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ABSTRACT 
Physical phenomena such as temperature have an increasingly 
important role in performance and reliability of modern process 
technologies. This trend will only strengthen with future 
generations. Attempts to minimize the design effort required for 
reaching closure in reliability and performance constraints are 
agreeing on the fact that higher levels of design abstractions need 
to be made aware of lower level physical phenomena. In this paper, 
we investigated techniques to incorporate temperature-awareness 
into high-level synthesis. Specifically, we developed two 
temperature-aware resource allocation and binding algorithms that 
aim to minimize the maximum temperature that can be reached by a 
resource in a design. Such a control scheme will have an impact on 
the prevention of hot spots, which in turn is one of the major 
hurdles in front of reliability for future integrated circuits. Our 
algorithms are able to reduce the maximum attained temperature by 
any module in a design by up to 19.6oC compared to a binding that 
optimizes switching power. 

Categories and Subject Descriptors: B.6.3 [Hardware]: Logic 
Design - Design Aids; J.6 [Computer Applications]: Computer-
aided Engineering (CAD). 

General Terms: Algorithms, Design, Experimentation. 

Keywords: Binding, Temperature, Switching, Leakage.         

1. INTRODUCTION 
Transistor counts in all electronic systems are increasing steadily. 
The latest Intel Itanium 2 processor contains more than 200 Million 
transistors [12]. It is predicted that Moore’s law will not slow down 
for at least another decade. By that time, integrated circuits (ICs) 
are expected to have feature sizes of 30 nanometers, allowing for 
integration of billions of devices on a single die and enabling 
unforeseen computational capabilities. One consequence of this 
trend is that heat dissipation on modern and future technologies is 
skyrocketing. ICs achieve extremely high computational power per 
unit silicon area at the expense of increased power densities. This 
in turn brings about the problem of potentially large operating 
temperature variations.  
Temperature has a significant impact on circuit performance. 
Increase in temperature has an adverse effect on carrier mobility, 
hence, switching speed of transistors. Interconnect resistance 

increases with temperature as well. Circuit reliability is also heavily 
impacted by temperature. Regions on a chip that generate excessive 
amounts of heat are referred to as hot spots.  Hot spots can 
jeopardize correct execution by causing transient as well as 
permanent faults. Even if excessive heat does not lead to 
spontaneous damage, it accelerates electromigration, which can 
lead to permanent damage in the long run.  
Several aspects of concern for design of future ICs, from reliability 
to performance and manufacturing cost, call for effective control of 
temperature during the design process of ICs. Moreover, every 
effort must be made to incorporate awareness of this phenomenon 
into every level of design abstraction. Design paradigms that target 
performance centric metrics such as delay and power have already 
evolved to a point that closure in these metrics inevitably involves 
planning and optimization above and beyond the physical synthesis 
stage. Similarly, management of emerging physical issues such as 
temperature need to be taken into account at all levels of 
abstraction of the design process. 
On a related track, power optimization and management techniques 
have long been studied for various design levels including high-
level synthesis. However, power optimization does not specifically 
address the problem of regulating local activity in a design, which 
can lead to hot spots over longer periods of activity, while the total 
power consumption might be seemingly well-bounded.  
In this paper, we present techniques to incorporate temperature 
awareness into high-level synthesis. Decisions made during high-
level synthesis have great impact on the activity of functional 
resources. If tasks such as scheduling, resource allocation and 
binding are performed with such awareness, temperature increase 
can be controlled more effectively, especially locally, which is 
closely related to hot spot formation. Our specific contributions in 
this paper are as follows. We 
- Formulate the temperature-aware resource binding problem, 
- Develop models for thermal profiles of functional resources 

for a given task assignment, 
- Develop resource binding techniques to effectively control 

maximum temperature of a binding 
- Study the impact of temperature on leakage current. 

Specifically we compare the performance of a switching 
optimized binding and our temperature-aware binding with 
respect to total power consumption, where the leakage power 
has a growing contribution with increasing temperature.  

The remainder of this paper is organized as follows. Section 2 gives 
an overview of related work. In Section 3 we elaborate on the 
temperature-aware design paradigm in high-level synthesis. In 
Section 3.1 we discuss some relevant assumptions in our work and 
introduce the temperature model we have used. We introduce our 
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temperature-aware allocation and binding algorithm in Section 3.2. 
Section 4 presents our experimental flow and results. We conclude 
our paper with a summary in Section 5. 

2. RELATED WORK 
There are various techniques to design packages and cooling 
techniques to develop better heat removal capability. A large 
amount of research effort has been spent on development of circuit 
and board level models of heating and thermal distribution. For 
design and analysis of high performance microprocessors various 
techniques to model thermal effects have been developed [18], 
[11], [15]. Runtime thermal management via clock gating using 
real-time temperature sensing has been included in Intel Pentium 4 
processors [9]. Other techniques such as frequency and/or voltage 
scaling, sub-banking, etc. have been investigated [2], [10], [3]. 
Skadron et al. developed a thermal model for microprocessors to 
capture hotspots and aid thermal management [20].  
From the other end of design hierarchy, physical design tools have 
been proposed to enable even thermal distribution on chips. Tsai 
and Kang developed a standard cell placement tool for even on-
chip thermal distribution [22]. Chu and Wong proposed a matrix 
synthesis approach to thermal placement [6]. Cong et al. introduced 
a thermal-driven floorplanning algorithm for 3-D ICs [7]. Basu et 
al. introduced the electrothermal energy-delay-product optimization 
scheme to perform simultaneous optimization of supply and 
threshold voltages in CMOS circuits [1]. 
To the best of our knowledge so far it has not been attempted to 
incorporate thermal considerations into higher level synthesis tasks. 
In this work we aim to accomplish this goal by developing 
temperature aware resource allocation and binding algorithms to be 
deployed within high-level synthesis.   

3. TEMPERATURE-AWARE HIGH-LEVEL 
SYNTHESIS 
During high-level synthesis, decisions regarding distribution of 
tasks across functional modules as well as relative timing of 
individual tasks are made. Activity of modules throughout the 
execution of an application is thereby determined. Intuitively, the 
higher the number of tasks assigned to a module the more activity 
will be observed in that module. In the context of temperature, we 
associate switching power dissipation during execution of a task 
with activity of the module. This in turn causes the module to 
generate heat and consequently the temperature is likely to 
increase. Also, the relative timing of operations executing on a 
given module is important. Consider two scenarios, where first, a 
module executes a set of tasks in a certain interval of time. In the 
second case, the same module executes the operations across a 
period of time, where there are more inactive time intervals in 
between operations. The rise in temperature in the first case would 
be expected to be steeper, since the module has less opportunity to 
relieve any heat buildup during execution. On the other hand, a 
careful assignment of tasks to the module considering the 
accumulative effects of continuous activity on heat buildup could 
help control the temperature rise. 
Since temperature is related to switching activity of resources, one 
could argue that minimizing total switching activity should help 
bound the temperature rise. This is indeed the case: minimizing 
switching activity also helps keep the temperature low. However, as 
we will show in the following sections a temperature-aware binding 

controls the maximum temperature reached in a design more 
effectively. Thereby it minimizes the likelihood of occurrence of 
hot spots, which is not considered by switching minimization 
schemes. Unlike switching power, temperature has an additive 
nature, i.e., the temperature at a given point in time will depend on 
the entire history of activity in the past. If this is not taken into 
account, cumulative heat will cause hot spots although the average 
activity seems to be well bounded.  
In the following sections we will present our temperature-aware 
resource allocation and binding scheme. First, we will describe our 
underlying assumptions and discuss our temperature model. Next, 
we will present our temperature-aware binding algorithm.  

3.1 Temperature Model and Relevant 
Assumptions 
In this work, we focus on the resource allocation and binding steps 
and hence, assume that scheduling has already been done. We do 
not make changes at the scheduling stage. Both scheduling and 
binding are hard tasks individually, often times aiming to optimize 
multiple objectives simultaneously. While it is part of our long-
term agenda to incorporate temperature-awareness into other stages 
of high-level synthesis also, we determined it to be reasonable to 
separate these two hard tasks initially and tackle each individually. 
Therefore, we directed our attention to resource binding first, 
which highly impacts the activity on a resource. In addition, there 
are well-established network flow-based techniques to minimize 
switching activity during resource binding [5], [16], which relates 
to temperature as we discussed earlier. By developing an alternative 
temperature-aware resource binding scheme we were able to 
compare our approach to a binding that aims to minimize switching 
activity, where the starting point to both our approach as well as the 
minimum switching binding would be the same initial schedule. 
We will describe the network flow based binding technique in more 
detail in Section 4.1. 
To evaluate the effect of binding on temperature we used a 
temperature model that represents increase in module temperature 
due to power dissipated during switching activity and decrease in 
temperature during idle cycles through conduction. Our model is 
rooted at the heat transfer theory, which establishes the duality 
between heat transfer and behavior of RC circuits [13]. Similar 
models have been used in the past for thermal modeling of 
microarchitectures [15], [11]. Variation in temperature can be 
modeled using an exponential transient behavior governed by a 
time constant analogous to the electrical time constant RC. This 
time constant will determine the speed at which heat will cause an 
increase in temperature. Similarly cooling can be modeled with a 
transient behavior. We refer to the components of the RC time 
constant as the thermal resistance R and the thermal capacitance C 
of a module. We evaluate the change in temperature at the 
granularity of one operation executed by the resource. Also, in our 
model the temperature variations of individual modules are 
evaluated independently. Then, the temperature variation that 
occurs due to the resource executing an operation takes the 
following form: 
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TA is the ambient temperature, Ti is the temperature of a module 
after having executed operation i, Ti+1 is the temperature of the 
module after executing operation i+1 following operation i, di, i+1 is 
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the difference between the finish time of operation i and the start 
time of operation i+1, and R and C are the thermal resistance and 
capacitance of the resource respectively. The values of R and C 
have been derived using a similar method used by Huang et al. 
[11]. Thermal resistance is proportional to the chip thickness and 
inversely proportional to the cross-sectional area of the resource. 
Thermal capacitance is proportional to the chip thickness and 
cross-sectional area. We have calculated the RC constant to be 
approximately 232µs for silicon of 0.5mm die thickness. ∆Ttot is the 
temperature contribution due to the total power dissipation of the 
resource. We calculate ∆Ttot using the formula used in [19] as 
shown below 

CR
tT

C
tPT itot

tot
∆+∆=∆  

where Ptot = Pleakage  + Pdynamic is the total power and ∆t is one clock 
cycle duration. However the temperature rise of an IC is similar to 
capacitance charging, the temperature getting saturated after having 
reached a maximum operating temperature that we assume to be 
400K (127 oC). We use first order approximation to calculate the 
actual contribution of ∆Ttot.  
Leakage power model depends exponentially on threshold voltage 
Vth and temperature T. We choose the following model template  

)),(exp( TVfP thleakage =  

We have used a 4th order polynomial to represent f(Vth, T). For our 
process technology at 180nm, this roughly corresponds to 15% of 
the dynamic power at the ambient temperature and doubles every 
25oC. 
In the next section we will present our temperature-aware resource 
allocation and binding technique.     

3.2 Temperature-Aware Resource Allocation 
and Binding 
Our algorithm takes in a scheduled data flow graph (DFG) and the 
switching activity between the operations. It can operate under one 
of the following two alternative modes: 
- Temperature_Constrained_Resource_Minimization: This 

mode tries to find a binding that does not allow the 
temperature of any resource to reach above a given threshold 
value. This constraint might force the binding algorithm to 
increase the number of resources and our algorithm tries to 
keep this increase minimum 

- Resource_Constrained_Temperature_Minimization: In the 
second mode, our algorithm conforms to a given resource 
constraint while minimizing the maximum temperature 
reached by any resource.  

For either mode of optimization, we perform a preprocessing of the 
scheduled DFG first. For each resource type we create a 
comparability graph of the operations that this resource can 
execute. A comparability graph is essentially a compatibility graph 
with transitive orientation. If operations u and v are compatible, 
there exists a directed edge from u to v if  

start time (v) > finish time (u) 
Each edge of the comparability graph has a weight equal to the 
switching activity if the two operations are bound to the same 
resource consecutively. The operations bound to a resource will be 
executed in the topological order dictated by the comparability 

graph. The comparability graph is essentially a directed acyclic 
graph (DAG). We first perform topological sort on this graph. 
Next, we visit the vertices of the comparability graph in topological 
order and we determine a parent for every vertex, which indicates 
that if an operation were assigned to a particular resource, that 
parent would be the best candidate to have been assigned on the 
same resource prior to this operation. We call the determination of 
a parent for each vertex relaxation. The relaxation idea is same as 
Dijkstra’s shortest path algorithm where for each vertex the best 
parent is determined through which we could reach the vertex with 
the shortest distance from a start point. In the context of our 
problem we relax vertices with a different criterion. Say vertices 
vi…j can be reached from u. Temperature of the resource (Ti+1)i…j is 
computed over a period of time to check the rise of the temperature 
of the module for executing (u, vi), …(u, vj) consecutively. For 
resource constrained temperature minimization, we relax those 
vertices in vi…j which lead to minimum rise of temperature. For 
temperature constrained resource minimization, we relax only those 
vertices that do not violate the temperature constraint. Whenever a 
vertex vi is relaxed, the path length of the vertex is updated at d[vi] 
= d[u] + 1 and the parent of vi is set to u. The relaxation pseudo 
code is shown in Figure 1. 
 
 
 
 
 
 

Figure 1. Relaxation routine. 
After all the vertices have been relaxed, we have paths, which 
represent permissible binding of the operations to a resource. The 
algorithm selects the longest path and assigns the operations to the 
same resource. Since we have a directed acyclic graph, relaxing on 
a topologically sorted list guarantees that relaxing a node does not 
involve relaxing its children in the same iteration For comparability 
graph G(V, E), E = O(V2)  and the cost of relaxation of all the 
vertices is O(E) =  O(V2).  The vertices in the selected path are 
removed from the comparability graph and a new comparability 
graph is built with the remaining vertices and the above steps are 
repeated. The pseudo code of the Temperature-Aware binding 
algorithm is shown in Figure 2.  
Since we relax vertices with minimum temperature rise, the 
operations on the longest path may not include all compatible 
operations as required by the resource constraint. Thus the initial 
binding might violate resource constraint. Then we perform post 
processing to meet the resource constraint. The post-processing 
algorithm tries to merge operations from the resource, which have 
minimum number of operations into other compatible resources. 
The final choice of the binding is determined such that it entails 
minimum rise of temperature. Post-processing iteratively decreases 
the resource number such that it meets the resource constraint. 
Obviously the constraint has to be at least equal to the feasible 
number of resources required to bind all the operations, which can 
be obtained by Left Edge algorithm. For temperature constraint 
resource minimizing involves deleting least populated resources 
and binding operations such that the temperature constraint of the 
resource (where the operation will be bound) is not violated. The 
overall flow is shown in Figure 3. 

Relax(u,v , wuv, Criterion)

Criterion: (Tempconst , Resmin), (Resconst, Tempmin)
If (Evaluate(Criterion) == true)

Update (switching activity (wuv), 
Update temperature (wuv )
d[v] = d[u] + 1; 
parent[v] = u 

Relax(u,v , wuv, Criterion)

Criterion: (Tempconst , Resmin), (Resconst, Tempmin)
If (Evaluate(Criterion) == true)

Update (switching activity (wuv), 
Update temperature (wuv )
d[v] = d[u] + 1; 
parent[v] = u 
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Figure 2.  Temperature-aware binding algorithm:  Based on the 
criterion parameter, either temperature constrained resource 
minimization or resource constrained temperature minimization 
is performed. 
 
 
 
 
 
 
 

Figure 3. General temperature-aware binding methodology. 

4. Experimental Results 
In the following sections we will first describe our experimental 
flow and then we will present our results. 

4.1 Experimental Setup 
Figure 4 depicts our experimental flow. We have used benchmarks 
from two sources: applications from the MediaBench suite [14] and 
Data Flow Graphs (DFGs) of some popular DSP applications that 
are widely used in the high-level synthesis community.  Using the 
SUIF and Machine-SUIF compiler infrastructure [21] we have 
extracted the DFGs of representative functions from MediaBench 
applications. The input DFGs were then scheduled using our own 
resource-constrained latency minimizing scheduler [17]. The input 
DFGs have been simulated to generate switching probabilities for 
individual operations using a trace of 10,000 input values. 
Functional modules used (our resource sets contained ALUs to 
execute add, subtract, and logical operations, and multipliers) have 
been synthesized using Synopsys Design Compiler onto the 180nm 
tsmc library. Capacitance values of modules have thereby been 

extracted to estimate switching power and this information was 
combined with bit toggle probabilities obtain through simulation to 
obtain switched capacitance values. Compatibility graphs for each 
resource type for the scheduled DFGs have then been created 
where edge weights are equal to the switched capacitances obtained 
as explained above. The compatibility graphs are given as input to 
the binding stage.  
We generated binding solutions using three approaches. We call 
the first approach Switching_Optimized (SW_OPT in short). This is 
the binding scheme based on the min-cost network flow 
formulation proposed by Chang and Pedram [4]. They applied this 
formulation to low power register binding where the binding 
problem is formulated as a minimum cost clique covering problem, 
and solved it optimally using a transformation from max-cost flow 
algorithm to min cost flow. We have solved the network flow 
formulation using a software package developed by Goldberg [8].  
The second binding solution was generated using our temperature-
aware technique, where the same resource constraint that was used 
in the min cost flow approach has been used. We call this binding 
Resource_Constrained_Temperature_Minimized (RC_TEMP_ 
MIN).  The third solution was obtained by our temperature-aware 
technique after relaxing the resource constraint. In this case we 
determine the allocation, i.e., number of resources to be used, as a 
well as the actual binding to resources. We call this binding 
Temperature_Constrained_Resource_Optimized (TC_R_MIN).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Overall experimental flow. 

4.2 Results 
Our first set of results present the maximum temperature any 
modules reaches in each benchmark. We have estimated the 
temperature levels for individual modules in each design using our 

Criterion Selection for Resource Binding
Temperature Aware Resource Binding (Criterion) 
Use Left Edge Algorithm to find Feasible Resource size
if(Resource Constraint  =>  Feasible Resource size)

Post Processing the binding to satisfy Resource constraint
with minimum Temp rise

Else
Post Processing the binding to minimize resources under 
Temp constraint

Input: Scheduled Data Flow Graph(DFG)
Switching activity between the operations
Criterion: (Tempconst, Resmin), (Resconst, Tempmin)

Begin:
For each operation type

While all the operations not bound to a resource 
Build comparability graph for the operation
Label the edges with the switching activities
Initialize the nodes
Topologically sort the comparability graph
For each vertex u taken in a topologically sorted order

For each vertex v adjacent to u
do Relax(u, v, wuv, Criterion)

end For
end For
Pick the longest criterion safe path and bind 
the operations to a resource
Increase the resource count of the operation type
Delete the operations bound to a resource from the 
comparability graph

end While
end For

End

Output: Maximum temperature of Resource
Number of resources required by each optype

Input: Scheduled Data Flow Graph(DFG)
Switching activity between the operations
Criterion: (Tempconst, Resmin), (Resconst, Tempmin)

Begin:
For each operation type

While all the operations not bound to a resource 
Build comparability graph for the operation
Label the edges with the switching activities
Initialize the nodes
Topologically sort the comparability graph
For each vertex u taken in a topologically sorted order

For each vertex v adjacent to u
do Relax(u, v, wuv, Criterion)

end For
end For
Pick the longest criterion safe path and bind 
the operations to a resource
Increase the resource count of the operation type
Delete the operations bound to a resource from the 
comparability graph

end While
end For

End

Output: Maximum temperature of Resource
Number of resources required by each optype
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model described in Section 3.1. We took measurements with this 
model for an execution interval of 1000 clock cycles at a clock 
frequency of 100 MHz. Figure 5 depicts the maximum temperature 
reached by the ALUs. Figure 6 presents the maximum temperature 
reached by the multipliers for the three binding solutions. 
(jctrans_2 did not contain any multiplication.) TC_R_MIN binding 
always yields the best solution. It reduces the maximum observed 
temperature by as high as 19.6oC, and 7.6 oC on average for 
multipliers and 11.9oC for ALUs. However, often times this comes 
at the expense of increased number of resources. Table 1 shows the 
number of resources used by SW_OPT binding and TC_R_MIN 
binding. We performed the RC_TEMP_MIN binding by using the 
same resource constraint that was used for the SW_OPT binding. 
In that case, the maximum temperature on the resources increases 
with respect to the TC_R_MIN binding. However, it is still below 
SW_OPT solution. Particularly, it reduces the maximum 
temperature by as much as 10.3oC and 11.2oC, for multipliers and 
ALUs, respectively (2.7oC and 3.6oC on average).   
 
 
 
 
 
 
 
 
 
 

Figure 5. Maximum temperature reached by ALUs. 
 
 
 
 
 
 
 
 
 
 

Figure 6. Maximum temperature reached by multipliers. 

When we compared the impact of our binding techniques onto the 
power consumption, we realized that control of maximum 
temperature comes at the expense of some power overhead. For 
instance, the RC_TEMP_MIN binding uses a larger number of 
resources to minimize maximum temperature. This in turn causes 
the total power consumption of the design to increase. We will 
present results to this end shortly. For the moment, assuming that 
there is some overhead associated with temperature controlled 
binding, we can view TC_R_MIN and RC_TEMP_MIN as binding 
schemes with different levels of aggressiveness in terms of 
temperature optimization. If hot spot prevention is of highest 

priority due to the stringent reliability requirements one of the two 
temperature-aware binding schemes would be chosen. Whether to 
use TC_R_MIN or RC_TEMP_MIN would depend on the 
tolerable power overhead. If only a very small overhead is tolerable 
then RC_TEMP_MIN would be chosen, which still keeps the 
temperature of the hottest module below the levels of SW_OPT. If 
the power overhead allowance can be relaxed further then the 
maximum reduction in the temperature of the hottest resource can 
be achieved using TC_R_MIN.  
Table 1. Resource requirements for SW_OPT and TC_R_MIN 

bindings. 
 SW_OPT  

[MUL, ALU] 
TC_R_MIN 

[MUL, ALU] 
Ewf 3, 5 4, 8 
Arf 4, 2 5, 4 
jctrans_1 2, 3 2, 7 
jctrans_2 0, 4 0, 6 
jdmerge1 3, 6 3, 7 
jdmerge2 3, 6 3, 9 
jdmerge3 3, 6 3, 9 
jdmerge4 3, 5 5, 9 
motion_2 4, 6 6, 8 
motion_3 4, 6 6, 8 
Noise_est_2 3, 4 4, 7 

Now, we present the actual power overhead associated with 
TC_R_MIN and RC_TEMP_MIN with respect to SW_OPT 
binding. Figure 7 illustrates the relative increase in the leakage 
power consumed by all resources in a benchmark for TC_R_MIN 
and RC_TEMP_MIN bindings with respect to the normalized value 
of SW_OPT.  
 
 
 
 
 
 
 
 
 
 

Figure 7. Normalized leakage power consumption of the three 
techniques. 

For example, a value of 0.86 corresponds to a 14% reduction in 
leakage power consumed by all resources in a benchmark with 
respect to SW_OPT binding. We see that the leakage power for 
TC_R_MIN binding ranges from 0.88 to 2.18 with an average 
overhead of 1.09 (9% increase over SW_OPT). Although 
TC_R_MIN achieves minimal temperatures, it increases the 
number of resources used significantly. Hence, the total leakage 
power tends to increase. In the case of RC_TEMP_MIN, the 
leakage power ranges from 0.86 to 1.01 of SW_OPT, reducing the 
leakage to 0.98 (2% reduction) on average. In almost all cases 
RC_TEMP_MIN achieves a better leakage behavior. Although 
RC_TEMP_MIN successfully reduces the maximum temperature 
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(hot spot) it generates a few other resources with relatively high 
temperatures. This in turn can increase the leakage power.  
Figure 8 depicts the total (dynamic+leakage) power consumption 
for the benchmarks. TC_R_MIN incurs an overhead in the range 
14% to 138% with respect to SW_OPT. The average overhead is at 
1.34 (34% increase in total power). The total power of the 
RC_TEMP_MIN binding ranges between 0.90 and 1.43 of the 
SW_OPT, yielding a maximum overhead of 43%. The average 
overhead of RC_TEMP_MIN on total power is 5%.  
 
 
 
 
 
 
 
 
 
 

Figure 8. Normalized total power consumption of the three 
techniques. 

For future technologies, we would expect the dominance of leakage 
power to increase significantly. Although it is not a straightforward 
task to project all of our temperature and power models onto a 
future technology scale, a rough estimation based on the 
exponential trend in leakage vs. temperature relationship indicates 
that the power overhead of our binding scheme will incur a 
continuously diminishing power overhead. The power overhead of 
our techniques mostly originates from the fact that we do not give 
priority to optimizing the switching activity on the resources. As 
the contribution of switching power to the total power consumption 
decreases with technology scaling we believe that our techniques 
will be able to minimize the total power consumption. 
Our results show that our temperature-aware binding technique 
effectively controls the hot spot occurrences. If there are hard 
constraints on the temperature, but not on the area, then the 
TC_R_MIN approach can be used to keep the chip temperature 
below a given constraint with a small impact on area and total 
power consumption. If on the other hand, the area is highly 
constrained RC_TEMP_MIN approach would leverage reliability.  

5. CONCLUSIONS 
We have introduced resource binding techniques to create 
awareness of temperature effects during high-level synthesis. Our 
main goal was to effectively minimize the maximum temperature 
that is reached by any module in a design. A reliability-driven 
design methodology can leverage on this mechanism to prevent or 
reduce the likelihood of hot spots on a chip.  
Our results show that we can bound the maximum temperature on 
any module with overhead on area (28% increase in number of 
multipliers and 54% increase in the number of ALUs), and power 
(34% increase in total power) using the temperature constrained 
resource minimization (TC_R_MIN) technique. Using the resource 

constrained temperature minimization (RC_TEMP_MIN) 
technique, on the other hand, the maximum observed temperature 
can be reduced by 5oC on average, while incurring no area and a 
small (5% on average) power penalty. 
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