of such energy barriers and

sample rotamer transitions. We used BLUES to enhance the

side chain sampling of Val 111 in the L99A:iodobenzene

complex and apo L99A (ESI Fig. S17,† panel D). Our results

showed sampling of rotamer transitions for Val 111 in

L99A:iodobenzene. Also, we used BLUES to enhance the

binding mode sampling of iodobenzene, ethylbenzene, pro-

pylbenzene, butylbenzene, benzylacetate, o-xylene, and p-xylene

and found that the dominant binding mode of each BLUES

simulations reected the corresponding crystallographic

binding mode (ESI Fig. S30–S36†).

Differences in sampling put the focus on another ingredient

of computational success besides the input structure: force

elds (FFs). Notably, protein FF parameters are optimized to t

quantum chemistry data but then are improved and validated

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 11275–11293 | 11281
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based on cryogenic structural information. Thus, protein FF

parameters are most likely biased by temperature effects. To

gauge the impact of the FF on conformational sampling, we

compared our primary FF, AMBER ff14SB,62 by testing 2 other

AMBER FFs, ff15ipg63 and Force Balance-15 (FB-15).64 The

ff14SB FF is widely used in all-atom simulations of protein–

ligand complexes in water. The parameters of ff15ipq differ

from those of ff14SB; the ff15ipq FF was developed with a self-

consistent physical model and rebuilds charges, angles,

torsions, and some van der Waals parameters for proteins. The

FB-15 FF was developed by retting the intramolecular bond,

angle, and dihedral parameters using the same functional from

and parameter set used in the original AMBER FF model (ff94)

and its subsequent iterations (ff99sb, ff14SB, etc.).

As part of this test of FFs, we compared Cringer plots cor-

responding to the residues in and near the binding cavity,

which were obtained during the simulations on apo L99A using

ff14SB, ff15ipq, and FB-15. Overall, this comparison showed

that the 3 FFs captured the same rotamers in almost all cases,

but the population of these rotamers (and their relative free

energy by extension) depended on the FF (ESI Fig. S37–S40†).

Interestingly, our computational results showed that ff14SB

captured the correct dominant rotamer population observed in

cryo and RTX structures in some cases where ff15SB and FB-15

failed to do so (ESI Fig. S13 and S14†). In turn, the apparent

sensitivity to similar FFs raises the possibility that if cryo

structures are used for FF validation, FFs might be tuned

incorrectly to reproduce differences in cryo structures. At this

point, we can only speculate what impact using curated RTX

data will have on improving FFs. However, in our simulations

subtle differences in the FFs inuenced rotamer populations

enough to alter agreement with experimental data, suggesting

that such data may be useful for FF validation and improve-

ment, especially if it becomes more commonly available.

Temperature-induced structural differences affect docking

performance

The choice of structural input affects the quality of computa-

tional predictions. To understand the impact of temperature-

induced structural differences on computation, we looked at 2

types of methods: rapid, coarse docking methods that are used

to prioritize virtual compounds, and slow, rigorous free energy

of binding calculations that are used to obtain affinity

estimates.

To gauge the impact of temperature artifacts on docking

performance, we used OEdock65 to dock 63 experimentally

conrmed T4L–L99A binders [https://github.com/MobleyLab/

lysozyme_binding, from the work of ref. 66], 35 ZINC

compounds described as binders,67 and 3152 property-matched

DUD-E “decoys”68 (i.e., assumed nonbinders) into different

protein structures. We compared the performance of docking to

the apo structures at cryo (closed F-helix) and at RT (closed and

intermediate F-helix) and to their equilibrated state aer a 50 ns

MD simulation. To evaluate performance, we looked at 2

metrics that do not necessarily show the same trends:27

enrichment and pose delity. Enrichment measures our ability

to pick binders from a large library of molecules. The enrich-

ment plots of all 6 input structures showed improved perfor-

mance over randomly selected molecules (Fig. 4). The

equilibrated RTX apo structure in the closed state outperformed

all other input structures by using the area-under-the-curve

(AUC) and adjusted logAUC metrics (Fig. 4 and ESI Fig. S19†).

Fig. 3 Cryo artifacts misinform computational method validation. Computational Cringer plots derive histograms of rotamer populations of
each residue, plotted as a frequency across residual dihedral angles iterated over all frames of anMD simulation. Cringer plots enable comparison
to experimental Ringer plots to identify true positives (MD rotamers agree with both RT and cryo), true negatives (MD disagrees with both RT and
cryo, which may agree or not), false positives (MD agrees with cryo, both differ from RT) and false negatives (MD agrees with RT, both differ from
cryo). Shown here are selected examples of all 4 categories; more examples of false negatives and false positives are provided in the ESI (Fig. S10
and S11†).

11282 | Chem. Sci., 2021, 12, 11275–11293 © 2021 The Author(s). Published by the Royal Society of Chemistry
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The experimental closed structures at cryo and RT showed

similar logAUC/AUC values, and the intermediate RT structure

performed worse in the unequilibrated batch. Adding a step of

MD-equilibration improved only the closed state at RT, whereas

AUC performance declined by 5% for the other 2 states. The

improved logAUC performance of the closed RTX structures,

both experimental and equilibrated, emphasized the ability to

enrich binders among top-ranked molecules, which are typi-

cally the ones prioritized in large docking campaigns. We also

examined how well docking scores were correlated across

different potentially selected reference structures and found

that scores were correlated fairly well across all possible choices

(ESI Fig. S18†).

With several cryo L99A–ligand structures available, we were

able to assess pose delity by calculating the RMSDs of pre-

dicted ligand poses and comparing those values to the RMSDs

of 22 deposited PDB structures (ESI Table S3A†). Comparing the

best-ranking docked ligand poses to those observed in the

experimental crystal structures, we found that the input

structure inuenced docking performance, though the effect

was highly context-dependent. Typically, several structures

generate reasonable RMSDs, but well-performing structures

may differ across ligands. There are 2 examples where 1 struc-

ture performed much better than the rest. In both cases, the

equilibrated closed RTX structure had the best AUC perfor-

mance. For instance, although the equilibrated closed RTX

structure docked 2-ethoxyphenol with an RMSD of 0.7 Å, all

other structures struggled to recapitulate this pose and had

RMSDs exceeding 2.1 Å, particularly with considerable

misplacement of the key phenol OH-group (Fig. 4C). The

structure also found the best alternative ligand pose of iodo-

benzene in what was otherwise the worst ligand in the set, in

terms of pose prediction quality (all other RMSDs exceeded 3.6

Å). Nonetheless, this structure produced the 2 worst RMSDs

overall for 4-methylthionitrobenzene and 3-methylbenzylazide.

MD equilibration compromised the docking performance of

propylbenzene, compared to the respective experimental

structure. For p-xylene, the situation was reversed, i.e., all

Fig. 4 Temperature-induced structural differences affect docking performance. (A) AUC (shown as fractions) and (B) adjusted logAUC (%)
enrichment plots from docking 98 known T4L–L99A binders against 3152 property-matched DUD-E decoys using (A) OEdock or (B) Autodock
Vina and input structures with a closed and intermediate F-helix conformation; equilibrated structures were generated after 50 ns of MD
simulations. (C and D) Docking poses of 2-ethoxyphenol (colored sticks) docked against (C) experimental and (D) equilibrated cryo and RT apo
structures (as in A–B) are compared to PDB structure 2RB1 with RMSDs indicated.

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 11275–11293 | 11283
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equilibrated structures generated ligand poses closer to the

experimental reference (ESI Table S3A†). For benzene, the

experimental cryo structure performed best before equilibration

and worst thereaer. Overall, this dependence of docking

results on the choice of structure is not surprising, given that

the protein is held rigid while docking. Therefore, the chosen

structure partially dictates the outcomes. This is a known

limitation of docking methods and the motivation for devel-

oping methods like exible docking or ensemble docking.

In practice, this context-dependence complicates the choice

of input structure, especially when a wide variety of chemotypes

are being docked that prefer distinct conformational states.

However, disentangling RMSD performance based on ligand

preference for F-helix conformations helps gain some clarity. Of

the 22 structures, 10 ligands stabilized the intermediate F-helix

state, 10 bound to the closed state, and 2 bound to the open

state. This helps explain why pentyl- and hexyl-benzene rank in

the bottom 3 overall: they cannot be properly accommodated

because they prefer the open state. Overall, structures that

achieved the most cases of lowest RMSDs per ligand were the

experimental closed cryo structure, the equilibrated interme-

diate RTX structure, followed by the experimental intermediate

RTX state, which was revealed in the RTX apo structure, and the

equilibrated closed RTX structure; the equilibrated cryo struc-

ture placed last overall. As exemplied above, comparing

predictions to cryo structures may compromise RMSD evalua-

tions when temperature artifacts hide or shi ligand confor-

mations (Fig. 2B). For instance, pose RMSDs of o-xylene docked

into cryo or RT structures improved by as much as 0.4 Å (average

increase, 0.2 Å), when compared to RTX experimental poses (ESI

Table S3B†).

To account for differences between docking algorithms, we

repeated the docking experiment using Autodock Vina.

Changing the docking algorithm had some notable effects on

the 2 performance metrics. For instance, while the equilibrated

closed structure at RT performed best, as it did for OEdock by

AUC, it surprisingly ranked last, in terms of early enrichment

(logAUC) (ESI Fig. S20†). This result stresses the impact of the

choice of metric and ultimately the selection of structures for

docking. Note also how different curves can lead to the same

AUC values (Fig. 4B). Although we observed trends similar to

those we saw with OEdock, overall, the experimental closed and

intermediate RT structures ranked second by logAUC and AUC

analysis, respectively (Fig. 4B and ESI Fig. S20†). Overall, RMSD

trends for Autodock (ESI Tables S4 and S5†) were similar to

those for OEdock (ESI Table S3†), in terms of which structures

produced the best RMSDs. Across all combinations of ligands

and structures, both methods achieved RMSD values less than 2

Å for more than half of all docked ligands (59% for OEdock and

66% for Autodock), which is usually considered a successful

pose prediction.69 One notable difference was the pose delity

using harsher RMSD criteria: Autodock achieved 3-fold better

pose delity than OEdock: 36% and 8% of all docking poses

achieved RMSDs below 1 Å and 0.5 Å, respectively, versus 12%

and 3% for OEdock. However, given the results of prior studies,

these performance differences may be target specic. Although

overall similar trends emerged when using OEdock versus

Autodock Vina, detailed analysis of dockingmetrics highlighted

the choice of docking soware as another considerable variable

for drug discovery.

Absolute free energy of binding predictions improve with RTX

data

To understand how susceptible rigorous calculations of abso-

lute free energy of binding are to changes in temperature during

crystal data collection, we compared calculated free energies of

binding (DGcalc) to experimental free energies of binding (DGexp)

for 7 ligands (Table 1).43,59 Using the cryo structures as a starting

point to predict DGcalc,cryo, we used state-of-the-art calculations

in explicit solvent with 20 ns per thermodynamic state using

a thermodynamic cycle of 29 states. Overall, the calculations

appeared sufficiently converged (ESI Fig. S21–S25†) and showed

uncertainties (dcalc) that were comparable to their experimental

equivalents (Table 1). The median difference between the pre-

dicted DGcalc and DGexp (DDG) was 0.95 kcal mol�1, with the

best prediction for ethylbenzene having a DDG of

0.33 kcal mol�1. For 3 complexes (toluene, iodobenzene, and o-

xylene), the difference between DGcalc,cryo and DGexp exceeded

1 kcal mol�1 (Table 1). To assess whether RTX data can rescue

the suboptimal results of these 3 complexes, we repeated the

calculations using our new RTX structures in complex with their

respective ligands instead of the cryogenic input structures

(Table 1 and Fig. S23–S25†). Using the RTX data improved the

calculations, on average, by 0.34 kcal mol�1. Although we

consider the improvement for toluene negligible, that for o-

xylene was 0.65 kcal mol�1 closer to the experimental value, just

by changing the temperature during experimental data collec-

tion of otherwise identical structures. To put these values into

perspective, the temperature-induced error of predicting o-

xylene binding was larger than the computational error of pre-

dicting the binding of p-xylene and ethylbenzene.

Finally, we explored whether our new apo RTX structure

would shake off both the temperature and ligand bias imprin-

ted on cryogenic holo protein structures. We found that the

simulation trajectories uctuated much less, and convergence

was achieved much earlier across our 3 most problematic cases

(toluene, iodobenzene and o-xylene) (Table 1, ESI Fig. S23–

S25†). This result suggested that the apo RTX structure is

a better starting point for absolute binding free energy calcu-

lations that sample both the unbound and bound states.

Reaching convergence in one-tenth the time in the absence of

a ligand (�2 ns vs. �20 ns) saves valuable computational

resources. In addition, if this structure proves superior in

general, generating only 1 apo RTX structure instead of multiple

ligand-bound structures would ease both RTX data collection

and computational setup. Using the apo structure at RT as

a starting point for all 3 ligands further improved the agreement

with experimental data, on average by 0.64 kcal mol�1. In the

best-case scenario for o-xylene, we saw an improvement of

1.65 kcal mol�1 using the RT structure versus the cryo structure

(Table 1); this value corresponds to a change in KD by more than

1 order of magnitude. Notably, the improvement was better

than the average difference of our 3 most challenging cases

11284 | Chem. Sci., 2021, 12, 11275–11293 © 2021 The Author(s). Published by the Royal Society of Chemistry
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from the experimental values, which makes the DGcalc,RT,apo of

o-xylene the second-best prediction overall. Although RTX data

consistently improved the prediction of our 3 most problematic

cases with DDGcalc > 1 kcal mol�1, overall the calculated abso-

lute free energies of binding consistently provided less favor-

able free energies than did those determined by isothermal

titration calorimetry (ITC).

Temperature artifacts affect computational methods across

protein classes

To investigate whether our observations were limited to T4L, we

extended our analysis to 4 other protein classes: an oxidore-

ductase model system (Cytochrome C Peroxidase – gateless

mutant), a protease (Thrombin), a phosphatase (Protein Tyro-

sine Phosphatase 1B), and a sugar-binding protein (Galectin)

for all of which high-resolution RT-cryo pairs are available in the

PDB.

Comparison of Ringer–Cringer plots conrms that false

positives (FP) and false negatives (FN), which mislead compu-

tational methods development, are present in all 4 protein

systems. Again, FP and FN are not limited to certain regions of

each protein but are distributed throughout; none of the 4

binding sites were spared from misleading comparisons (Fig. 5

and S45†). While generally MD simulations starting from RT vs.

cryo structures agreed, there are several examples where both

produce different results. For instance, while simulations

starting from cryo structures would fail for Asn222 in Galectin

and Asn193 in CCP, using the RT structure recapitulates the

experimental results (Fig. 5). Overall, we see a higher proportion

of missed failures (FP) over missed successes (FN). The

combined percentage of failures (FP + FN) ranges from 4% for

CCP and galectin, to 12% for PTP1B and 18% for thrombin

(Table S5†). Consequently, high FP rates of up to 12% (for

thrombin) indicate that disagreement with experimental data

oen goes unnoticed when using only cryo structures. Likewise,

many successful predictions (up to 6% across our protein

systems) are discarded as failures.

To test the impact of those temperature induced binding site

differences on docking, we docked known ligands and DUDE

decoys against unequilibrated (PDB) vs. equilibrated (MD) at

either cryo or RT. Our prior work had already established the

impact of crystallographic temperature on docking perfor-

mance for CCP.27 Temperature differences are also born out in

differences in docking performance for thrombin and PTP1B.

While all input structures showed improved performance over

randomly selected molecules, results vary with input structure

as expected (Fig. S46 and S47†). With an adjusted logAUC value

of 28.5 (where 0 is random), the equilibrated RTX thrombin apo

structure outperforms all other input structures (Fig. S46A†) by

a signicant margin of at least 9% compared to unequilibrated

cryo and up to 20% for unequilibrated RTX. Notably, equili-

brating the cryo structure lowers AUC performance by 3%

compared to the experimental cryo structure. In contrast, the

equilibrated cryo structure performs best for PTP1B, where all

other structures perform similarly poorly (Fig. S47†).

In our analysis of relative binding free energy results (Tables

S6 and S7†), we observe several important issues. First, if we

focus on the subset of binding free energy calculations which

had smaller errors relative to the originally reported data70

(perturbation 1–3 in Tables S6 and S7†), we nd that our results

have relatively little dependence on the choice of starting

protein structure. For thrombin, the errors for these perturba-

tions are 0.61 � 0.21 kcal mol�1 for RT structures and 0.40 �

Table 1 Experimental and calculated binding affinities of L99A complexes. Absolute binding free energies (DGcalc) were computed in explicit
solvent after 20 ns per thermodynamic state using a thermodynamic cycle of 29 states. The DGcalc values and their respective uncertainties (dcalc)
were estimated through the Multistate Bennett Acceptance Ratio implemented in PyMBAR.98 The experimental affinities (DGexp) of toluene, p-
xylene, o-xylene, ethylbenzene, propylbenzene, and n-butylbenzene and their respective errors (dexp) have been reported by Morton et al.,43 and
those of iodobenzene were published by Liu et al.59 Across all cryo structures, the average error (DDG) is 1.077 kcal mol�1, and the median is
0.95 kcal mol�1. For the 3 most problematic cases (toluene, o-xylene, iodobenzene), the average and median values from the cryo complex are
1.64 kcal mol�1 and 1.44 kcal mol�1, for the RT protein–ligand complex (holo) are 1.3 kcal mol�1 and 1.36 kcal mol�1, and for the RT apo are
1.00 kcal mol�1 and 1.18 kcal mol�1, respectively

Ligand Protein Temp. DGcalc (kcal mol�1) dcalc (kcal mol�1) DGexp (kcal mol�1) dexp (kcal mol�1)

DDG

(exp.–calc.) (kcal mol�1)

p-Xylene Holo Cryo �4.13 0.03 �4.67 0.06 �0.54

Ethylbenzene Holo Cryo �5.43 0.03 �5.76 0.07 �0.33

Propylbenzene Holo Cryo �5.60 0.04 �6.55 0.02 �0.95
n-Butylbenzene Holo Cryo �5.90 0.05 �6.70 0.02 �0.8

3-Iodotoluene Holo Cryo �5.56 0.04 n.a. n.a. n.a.

4-Iodotoluene Holo Cryo �5.81 0.04 n.a. n.a. n.a.

Benzylacetate Holo Cryo �3.63 0.05 n.a. n.a. n.a.
Toluene Holo Cryo �4.1 0.03 �5.52 0.04 �1.42

Toluene Holo RT �4.16 0.03 �5.52 0.04 �1.36

Toluene Apo RT �4.34 0.03 �5.52 0.04 �1.18

o-Xylene Holo Cryo �2.54 0.04 �4.6 0.06 �2.06
o-Xylene Holo RT �3.19 0.04 �4.6 0.06 �1.41

o-Xylene Apo RT �4.18 0.05 �4.6 0.06 �0.42

Iodobenzene Holo Cryo �4.51 0.04 �5.95 n.a. �1.44

Iodobenzene Holo RT �4.82 0.03 �5.95 n.a. �1.13
Iodobenzene Apo RT �4.54 0.03 �5.95 n.a. �1.41

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 11275–11293 | 11285
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0.07 kcal mol�1 for cryo structures. For PTP1B, the errors are

0.60 � 0.16 kcal mol�1 for RT structures and 0.41 �

0.06 kcal mol�1 for cryo structures. These differences are not

statistically signicant. However, for those perturbations with

relatively larger errors relative to the original experiments

(perturbation 4–9 in Tables S6 and S7†), above 1 kcal mol�1, we

nd that the dependence on the choice of starting structure is

larger. Computed relative binding free energies vary by up to

1 kcal mol�1 for thrombin and 4.6 kcal mol�1 for

PTP1B kcal mol�1 depending on the choice of starting structure.

This effect is hidden when considering that the average differ-

ences of those perturbations appear similar at 0.41 �

0.16 kcal mol�1 and 0.49 � 0.27 kcal mol�1 for RT and cryo

structures of thrombin, and 2.23 � 1.23 kcal mol�1 and 2.20 �

1.44 for RT and cryo structures of PTP1B, respectively.

This tells us that, rst, poorly predicted relative binding free

energies are partly due to poor sampling and convergence of

protein motions and, second, these slow protein motions are

related to those observed in the differences between RT and cryo

structures. For these targets, while we do not observe that RT or

cryo structures result in dramatically better predictive

performance, this analysis indicates that the differences

between these structures are important for binding and that if

we neglect the relevant protein motions this will mislead any

comparison with experiment. For example, a comparison only

with results from cryo structures would yield the conclusion

that perturbations 2,3,4,6,8 of thrombin are treated accurately

by the force eld and model, whereas a comparison with only

RT structures would indicate that perturbations 1,5,6,8,9 are

treated accurately (Tables S6 and S7;† using a cutoff of

0.5 kcal mol�1); these issues would confound validation of the

computational approach. It is also interesting to note that, here,

several perturbations which showed relatively large errors in the

original work70 had signicantly lower error here, despite use of

the cryo structure in both cases and an otherwise similar

protocol—further suggesting slow protein motions and

sampling problems. In summary, we nd that differences

between RT and cryo structures correspond to slow protein

motions which can adversely impact the convergence and

accuracy of relative binding free energy calculations, and these

differences are particularly common for transformations which

had high errors initially.

Fig. 5 Temperature artifacts mislead computational validation across protein classes. Ringer–Cringer comparisons reveal hidden differences
between experimental data collected at RT (red) or cryo and computational predictions. Several binding site residues are highlighted as false
negative (FN), true negatives (TN) and false positives (FP) across four protein systems cytochrome C peroxidase (A), thrombin (B), protein tyrosine
phosphatase 1B (C), galectin (D). Respective 2Fo � Fc electron density maps are shown at 1 sigma. See Fig. S45† for more examples.

11286 | Chem. Sci., 2021, 12, 11275–11293 © 2021 The Author(s). Published by the Royal Society of Chemistry
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Discussion

Current rational ligand discovery operates under the assump-

tion that a representative conformational ensemble is trapped

upon cryocooling, which enables ligand-binding predictions

and validation. However, we and others have shown that RTX, at

synchrotron and free electron laser sources, provides novel

insights into hidden conformational states of functional

importance that may be missed otherwise. Here we have

examined the extent to which these assumptions hold true in

the widely used T4L–L99A model binding site as well as 4 other

protein classes. The T4L system has been studied exhaustively

for decades, with hundreds of PDB structures available. Still,

our RTX provides novel insights that could not be gained

otherwise. Our systematic study raises concerns that tempera-

ture artifacts in cryo structures compromise computational

structure-based drug design by interfering with calibration,

validation, and application of these methods to discover

bioactive molecules. Three important implications for

structure-based ligand discovery emerge. First, temperature

artifacts compromise our global and local understanding of

protein–ligand structures. Second, validating against cooled

structures misinforms the development of computational

methods. Third, cryo artifacts affect the docking performance

and free energy of binding calculations.

Cryogenic structures are less homogeneous than those

collected at RT, though an increase in thermal mobility with

temperature would suggest otherwise.25,29 Pairwise comparisons

of electron density maps revealed temperature-induced

conformational changes across the entire protein structure

not just at compacted crystal-packing interfaces. For ligand

discovery, ligand-binding sites appear most sensitive to cryo-

genic cooling practices. By nature's design, binding-site

malleability enables proteins to accommodate diverse ligands

and tailor their conformational response to changes in the

environment, such as pH, pressure, mutation and temperature.

In turn, changing these variables, intentional or not, enables

one to probe the protein's conformational landscape. Matthews

et al. reported that T4L mutations are accommodated mainly by

backbone shis and rarely by rotamer changes;39 however, we

observed wide-spread rotamer differences when we changed the

temperature. Protein motions span a wide range of timescales,

from millisecond motions of large domains, to nanosecond

rotamer changes, and picosecond water dynamics. These

timescales do not align with the rate of cooling. In addition,

high variability originates from experimental inconsistencies,

such as plunging speed through changing LN2 gas layers when

cooling crystals of different sizes. This leads to the trapping of

a nonequilibrated mix of conformational states at cryo that

complicates the analysis and use of these structures. Analo-

gously, in computation we would not expect to obtain milli-

second domain motions from a microsecond MD simulation,

nor would we expect a simulation started from an unfolded or

misfolded protein to rapidly reveal the true folded state if the

simulation timescale is far less than the folding time. Indeed,

RTX data showed that idiosyncratic changes due to temperature

are common. In fact, none of the binding sites of our 8 ligand

structure pairs were spared temperature-induced rotamer

changes. We saw differences in Val111 for more than half of the

ligand complexes. This residue causes problems in computa-

tion due to high-energy barriers that prevent it from reorienting

on simulation timescales. The increase in temperature

appeared to lower such energy barriers and enable the residue

to populate the high-energy, rare states in the crystallographic

experiment. RTX may help overcome kinetic trapping and MD

dependence on starting conformation. Different conformations

of neighboring residues binding to nearly identical ligands

could be mistaken for genuine responses to ligand binding if

cryo structures were used alone, as is common in drug

discovery.

Given these observations, we recommend caution when

interpreting cryo structural data on ligand binding. In the best-

case scenario, cryo structures may provide drug design guid-

ance, despite their high likelihood of harboring hidden distor-

tions, as seen for some of the docking. In the worst-case

scenario, idiosyncratic temperature effects may result in costly

medicinal chemistry detours misled by erroneous structure/

activity relationships – despite the availability of what appears

to be the gold standard cryo structures at high-resolution. When

only cryo data are examined, there is no telling if the observed

changes are legitimate or artifactual. Also, computational errors

caused by temperature artifacts and algorithmic imperfections

may amplify changes or cancel them out. Again, precision of

atomic resolution does not imply real-life accuracy.

Beyond the protein, ligands also shi positions, change

occupancy, or disappear upon cooling. For instance, the o-

xylene ligand in the RT versus cryo structure had an RMSD of

0.41 Å, whereas the protein RMSD was only 0.2 Å. Although an

RMSD of 0.41 Å would be judged a success for a computational

docking prediction, this is a considerable difference in the

observed binding mode caused by the cooling process alone.

Re-determining the cryo toluene dataset to atomic resolution

supports the idea of using RTX datasets to look for features that

may lie dormant in cryogenic datasets and vice versa.58

It is no secret that the computational search for bioactive

molecules makes crude assumptions. In contrast, experimental

data are oen assumed to be the only reliable “truth” against

which computational results are validated and methods are

improved. While errors associated with experimental methods,

such as ITC, have been acknowledged,71 structural data are still

widely trusted without consulting the primary experimental

evidence—the electron density map. At any temperature, elec-

tron density maps oen hold clues of missing or ctitious

features,72 especially below the conservative 1 sigma

threshold.55 These can be subtle but informative. We intro-

duced our analysis tool, Cringer, to help identify genuine

discrepancies in RT, cryo, and simulated structures; and made

this tool openly accessible to aid computational benchmarking.

Finding many false-positive and/or false-negative results across

every matched temperature pair and across protein classes

suggested that computational aws frequently go unnoticed,

and successes may be discarded. The wide-spread occurrence of

such results also suggests that it is unlikely that any cryo

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 11275–11293 | 11287
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structure will be spared from deceptive temperature effects. In

terms of methods development, such experimental aws may

get incorporated into computational methods, at least to the

extent that protein FFs are tuned, in part, to ensure that

proteins are stable in experimental cryo structures.

Given the differences between similar FFs used in this study

(e.g., differences in dominant rotamers inMD simulations as we

varied the protein FF), it may be very interesting in the long

term to use RT structures, including rotamer occupancy data

like that examined here, to help test and improve protein FFs.

Other approaches may likewise be affected, such as integrative

structural biology,73 which aims to combine experiments and

simulation into a useable framework to better understand

biology.18,19 Again, understanding the limitations of nonequi-

librium experimental data and their associated errors is key to

leveraging the synergy of experiments and simulations to their

full potential.

Along these same lines, this work has potential implications

for testing FFs used inmolecular simulations. If our models and

FFs are tested against cryo data, their performance would

appear worse (at least in terms of side-chain rotamer pop-

ulations and ligand binding modes), whereas computational

results would better agree with those from RT. Additionally,

different FFs give different rotamer populations in some cases,

and using cryo structures to evaluate which FF performed best,

would lead to incorrect conclusions. For slow side-chain

motions, adequate rotamer sampling can be achieved, in

some cases, using enhanced sampling methods like BLUES.

Finally, the exquisite temperature sensitivity of the binding

site affects the utility of cryo structures. Consulting artifactual

conformations can mislead ligand discovery, design, and/or

protein evolution. Hence, we expected computational perfor-

mance to follow the “garbage-in/garbage-out” philosophy. Our

ndings show that a “blunt” tool like docking can appear

relatively unaffected by cryogenic imperfections, at least in

terms of overall enrichment. However, RTX and equilibrated

data can provide alternative inputs. For instance, revealing the

hidden intermediate F-helix in the T4L apo structure by RTX

provides opportunities to nd molecules that specically

stabilize alternative high-energy conformational states. Despite

all the convolution, critically considering docking metrics can

provide some guidance. For instance, the equilibrated inter-

mediate RTX structure performed worst by AUC measures but

ranked second by RMSD, an observation consistent with the fact

that most ligands bind to the latter state. Previously, we showed

that using alternative loop states to assign Boltzmann-weighted

energy penalties can improve docking performance.27 A 40%

change in occupancy of the major conformation corresponded

to a Boltzmann energy of the major closed state of around

0.3 kcal mol�1, which is about 2-fold higher than the penalty for

the major loop of cytochrome C peroxidase that reshuffled the

docking ranks and led to the discovery of ligands that would not

have been found otherwise.27 One of the take-aways from

expanding docking to other protein classes is that an RTX

structure, when available or obtainable,23 appears to provide

a more “even-keeled” docking template than a cryo structure.

Interestingly, the best docking improvement was seen for MD-

equilibrated RTX structure of thrombin, which also happened

to show the largest rate of false positives and false negatives of

any system studied here. While cryo structures may outperform

other input data despite their structural pathologies due to the

crudeness of the calculation, they may also surrender to those

artifacts and perform worse. A Boltzmann docking approach

that uses either experimental27 or computational74 energy

weights, may provide an alternative route. Finally, the fact that

empirical scoring functions used in most docking algorithms

are derived from cryogenic structures might suggest a deeper

problem of cryo artifacts being “baked” into current empirical

scoring functions.

Rigorous free-energy calculations appear to benet more

from RTX input structures for T4L. MD-based free energy

calculations starting from apo RTX structures converged faster

and gave more accurate results. At least for this target, we found

that using the apo RTX structure saved both computational and

experimental resources because we needed only 1 RTX struc-

ture. Alternatively, with increasing MD simulation time, cryo-

genic and RTX structures became increasingly

indistinguishable, as simulations begun at the cryo structure

relaxed to something more like the RTX structure. By extending

to 4 other protein classes we nd that differences between cryo

and RT structures correspond to slow protein motions which

sometimes adversely impact the convergence and accuracy of

relative binding free energy calculations, and these differences

are particularly common for transformations which had high

errors initially.

Several caveats of this study merit mentioning. First, very

long simulations may lead to the same converged state inde-

pendent of the starting structure; however, a state that differs

from the experimental input structure may not be more useful

for ligand discovery, in spite of costly computation. Advances in

making longer timescales that are important for many biolog-

ically relevant processes accessible to simulation has recently

been exemplied by exascale SARS-CoV-2 simulations.10

Leveraging such computational power could provide an addi-

tional avenue to remedy some of the issues our work has

revealed. Also, the discussed benets of apo structure may not

hold for all targets, i.e., if the apo structure does not populate

conformations relevant to ligand binding, representative holo

or simulated structures are needed. Both alternatives add bias:

ligands imprint features onto the protein surface, and calcula-

tions lead further away from experimental observations. If not

collected carefully, RT data will contain another source of error,

radiation damage, that may change molecular structure.75,76

With measures to prevent damage in place, conformational

variation in proteins is observed, despite radiation damage not

as a consequence of it.77

To reect common computational practices, we ran simple

docking implementations to gauge whether changes in the

major state would change the results. However, the presence of

experimental minor or alternate states and conformational

ensemblesmost likely also affect the results of the computation.

These are typically ignored, however, as scripts that “prepare”

a structure for docking typically discard minor states. Thus,

a sea change is needed in the modeling approach to such
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structures, to retain these carefully modeled and informative

alternate features. An oen overlooked inadequacy of evalu-

ating docking results is the difference between scoring and

sampling failures. Typically, only the single top-ranking

pose per compound is reported, hiding whether the correct

pose was overlooked or not sampled at all; a lower ranking,

equi-energetic alternative pose may agree with RTX data.

Finally, weak, promiscuous ligands, such as fragments, are

likely more affected by alternative poses than a nanomolar drug

candidate. Because such fragments are oen the starting point

that guides drug-discovery efforts, RTX may prove especially

useful for fragment-based ligand discovery.78

These caveats should not distract from the main result of

this paper—RTX data can provide instructive guidance to ligand

discovery and design, methods improvement and integration,

and protein evolution. It can also provide novel insights into the

conformational energy landscape of protein–ligand complexes,

even for exhaustively studied targets like T4L. Ongoing

improvements in automation, renement, and analysis tools

will help us detect and model rare conformational states

condently.49 Given the nonsystematic impact of cryocooling,

a cryo structure alone cannot clarify 2 important questions:

which conformations are temperature artifacts, and which

missing conformations could be revealed at RT? Ultimately, all

structures are measured by their value in advancing our

understanding of protein function and our ability to modulate

malfunction in disease. The data presented here suggest that

RT structures can provide key insights that are not apparent in

cryo structures.

Experimental
Crystallography

Protein production and purication. The gene containing T4

phage lysozyme with mutations R12G/I137R/L99A was subcl-

oned into pET-28 (EMD Biosciences). The plasmid containing

the lysozyme construct was then transformed into cells of BL21-

CodonPlus(DE3)-RIPL strain and grown in Terric Broth

medium containing 100 mg mL�1 kanamycin to an O.D.600 of

0.6–0.8 at 37 �C and then induced with 0.5 mM isopropyl b-D-1-

thiogalactopyranoside at 18 �C for 12–16 hours. Cells were

harvested and lysed by microuidizer, centrifuged at 18 000�g

for 1 hour and then puried on a Ni-NTA column (GE Health-

care Life Sciences) at 4 �C, with a buffer of 50 mM sodium

phosphate (pH 7), 0.2 M NaCl, and 5 mM 2-mercaptoethanol.

The Ni-NTA column was then eluted with imidazole gradients in

the same buffer, and the elution was concentrated to 10 mg

mL�1 and dialyzed overnight in 50 mM sodium phosphate (pH

6.6), 0.2 M KCl, 5 mM 2-mercaptoethanol. The dialyzed elution

was further concentrated the next day and loaded onto an SD75

26/60 column (GE Healthcare Life Sciences) for size-exclusion

chromatography (SEC) within freshly prepared dialysis buffer.

The SEC fractions were concentrated to 10 mg mL�1, aliquoted,

ash-cooled in liquid-nitrogen, and stored at �80 �C until

needed. Protein purity exceeded 95% by SDS-PAGE.

Crystallization. Crystals were grown from a 10 mg mL�1

frozen protein solution by the hanging drop method at 18–

20 �C, with a 1 : 1 drop ratio of protein to solution and over

a well solution of 0.1 M tris-hydrochloride (pH 8), 20–26% (w/v)

PEG 4000, 70–170 mM lithium citrate, 8–18% 2-propanol,

50 mM 2-mercaptoethanol, and 50 mM 2-hydroxyethyl disul-

de. Diamond-shaped crystals grew within a month. Fresh well

solution containing an additional 30% (w/v) ethylene glycol

served as the cryo solution. Ligands were soaked overnight into

the crystals in the cryo solution containing 50–100 mM ligands

at cryo (100 K) or RT (278 K). Hundreds of datasets were

collected at the APS beamline ID-24 during the course of this

project and were prioritized based on data, electron density

map quality, and ligand occupancy. Halogenated compounds

were chosen for clearer visibility in electron density maps and

higher condence in the assignment of occupancies and poses.

Renement and analysis. To ensure that structural differ-

ences are not the result of radiation damage,77 we only consid-

ered those datasets that were free of typical signs of global or

local radiation damage (Table S1†).75,79,80 Data in Fig. 1A are

presented as box-and-whisker plots using Prism 8, where the

borders of the box mark the upper and lower quartile around the

median, and the whiskers mark the highest and lowest observed

value. Thermodynamically, ligand occupancy decreases with

increasing temperature.25 In line with the inclination that proper

structure modelling necessitates an ensemble of both the bound

and unbound states,81 we rened ligand occupancies to less than

100%. Consequently, we refrained from overinterpreting changes

in experimental and simulated loop occupancies and only looked

at gross changes in side-chain occupancies that were not

muddled by unbound states.

Computational approach and methods

To avoid bias in the interpretation of results, all experiments

and computations were conducted double-blind at the 2 sites

(St. Jude and UCI), and experimental and computational data

were compared and assessed only at the point of writing this

manuscript.

Cringer [krinj-er]. Analysis scripts for Cringer (Computa-

tional Ringer) are available on the GitHub repository linked to

this paper (https://github.com/MobleyLab/T4L-temperature-

effects).

Absolute binding free energy calculations

System setup. Crystallographic structures of T4 lysozyme

(L99A) complexes were downloaded from the RCSB Protein Data

Bank (rcsb.org).82 For iodobenzene, toluene, and o-xylene, we

also used the L99A RT co-crystal structures to set up additional

binding free energy calculations. Furthermore, we added iodo-

benzene, toluene, and o-xylene to the new apo RT structure of

L99A to form 3 complexes (apo RT with iodobenzene, toluene,

or o-xylene) on which we performed binding free energy calcu-

lations. For each system, we rst used pdbxer 1.4 (ref. 83) to

remove the ligands and water molecules from the PDB struc-

tures and to add the missing heavy atoms to the receptors.

Then, we used PDB2PQR web server84 to protonate the protein's

residues at pH 7 and to rename the residues/atom according to

the AMBER naming scheme. The resulting pqr les were con-

verted to PDB les using ParmEd 2.7.4 (https://github.com/

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 11275–11293 | 11289
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ParmEd/ParmEd). All the studied ligands were considered

neutral and were protonated using Chimera 1.12.85 Lastly, we

converted the PDB les of the ligands to mol2 les using

OpenEye toolkits (OpenEye Scientic Soware). The receptors

and ligands were modeled using AMBER ff14SB86 and GAFF

version 2 (ref. 62) FFs, respectively. We solvated the protein–

ligand systems by using the TIP3P water model87 in a cubic box

with 12 Å padding. Na+ and Cl� counter ions were then added to

neutralize the system and achieve a buffer concentration of

50mM. Further details on the system's setup are provided in the

ESI Appendix, ESI Methods,† and the GitHub repository linked

to this paper.

Absolute binding free energy simulations. All alchemical

binding free energy calculations were conducted using YANK

0.17.0 (http://getyank.org/0.17.0). The alchemical pathway

included 29 manually selected thermodynamic states in explicit

solvent, and all simulations were run in the NPT ensemble at

300 K with a pressure of 1 atmosphere. Long-range electrostatic

interactions were calculated using the particle mesh Ewald

method,88 with a nonbonded cutoff of 11 Å. Orientational

Boresch-style restraints89 were applied to keep the ligand in

a single-binding mode during the simulations; a set of 1 bond, 2

angles, and 3 dihedral restraints was used. We used a spring

constant of 20 kcal mol�1 Å�2 for the bond restraint, while the

angle and dihedral restraints were set at 20 kcal (mol per

radians). We gradually turned on these restraints throughout

the thermodynamic states using a lambda set of 29 windows.

More technical details about the binding free energy calcula-

tions are provided in the ESI Appendix, ESI Methods,† and in

the GitHub repository linked to this paper.

Relative binding free energy simulations. We selected the

targets thrombin and PTP1B which are part of several RBFE

benchmark studies.90–92 The simulation protocol follows

a previous work93,94 using GROMACS (2021-dev-20200320-

89f1227-unknown) with a patch optimizing PME performance

on GPU (https://gerrit.gromacs.org/c/gromacs/+/13382). For each

perturbation, two sets of simulations were prepared: solvated

ligands and ligand–protein complexes. The initial ligand struc-

tures were obtained from a previous published work.93 The

initial protein structures used were the same as the unbiasedMD

simulations (see below). For each target, 9 perturbations (edges)

were selected based on a previous work.70 For each perturbation,

two states were prepared for both in-solution/bound state

ligands: state A and state B, representing ligand 1 and ligand 2,

respectively. An energy minimization was rst performed, fol-

lowed by a 10 ps NVT equilibration at 298 K. Then the produc-

tion equilibrium simulation (in the NPT ensemble) was

performed for 6 ns at 298 K and a pressure of 1 bar. 80 snapshots

were extracted from the production simulation. For each snap-

shot, a non-equilibrium transformation from state A to B (and

vice versa) was performed during 50 ps. For each perturbation, 3

replicas of the series of simulations described above were per-

formed leading to a total of 120 ns simulation data to calculate

the free energy differences for the ligands in their in-solution/

bound states. See ESI† for more details.

MD simulations. We performed classical MD simulations to

study the conformational change of L99A upon ligand binding.

MD simulations on each L99A–ligand complex were executed

using the OpenMM package 7.1.1 and 7.4.2.95 First, we mini-

mized the water and ions for 4000 steps with the protein and

ligand xed by using 500 kcal mol�1 Å2 positional restraints.

Aer that, we performed a second minimization step on the

water and ions for 4000 steps, with the receptor and ligand

restrained using 50 kcal mol�1 Å2 positional restraints. Typical

MD water models are parameterized to do well at 300 K, so we

initially ran all of our simulations at 300 K. To ensure that our FP

and FN analyses were unaffected by the comparison to crystal-

lographic data collected at 278 K, we repeated MD simulations of

all complexes at 278 K (Fig. 3, ESI Fig. S10 and S11†). In both

cases, we heated the system from 0 K to the target temperature

while gradually releasing the restraints on the receptor–ligand

complex. Across all 9 structure pairs we observed only one

Cringer comparison where a major side chain distribution that

differed with temperature changed from TN (MD run at 278 K) to

FN (MD run at 300 K). In our comparison to the crystallographic

data collected at 278 K, we do not count this case as a FN. Prior to

the production run, we performed an equilibration step of 10 ns

in the NPT ensemble to reach a density of 1 atmospheric pres-

sure. Further details of the simulation protocol are provided in

the ESI Appendix, ESI Methods,† and in the GitHub repository

associated with this paper.

BLUES simulations. We used BLUES (Binding modes of

Ligands Using Enhanced Sampling) simulations package to

enhance the sampling of ligand-binding modes61 and accelerate

the sampling of side-chain rotamers in the protein's residues.60

BLUES is a nonequilibrium candidate Monte Carlo approach

coupled with standard MD. In a BLUES simulation, the ligand

or a rotatable bond of a side chain is allowed to rotate and then

relaxed through alchemical perturbation, before accepting or

rejecting the proposed move based on the nonequilibrium work

done during this process. The BLUES simulations were executed

using OpenMM 7.1.1.95 The protein–ligand systems used for the

simulations were taken aer the equilibration step of the clas-

sical MD simulations, as described above. We performed BLUES

side-chain sampling on the L99A complexed with iodobenzene,

where we enhanced the side-chain sampling of 2 residues

belonging to the protein's binding site (Val111 and Leu118). For

the BLUES binding-mode simulations, we enhanced the

binding-mode sampling of iodobenzene, ethylbenzene, pro-

pylbenzene, butylbenzene, benzylacetate, o-xylene, and p-

xylene. To analyze our binding-mode simulations, we used

time-lagged independent component analysis and perron-

cluster cluster analysis tools, as described in Lim et al. 2019.96

More details about the BLUES simulations are provided in the

ESI Appendix and ESI Methods.†

Docking. We used OEdock (OpenEye Scientic Soware) to

dock 63 experimentally conrmed T4-L99A binders from the

work of ref. 66 and [https://github.com/MobleyLab/

lysozyme_binding], 35 ZINC compounds described as

binders,67 and 3152 DUD-E “decoys”68 into the following struc-

tures: (1) the cryo structure of apo L99A (PDB code: 4W51), (2)

the RT structure of apo L99A with a closed F-helix conformation,

(3) the RT structure of apo L99A with an intermediate F-helix

conformation, (4) the cryo structure of apo L99A with a closed

11290 | Chem. Sci., 2021, 12, 11275–11293 © 2021 The Author(s). Published by the Royal Society of Chemistry
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F-helix conformation extracted aer 50 ns of MD simulations

(PDB code: 4W51), (5) the RT structure of apo L99A with a closed

F-helix conformation extracted aer 50 ns of MD simulations,

and (6) the RT structure of apo L99A with an intermediate F-

helix conformation extracted aer 50 ns of MD simulations.

A reference ligand (toluene extracted from 4W53 and aligned

with the 6 different protein structures) was used to localize the

binding site. Then the scores were ranked and themetrics (AUC,

logAUC, and RMSD) were calculated. The RMSDs were calcu-

lated relative to the cryo and the RT crystal structures of each

ligand. We used Chimera to align the active site of each L99A

complex used for docking to its corresponding crystal structure.

The alignment of the active site was done within 5 Å of the

ligand. Then we computed the RMSD values with Chimera and

accounted for ligand symmetry. The semilog plots and the

adjusted logAUC were calculated, as described by Mysinger and

Shoichet.68 All the analysis tools used to calculate the docking

metrics can be found on GitHub (https://github.com/

MobleyLab/T4L-temperature-effects).

For OEdock, we used a combination of 2 scoring functions:

Chemgauss3 65 for the exhaustive search scoring, which was fol-

lowed by optimization scoring using Chemscore.97 Chemgauss3

accounts for the hydrogen bonds between the ligand and protein,

hydrogen-bonding interactions with implicit solvent, and metal–

chelator interactions. Furthermore, Chemgauss3 uses Gaussian

smoothed potentials to evaluate the shape complementarity of the

ligand to the protein's binding site. Chemscore is a sum of the

following interaction contributions: lipophilic, hydrogen bonding,

metal–chelator, clashes, and rotatable bonds.

Data availability

Crystallographic coordinates and structure factors for all

structures have been deposited in the PDB with the following

accessing codes: 7L38, 7L37, 7L3A, 7L39, 7L3B, 7L3C, 7L3E,

7L3D, 7L3G, 7L3F, 7L3H, 7L3I, 7L3K, 7L3J. Additional scripts

and information are available at GitHub at https://github.com/

MobleyLab/T4L-temperature-effects.
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