
13.1

 196

Temperature-Aware Resource Allocation and Binding
in High-Level Synthesis

Rajarshi Mukherjee, Seda Ogrenci Memik, and Gokhan Memik
Department of Electrical and Computer Engineering, Northwestern University, IL, USA

{rajarshi, seda, memik}@ece.northwestern.edu

ABSTRACT
Physical phenomena such as temperature have an increasingly
important role in performance and reliability of modern process
technologies. This trend will only strengthen with future
generations. Attempts to minimize the design effort required for
reaching closure in reliability and performance constraints are
agreeing on the fact that higher levels of design abstractions need
to be made aware of lower level physical phenomena. In this paper,
we investigated techniques to incorporate temperature-awareness
into high-level synthesis. Specifically, we developed two
temperature-aware resource allocation and binding algorithms that
aim to minimize the maximum temperature that can be reached by a
resource in a design. Such a control scheme will have an impact on
the prevention of hot spots, which in turn is one of the major
hurdles in front of reliability for future integrated circuits. Our
algorithms are able to reduce the maximum attained temperature by
any module in a design by up to 19.6oC compared to a binding that
optimizes switching power.

Categories and Subject Descriptors: B.6.3 [Hardware]: Logic
Design - Design Aids; J.6 [Computer Applications]: Computer-
aided Engineering (CAD).

General Terms: Algorithms, Design, Experimentation.

Keywords: Binding, Temperature, Switching, Leakage.

1. INTRODUCTION
Transistor counts in all electronic systems are increasing steadily.
The latest Intel Itanium 2 processor contains more than 200 Million
transistors [12]. It is predicted that Moore’s law will not slow down
for at least another decade. By that time, integrated circuits (ICs)
are expected to have feature sizes of 30 nanometers, allowing for
integration of billions of devices on a single die and enabling
unforeseen computational capabilities. One consequence of this
trend is that heat dissipation on modern and future technologies is
skyrocketing. ICs achieve extremely high computational power per
unit silicon area at the expense of increased power densities. This
in turn brings about the problem of potentially large operating
temperature variations.
Temperature has a significant impact on circuit performance.
Increase in temperature has an adverse effect on carrier mobility,
hence, switching speed of transistors. Interconnect resistance

increases with temperature as well. Circuit reliability is also heavily
impacted by temperature. Regions on a chip that generate excessive
amounts of heat are referred to as hot spots. Hot spots can
jeopardize correct execution by causing transient as well as
permanent faults. Even if excessive heat does not lead to
spontaneous damage, it accelerates electromigration, which can
lead to permanent damage in the long run.
Several aspects of concern for design of future ICs, from reliability
to performance and manufacturing cost, call for effective control of
temperature during the design process of ICs. Moreover, every
effort must be made to incorporate awareness of this phenomenon
into every level of design abstraction. Design paradigms that target
performance centric metrics such as delay and power have already
evolved to a point that closure in these metrics inevitably involves
planning and optimization above and beyond the physical synthesis
stage. Similarly, management of emerging physical issues such as
temperature need to be taken into account at all levels of
abstraction of the design process.
On a related track, power optimization and management techniques
have long been studied for various design levels including high-
level synthesis. However, power optimization does not specifically
address the problem of regulating local activity in a design, which
can lead to hot spots over longer periods of activity, while the total
power consumption might be seemingly well-bounded.
In this paper, we present techniques to incorporate temperature
awareness into high-level synthesis. Decisions made during high-
level synthesis have great impact on the activity of functional
resources. If tasks such as scheduling, resource allocation and
binding are performed with such awareness, temperature increase
can be controlled more effectively, especially locally, which is
closely related to hot spot formation. Our specific contributions in
this paper are as follows. We
- Formulate the temperature-aware resource binding problem,
- Develop models for thermal profiles of functional resources

for a given task assignment,
- Develop resource binding techniques to effectively control

maximum temperature of a binding
- Study the impact of temperature on leakage current.

Specifically we compare the performance of a switching
optimized binding and our temperature-aware binding with
respect to total power consumption, where the leakage power
has a growing contribution with increasing temperature.

The remainder of this paper is organized as follows. Section 2 gives
an overview of related work. In Section 3 we elaborate on the
temperature-aware design paradigm in high-level synthesis. In
Section 3.1 we discuss some relevant assumptions in our work and
introduce the temperature model we have used. We introduce our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

 197

temperature-aware allocation and binding algorithm in Section 3.2.
Section 4 presents our experimental flow and results. We conclude
our paper with a summary in Section 5.

2. RELATED WORK
There are various techniques to design packages and cooling
techniques to develop better heat removal capability. A large
amount of research effort has been spent on development of circuit
and board level models of heating and thermal distribution. For
design and analysis of high performance microprocessors various
techniques to model thermal effects have been developed [18],
[11], [15]. Runtime thermal management via clock gating using
real-time temperature sensing has been included in Intel Pentium 4
processors [9]. Other techniques such as frequency and/or voltage
scaling, sub-banking, etc. have been investigated [2], [10], [3].
Skadron et al. developed a thermal model for microprocessors to
capture hotspots and aid thermal management [20].
From the other end of design hierarchy, physical design tools have
been proposed to enable even thermal distribution on chips. Tsai
and Kang developed a standard cell placement tool for even on-
chip thermal distribution [22]. Chu and Wong proposed a matrix
synthesis approach to thermal placement [6]. Cong et al. introduced
a thermal-driven floorplanning algorithm for 3-D ICs [7]. Basu et
al. introduced the electrothermal energy-delay-product optimization
scheme to perform simultaneous optimization of supply and
threshold voltages in CMOS circuits [1].
To the best of our knowledge so far it has not been attempted to
incorporate thermal considerations into higher level synthesis tasks.
In this work we aim to accomplish this goal by developing
temperature aware resource allocation and binding algorithms to be
deployed within high-level synthesis.

3. TEMPERATURE-AWARE HIGH-LEVEL
SYNTHESIS
During high-level synthesis, decisions regarding distribution of
tasks across functional modules as well as relative timing of
individual tasks are made. Activity of modules throughout the
execution of an application is thereby determined. Intuitively, the
higher the number of tasks assigned to a module the more activity
will be observed in that module. In the context of temperature, we
associate switching power dissipation during execution of a task
with activity of the module. This in turn causes the module to
generate heat and consequently the temperature is likely to
increase. Also, the relative timing of operations executing on a
given module is important. Consider two scenarios, where first, a
module executes a set of tasks in a certain interval of time. In the
second case, the same module executes the operations across a
period of time, where there are more inactive time intervals in
between operations. The rise in temperature in the first case would
be expected to be steeper, since the module has less opportunity to
relieve any heat buildup during execution. On the other hand, a
careful assignment of tasks to the module considering the
accumulative effects of continuous activity on heat buildup could
help control the temperature rise.
Since temperature is related to switching activity of resources, one
could argue that minimizing total switching activity should help
bound the temperature rise. This is indeed the case: minimizing
switching activity also helps keep the temperature low. However, as
we will show in the following sections a temperature-aware binding

controls the maximum temperature reached in a design more
effectively. Thereby it minimizes the likelihood of occurrence of
hot spots, which is not considered by switching minimization
schemes. Unlike switching power, temperature has an additive
nature, i.e., the temperature at a given point in time will depend on
the entire history of activity in the past. If this is not taken into
account, cumulative heat will cause hot spots although the average
activity seems to be well bounded.
In the following sections we will present our temperature-aware
resource allocation and binding scheme. First, we will describe our
underlying assumptions and discuss our temperature model. Next,
we will present our temperature-aware binding algorithm.

3.1 Temperature Model and Relevant
Assumptions
In this work, we focus on the resource allocation and binding steps
and hence, assume that scheduling has already been done. We do
not make changes at the scheduling stage. Both scheduling and
binding are hard tasks individually, often times aiming to optimize
multiple objectives simultaneously. While it is part of our long-
term agenda to incorporate temperature-awareness into other stages
of high-level synthesis also, we determined it to be reasonable to
separate these two hard tasks initially and tackle each individually.
Therefore, we directed our attention to resource binding first,
which highly impacts the activity on a resource. In addition, there
are well-established network flow-based techniques to minimize
switching activity during resource binding [5], [16], which relates
to temperature as we discussed earlier. By developing an alternative
temperature-aware resource binding scheme we were able to
compare our approach to a binding that aims to minimize switching
activity, where the starting point to both our approach as well as the
minimum switching binding would be the same initial schedule.
We will describe the network flow based binding technique in more
detail in Section 4.1.
To evaluate the effect of binding on temperature we used a
temperature model that represents increase in module temperature
due to power dissipated during switching activity and decrease in
temperature during idle cycles through conduction. Our model is
rooted at the heat transfer theory, which establishes the duality
between heat transfer and behavior of RC circuits [13]. Similar
models have been used in the past for thermal modeling of
microarchitectures [15], [11]. Variation in temperature can be
modeled using an exponential transient behavior governed by a
time constant analogous to the electrical time constant RC. This
time constant will determine the speed at which heat will cause an
increase in temperature. Similarly cooling can be modeled with a
transient behavior. We refer to the components of the RC time
constant as the thermal resistance R and the thermal capacitance C
of a module. We evaluate the change in temperature at the
granularity of one operation executed by the resource. Also, in our
model the temperature variations of individual modules are
evaluated independently. Then, the temperature variation that
occurs due to the resource executing an operation takes the
following form:

tot
RC

d

AiAi TeTTTT
ii

∆+−+=
+−

+

1,

)(1

TA is the ambient temperature, Ti is the temperature of a module
after having executed operation i, Ti+1 is the temperature of the
module after executing operation i+1 following operation i, di, i+1 is

 198

the difference between the finish time of operation i and the start
time of operation i+1, and R and C are the thermal resistance and
capacitance of the resource respectively. The values of R and C
have been derived using a similar method used by Huang et al.
[11]. Thermal resistance is proportional to the chip thickness and
inversely proportional to the cross-sectional area of the resource.
Thermal capacitance is proportional to the chip thickness and
cross-sectional area. We have calculated the RC constant to be
approximately 232µs for silicon of 0.5mm die thickness. ∆Ttot is the
temperature contribution due to the total power dissipation of the
resource. We calculate ∆Ttot using the formula used in [19] as
shown below

CR
tT

C
tPT itot

tot
∆+∆=∆

where Ptot = Pleakage + Pdynamic is the total power and ∆t is one clock
cycle duration. However the temperature rise of an IC is similar to
capacitance charging, the temperature getting saturated after having
reached a maximum operating temperature that we assume to be
400K (127 oC). We use first order approximation to calculate the
actual contribution of ∆Ttot.
Leakage power model depends exponentially on threshold voltage
Vth and temperature T. We choose the following model template

)),(exp(TVfP thleakage =

We have used a 4th order polynomial to represent f(Vth, T). For our
process technology at 180nm, this roughly corresponds to 15% of
the dynamic power at the ambient temperature and doubles every
25oC.
In the next section we will present our temperature-aware resource
allocation and binding technique.

3.2 Temperature-Aware Resource Allocation
and Binding
Our algorithm takes in a scheduled data flow graph (DFG) and the
switching activity between the operations. It can operate under one
of the following two alternative modes:
- Temperature_Constrained_Resource_Minimization: This

mode tries to find a binding that does not allow the
temperature of any resource to reach above a given threshold
value. This constraint might force the binding algorithm to
increase the number of resources and our algorithm tries to
keep this increase minimum

- Resource_Constrained_Temperature_Minimization: In the
second mode, our algorithm conforms to a given resource
constraint while minimizing the maximum temperature
reached by any resource.

For either mode of optimization, we perform a preprocessing of the
scheduled DFG first. For each resource type we create a
comparability graph of the operations that this resource can
execute. A comparability graph is essentially a compatibility graph
with transitive orientation. If operations u and v are compatible,
there exists a directed edge from u to v if

start time (v) > finish time (u)
Each edge of the comparability graph has a weight equal to the
switching activity if the two operations are bound to the same
resource consecutively. The operations bound to a resource will be
executed in the topological order dictated by the comparability

graph. The comparability graph is essentially a directed acyclic
graph (DAG). We first perform topological sort on this graph.
Next, we visit the vertices of the comparability graph in topological
order and we determine a parent for every vertex, which indicates
that if an operation were assigned to a particular resource, that
parent would be the best candidate to have been assigned on the
same resource prior to this operation. We call the determination of
a parent for each vertex relaxation. The relaxation idea is same as
Dijkstra’s shortest path algorithm where for each vertex the best
parent is determined through which we could reach the vertex with
the shortest distance from a start point. In the context of our
problem we relax vertices with a different criterion. Say vertices
vi…j can be reached from u. Temperature of the resource (Ti+1)i…j is
computed over a period of time to check the rise of the temperature
of the module for executing (u, vi), …(u, vj) consecutively. For
resource constrained temperature minimization, we relax those
vertices in vi…j which lead to minimum rise of temperature. For
temperature constrained resource minimization, we relax only those
vertices that do not violate the temperature constraint. Whenever a
vertex vi is relaxed, the path length of the vertex is updated at d[vi]
= d[u] + 1 and the parent of vi is set to u. The relaxation pseudo
code is shown in Figure 1.

Figure 1. Relaxation routine.
After all the vertices have been relaxed, we have paths, which
represent permissible binding of the operations to a resource. The
algorithm selects the longest path and assigns the operations to the
same resource. Since we have a directed acyclic graph, relaxing on
a topologically sorted list guarantees that relaxing a node does not
involve relaxing its children in the same iteration For comparability
graph G(V, E), E = O(V2) and the cost of relaxation of all the
vertices is O(E) = O(V2). The vertices in the selected path are
removed from the comparability graph and a new comparability
graph is built with the remaining vertices and the above steps are
repeated. The pseudo code of the Temperature-Aware binding
algorithm is shown in Figure 2.
Since we relax vertices with minimum temperature rise, the
operations on the longest path may not include all compatible
operations as required by the resource constraint. Thus the initial
binding might violate resource constraint. Then we perform post
processing to meet the resource constraint. The post-processing
algorithm tries to merge operations from the resource, which have
minimum number of operations into other compatible resources.
The final choice of the binding is determined such that it entails
minimum rise of temperature. Post-processing iteratively decreases
the resource number such that it meets the resource constraint.
Obviously the constraint has to be at least equal to the feasible
number of resources required to bind all the operations, which can
be obtained by Left Edge algorithm. For temperature constraint
resource minimizing involves deleting least populated resources
and binding operations such that the temperature constraint of the
resource (where the operation will be bound) is not violated. The
overall flow is shown in Figure 3.

Relax(u,v , wuv, Criterion)

Criterion: (Tempconst , Resmin), (Resconst, Tempmin)
If (Evaluate(Criterion) == true)

Update (switching activity (wuv),
Update temperature (wuv)
d[v] = d[u] + 1;
parent[v] = u

Relax(u,v , wuv, Criterion)

Criterion: (Tempconst , Resmin), (Resconst, Tempmin)
If (Evaluate(Criterion) == true)

Update (switching activity (wuv),
Update temperature (wuv)
d[v] = d[u] + 1;
parent[v] = u

 199

Figure 2. Temperature-aware binding algorithm: Based on the
criterion parameter, either temperature constrained resource
minimization or resource constrained temperature minimization
is performed.

Figure 3. General temperature-aware binding methodology.

4. Experimental Results
In the following sections we will first describe our experimental
flow and then we will present our results.

4.1 Experimental Setup
Figure 4 depicts our experimental flow. We have used benchmarks
from two sources: applications from the MediaBench suite [14] and
Data Flow Graphs (DFGs) of some popular DSP applications that
are widely used in the high-level synthesis community. Using the
SUIF and Machine-SUIF compiler infrastructure [21] we have
extracted the DFGs of representative functions from MediaBench
applications. The input DFGs were then scheduled using our own
resource-constrained latency minimizing scheduler [17]. The input
DFGs have been simulated to generate switching probabilities for
individual operations using a trace of 10,000 input values.
Functional modules used (our resource sets contained ALUs to
execute add, subtract, and logical operations, and multipliers) have
been synthesized using Synopsys Design Compiler onto the 180nm
tsmc library. Capacitance values of modules have thereby been

extracted to estimate switching power and this information was
combined with bit toggle probabilities obtain through simulation to
obtain switched capacitance values. Compatibility graphs for each
resource type for the scheduled DFGs have then been created
where edge weights are equal to the switched capacitances obtained
as explained above. The compatibility graphs are given as input to
the binding stage.
We generated binding solutions using three approaches. We call
the first approach Switching_Optimized (SW_OPT in short). This is
the binding scheme based on the min-cost network flow
formulation proposed by Chang and Pedram [4]. They applied this
formulation to low power register binding where the binding
problem is formulated as a minimum cost clique covering problem,
and solved it optimally using a transformation from max-cost flow
algorithm to min cost flow. We have solved the network flow
formulation using a software package developed by Goldberg [8].
The second binding solution was generated using our temperature-
aware technique, where the same resource constraint that was used
in the min cost flow approach has been used. We call this binding
Resource_Constrained_Temperature_Minimized (RC_TEMP_
MIN). The third solution was obtained by our temperature-aware
technique after relaxing the resource constraint. In this case we
determine the allocation, i.e., number of resources to be used, as a
well as the actual binding to resources. We call this binding
Temperature_Constrained_Resource_Optimized (TC_R_MIN).

Figure 4. Overall experimental flow.

4.2 Results
Our first set of results present the maximum temperature any
modules reaches in each benchmark. We have estimated the
temperature levels for individual modules in each design using our

Criterion Selection for Resource Binding
Temperature Aware Resource Binding (Criterion)
Use Left Edge Algorithm to find Feasible Resource size
if(Resource Constraint => Feasible Resource size)

Post Processing the binding to satisfy Resource constraint
with minimum Temp rise

Else
Post Processing the binding to minimize resources under
Temp constraint

Input: Scheduled Data Flow Graph(DFG)
Switching activity between the operations
Criterion: (Tempconst, Resmin), (Resconst, Tempmin)

Begin:
For each operation type

While all the operations not bound to a resource
Build comparability graph for the operation
Label the edges with the switching activities
Initialize the nodes
Topologically sort the comparability graph
For each vertex u taken in a topologically sorted order

For each vertex v adjacent to u
do Relax(u, v, wuv, Criterion)

end For
end For
Pick the longest criterion safe path and bind
the operations to a resource
Increase the resource count of the operation type
Delete the operations bound to a resource from the
comparability graph

end While
end For

End

Output: Maximum temperature of Resource
Number of resources required by each optype

Input: Scheduled Data Flow Graph(DFG)
Switching activity between the operations
Criterion: (Tempconst, Resmin), (Resconst, Tempmin)

Begin:
For each operation type

While all the operations not bound to a resource
Build comparability graph for the operation
Label the edges with the switching activities
Initialize the nodes
Topologically sort the comparability graph
For each vertex u taken in a topologically sorted order

For each vertex v adjacent to u
do Relax(u, v, wuv, Criterion)

end For
end For
Pick the longest criterion safe path and bind
the operations to a resource
Increase the resource count of the operation type
Delete the operations bound to a resource from the
comparability graph

end While
end For

End

Output: Maximum temperature of Resource
Number of resources required by each optype

Binding with
optimal switching

Applications in C

SUIF

Scheduler

DFGs of Popular DSP A lgorithms

DFGs

Simulation
for switching

activity

Synopsys DC
Capacitance
Extraction

Min-cost-flow
Binding

Safe
Operating

Temperature

Min resource
binding under

TC

Temperature-Aware Binding

Min temp.
binding under

RC

Temperature-
Aware Alloc. &

Binding

Resource
Constraint

Binding with
optimal switching

Applications in C

SUIF

Scheduler

DFGs of Popular DSP A lgorithms

DFGs

Simulation
for switching

activity

Synopsys DC
Capacitance
Extraction

Min-cost-flow
Binding

Safe
Operating

Temperature

Min resource
binding under

TC

Temperature-Aware Binding

Min temp.
binding under

RC

Temperature-
Aware Alloc. &

Binding

Resource
Constraint

 200

70

75

80

85

90

95

100

105

110

ew
f arf

jct
ran

s_
1

jct
ran

s_
2

jdm
erg

e1

jdm
erg

e2

jdm
erg

e3

jdm
erg

e4

moti
on

_2

moti
on

_3

no
ise

_e
st_

2
mea

n

M
ax

. T
em

p
[C

]

TC_R_MIN RC_TEMP_MIN SW_OPT

70

75

80

85

90

95

100

105

110

ew
f arf

jct
ran

s_
1

jct
ran

s_
2

jdm
erg

e1

jdm
erg

e2

jdm
erg

e3

jdm
erg

e4

moti
on

_2

moti
on

_3

no
ise

_e
st_

2
mea

n

M
ax

. T
em

p
[C

]

TC_R_MIN RC_TEMP_MIN SW_OPT

model described in Section 3.1. We took measurements with this
model for an execution interval of 1000 clock cycles at a clock
frequency of 100 MHz. Figure 5 depicts the maximum temperature
reached by the ALUs. Figure 6 presents the maximum temperature
reached by the multipliers for the three binding solutions.
(jctrans_2 did not contain any multiplication.) TC_R_MIN binding
always yields the best solution. It reduces the maximum observed
temperature by as high as 19.6oC, and 7.6 oC on average for
multipliers and 11.9oC for ALUs. However, often times this comes
at the expense of increased number of resources. Table 1 shows the
number of resources used by SW_OPT binding and TC_R_MIN
binding. We performed the RC_TEMP_MIN binding by using the
same resource constraint that was used for the SW_OPT binding.
In that case, the maximum temperature on the resources increases
with respect to the TC_R_MIN binding. However, it is still below
SW_OPT solution. Particularly, it reduces the maximum
temperature by as much as 10.3oC and 11.2oC, for multipliers and
ALUs, respectively (2.7oC and 3.6oC on average).

Figure 5. Maximum temperature reached by ALUs.

Figure 6. Maximum temperature reached by multipliers.

When we compared the impact of our binding techniques onto the
power consumption, we realized that control of maximum
temperature comes at the expense of some power overhead. For
instance, the RC_TEMP_MIN binding uses a larger number of
resources to minimize maximum temperature. This in turn causes
the total power consumption of the design to increase. We will
present results to this end shortly. For the moment, assuming that
there is some overhead associated with temperature controlled
binding, we can view TC_R_MIN and RC_TEMP_MIN as binding
schemes with different levels of aggressiveness in terms of
temperature optimization. If hot spot prevention is of highest

priority due to the stringent reliability requirements one of the two
temperature-aware binding schemes would be chosen. Whether to
use TC_R_MIN or RC_TEMP_MIN would depend on the
tolerable power overhead. If only a very small overhead is tolerable
then RC_TEMP_MIN would be chosen, which still keeps the
temperature of the hottest module below the levels of SW_OPT. If
the power overhead allowance can be relaxed further then the
maximum reduction in the temperature of the hottest resource can
be achieved using TC_R_MIN.
Table 1. Resource requirements for SW_OPT and TC_R_MIN

bindings.
 SW_OPT

[MUL, ALU]
TC_R_MIN

[MUL, ALU]
Ewf 3, 5 4, 8
Arf 4, 2 5, 4
jctrans_1 2, 3 2, 7
jctrans_2 0, 4 0, 6
jdmerge1 3, 6 3, 7
jdmerge2 3, 6 3, 9
jdmerge3 3, 6 3, 9
jdmerge4 3, 5 5, 9
motion_2 4, 6 6, 8
motion_3 4, 6 6, 8
Noise_est_2 3, 4 4, 7

Now, we present the actual power overhead associated with
TC_R_MIN and RC_TEMP_MIN with respect to SW_OPT
binding. Figure 7 illustrates the relative increase in the leakage
power consumed by all resources in a benchmark for TC_R_MIN
and RC_TEMP_MIN bindings with respect to the normalized value
of SW_OPT.

Figure 7. Normalized leakage power consumption of the three
techniques.

For example, a value of 0.86 corresponds to a 14% reduction in
leakage power consumed by all resources in a benchmark with
respect to SW_OPT binding. We see that the leakage power for
TC_R_MIN binding ranges from 0.88 to 2.18 with an average
overhead of 1.09 (9% increase over SW_OPT). Although
TC_R_MIN achieves minimal temperatures, it increases the
number of resources used significantly. Hence, the total leakage
power tends to increase. In the case of RC_TEMP_MIN, the
leakage power ranges from 0.86 to 1.01 of SW_OPT, reducing the
leakage to 0.98 (2% reduction) on average. In almost all cases
RC_TEMP_MIN achieves a better leakage behavior. Although
RC_TEMP_MIN successfully reduces the maximum temperature

0.85

0.9

0.95

1

1.05

1.1

ew
f arf

jct
ran

s_
1

jct
ran

s_
2

jdm
erg

e1

jdm
erg

e2

jdm
erg

e3

jdm
erg

e4

moti
on

_2

moti
on

_3

no
ise

_e
st_

2
mea

n

Po
w

er
 C

on
su

m
pt

io
n

TC_R_MIN RC_TEMP_MIN SW_OPT
2.18

 201

(hot spot) it generates a few other resources with relatively high
temperatures. This in turn can increase the leakage power.
Figure 8 depicts the total (dynamic+leakage) power consumption
for the benchmarks. TC_R_MIN incurs an overhead in the range
14% to 138% with respect to SW_OPT. The average overhead is at
1.34 (34% increase in total power). The total power of the
RC_TEMP_MIN binding ranges between 0.90 and 1.43 of the
SW_OPT, yielding a maximum overhead of 43%. The average
overhead of RC_TEMP_MIN on total power is 5%.

Figure 8. Normalized total power consumption of the three
techniques.

For future technologies, we would expect the dominance of leakage
power to increase significantly. Although it is not a straightforward
task to project all of our temperature and power models onto a
future technology scale, a rough estimation based on the
exponential trend in leakage vs. temperature relationship indicates
that the power overhead of our binding scheme will incur a
continuously diminishing power overhead. The power overhead of
our techniques mostly originates from the fact that we do not give
priority to optimizing the switching activity on the resources. As
the contribution of switching power to the total power consumption
decreases with technology scaling we believe that our techniques
will be able to minimize the total power consumption.
Our results show that our temperature-aware binding technique
effectively controls the hot spot occurrences. If there are hard
constraints on the temperature, but not on the area, then the
TC_R_MIN approach can be used to keep the chip temperature
below a given constraint with a small impact on area and total
power consumption. If on the other hand, the area is highly
constrained RC_TEMP_MIN approach would leverage reliability.

5. CONCLUSIONS
We have introduced resource binding techniques to create
awareness of temperature effects during high-level synthesis. Our
main goal was to effectively minimize the maximum temperature
that is reached by any module in a design. A reliability-driven
design methodology can leverage on this mechanism to prevent or
reduce the likelihood of hot spots on a chip.
Our results show that we can bound the maximum temperature on
any module with overhead on area (28% increase in number of
multipliers and 54% increase in the number of ALUs), and power
(34% increase in total power) using the temperature constrained
resource minimization (TC_R_MIN) technique. Using the resource

constrained temperature minimization (RC_TEMP_MIN)
technique, on the other hand, the maximum observed temperature
can be reduced by 5oC on average, while incurring no area and a
small (5% on average) power penalty.

6. REFERENCES
1. Basu, A., et al. Simultaneous Optimization of Supply and Threshold
Voltages for Low-Power and High-Performance Circuits in the Leakage
Dominant Era. Design Automation Conference. 2004.
2. Brooks, D. and M. Martonosi. Dynamic Thermal Management for High-
Performance Microprocessors. International Symposium on High-
Performance Computer Architecture. 2001.
3. Cao, L., et al., Transient Thermal Management of Portable Electronics
using Heat Storage and Dynamic Power Dissipation Control. IEEE
Transactions on Components, Packaging, and Manufacturing Technology-
Part A, 1998. 21(1): p. 113-123.
4. Chang, J.M. and M. Pedram. Register Allocation and Binding for Low
Power. Design Automation Conference. 1995.
5. Chang, J.M. and M. Pedram. Module Assignment for Low Power.
European Design Automation Conference. 1996.
6. Chu, C.C.N. and D.F. Wong. A Matrix Synthesis Approach to Thermal
Placement. International Symposium on Physical Design. 1997.
7. Cong, J., J. Wei, and Y. Zhang. A Thermal-Driven Floorplanning
Algorithm for 3D ICs. International Conference on Computer-Aided
Design. 2004.
8. Goldberg, A.V., An Efficient Implementation of a Scaling Minimum-
Cost Flow Algorithm. Journal on Algorithms, January 1997. 22(1): p. 1--
29.
9. Gunther, S., et al., Managing the Impact of Increasing Microprocessor
Power Consumption. Intel Technology Journal, 2001.
10. Huang, W., et al. A Framework for Dynamic Energy Efficiency and
Temperature Management. International Symposium on Microarchitecture.
2000.
11. Huang, W., et al. Compact Thermal Modeling for Temperature-Aware
Design. Design Automation Conference. 2004.
12. Intel Corp. Intel® Itanium® Processor Overview,
www.intel.com/design/itanium/itanium/
13. Krum, A., Thermal Management, in The CRC Handbook of Thermal
Engineering, F. Kreith, Editor. 2000, CRC Press: Boca Raton, FL.
14. Lee, C., M. Potkonjak, and W.H. Mangione-Smith. MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Communicatons
Systems. International Symposium on Microarchitecture. 1997.
15. Liao, W., F. Lei, and L. He. Microarchitecture Level Power and
Thermal Simulation Considering Temperature Dependent Leakage Model.
International Symposium on Low Power Electronics and Design. 2003.
16. Lyuh, C. and T. Kim, High-level Synthesis for Low Power Based on
Network Flow Method. IEEE Transactions on Very Large Scale Integration
Systems, June 2003. 1(3).
17. Memik, S.O., et al. A Super-Scheduler for Embedded Reconfigurable
Systems. International Conference on Computer-Aided Design. 2001.
18. Sabry, M.N. Dynamic Compact Thermal Models: An Overview of
Current and Potential Advances. International Workshop on Thermal
Investigations of ICs and Systems. 2002.
19. Skadron, K., T. Abdelzaher, and M.R. Stan. Control-Theoretic
Techniques and Thermal-RC Modeling for Accurate and Localized
Dynamic Thermal Management. Eighth International Symposium on High-
Performance Computer Architecture. 2002.
20. Skadron, K., et al. Temperature-aware Microarchitecture. International
Symposium on Computer Architecture. 2004.
21. Stanford University Compiler Group The SUIF 2 Compiler System,
http://suif.stanford.edu/suif/suif2/
22. Tsai, C. and S. Kang. Standard Cell Placement for Even On-Chip
Thermal Distribution. International Symposium on Physical Design. 1999.

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

ew
f arf

jct
ran

s_
1

jct
ran

s_
2

jdm
erg

e1

jdm
erg

e2

jdm
erg

e3

jdm
erg

e4

moti
on

_2

moti
on

_3

no
ise

_e
st_

2
mea

n

Po
w

er
 C

on
su

m
pt

io
n

TC_R_MIN RC_TEMP_MIN SW_OPT 2.38

