
1

Temperature-Aware Scheduling and Assignment for Hard Real-Time
Applications on MPSoCs

Thidapat Chantem, X. Sharon Hu, and Robert P. Dick

Abstract—Increasing integrated circuit (IC) power densities
and temperatures may hamper multiprocessor system-on-chip
(MPSoC) use in hard real-time systems. This article formal-
izes the temperature-aware real-time MPSoC assignment and
scheduling problem and presents an optimal mixed integer
linear programming based solution that considers the impact
of scheduling and assignment decisions on MPSoC thermal
profiles to directly minimize the chip peak temperature. We also
introduce a flexible heuristic framework for task assignment and
scheduling that permits system designers to trade off accuracy
for running time to solve large problem instances. Finally, for
task sets with sufficient slack, we show that inserting idle times
between task executions can further reduce the peak temperature
of the MPSoC quite significantly.

I. INTRODUCTION

MULTIPROCESSOR systems-on-chips (MPSoCs) are
now widely used in application-specific systems and

high-performance computing. They offer performance, power
consumption, and implementation complexity advantages over
highly superscalar uniprocessor architectures. Their use, and
scale, will increase dramatically in the coming years. Accord-
ing to Milchman [1], 16-core processors will be common
within the next four years. Intel plans to deliver proces-
sors that have dozens or hundreds of cores during the next
decade [2]. The use of heterogeneous MPSoCs can sometimes
dramatically improve performance and power consumption
relative to homogenous MPSoCs [3]. However, it can also
increase complexity. It is likely that some future MPSoCs will
be homogeneous and some will be heterogeneous. With the
current use of MPSoCs in soft real-time applications such as
gaming [4], it is expected that many hard real-time applications
will soon be implemented using MPSoCs. In fact, FreeScale
is now offering the QorIQ Embedded Multicore Processor [5],
which is intended for, among others, aerospace applications,
which contain hard real-time tasks.

MPSoC temperature is a strong function of power density.
Increasing transistor counts and aggressive frequency scaling
result in a significant increase in chip power density and
temperature. Increasing chip temperature has significant im-
pact on other design metrics including reliability, performance,
and cost, as microprocessor failure rate depends exponentially
upon operating temperature [6]. A 10–15 ◦C difference in
operating temperature can result in a 2× difference in the

T. Chantem and X.S. Hu are with the department of Computer Science &
Engineering at the University of Notre Dame, Notre Dame, IN 46556. R.P.
Dick is with the department of Electrical Engineering and Computer Science
at the University of Michigan, Ann Arbor, MI 48109. Emails: {tchantem,
shu}@nd.edu and dickrp@eecs.umich.edu. This work was sup-
ported in part by NSF under grant numbers CNS-0834180, CNS07-20457,
CCF-0702761, and CNS-0347941 and by SRC under grant number 2007-HJ-
1593.

lifespan of a device [7]. Temperature also affects speed; re-
duction of charge carrier mobility in transistors and increased
interconnect latency resulting from high temperature degrade
performance, requiring reduced clock frequencies or, worse
yet, resulting in run-time failures.

Increasing power densities makes conservative package and
cooling design prohibitively expensive, since the cost of cool-
ing solutions increases super-linearly with power consump-
tion [8]. It is therefore necessary to design packaging and cool-
ing solutions based on less than worst-case thermal profiles
and compensate by preventing, hopefully rare, dangerous ther-
mal scenarios at run-time. Most popular approaches react to
critical temperatures by reducing frequency and voltage (i.e.,
performing hardware throttling), or by temporarily preventing
instruction issue to reduce the power consumption, and hence
temperature, of the processor [9].

Since the execution times of real-time tasks, and hence total
system utilization, tend to vary significantly due to factors
such as conditional branches and system inputs [10], real-
time applications can exhibit great temperature variation at
run-time. When the system utilization is low, the MPSoC may
not have a high temperature problem, thanks to the amount of
slack available in the system. On the other hand, a system with
high utilization can push an MPSoC to its thermal limit [11]–
[13]. In the worst case, the host MPSoC may lack run-
time thermal management, leading to overheating and signal
timing violations or permanent failure. More subtly, real-time
systems containing MPSoCs that support run-time thermal
management would also fail when a temperature bound is
reached, but for a different reason.

Most run-time thermal management techniques use thermal
sensors to detect when the maximum safe temperature is
approached and react by decreasing processor power consump-
tion, e.g., by decreasing frequency or stalling instruction issue.
These techniques share a common weakness: they decrease
performance. If a real-time task running on an MPSoC with
run-time thermal management ever triggers throttling when
there is little timing slack, the real-time task will miss its
deadlines. Missing hard real-time deadlines is unacceptable; an
example would be failure to stop an automatically controlled
train on time [14]. To guarantee hard real-time performance,
designers should consider thermal effects by explicitly opti-
mizing peak temperature while meeting all functionality and
real-time deadlines. Clearly, the temperature-aware real-time
MPSoC assignment and scheduling problem must be solved.

Existing power-aware techniques, such as energy minimiza-
tion, peak power minimization, as well as global dynamic
voltage and frequency scaling (DVFS), cannot solve the tem-
perature problem in MPSoCs because they do not consider
spatial thermal variation; heat generated by an active core also

2

affects other neighboring thermal elements, be they other cores
or portions of the heatsink. The net heat flow from one thermal
element to another depends on the conductance parameters and
the current temperatures of these thermal elements. Ignoring
spatial thermal variation can lead to unnecessarily-high peak
temperatures, especially for high power density chips.

I.A. Related Work

Researchers have only recently started work in temperature-
aware high-level synthesis [15] and design space explo-
ration [16]. The objective is usually to optimize system perfor-
mance subject to a peak temperature constraint. For uniproces-
sor architectures, Wang and Bettati presented a reactive two-
speed policy to control the peak temperature [13]. To guarantee
real-time deadlines, a proactive thermal management policy
was later proposed [12]. Rao et al. presented an optimal pro-
cessor speed control to maximize the work completed under
a temperature constraint [17]. The thermal model was later
improved by the same authors [18]. Mutapcic et al. focused on
energy minimization under thermal and task constraints [19].
Quan et al. presented a necessary and sufficient condition for
schedulability as well as a novel scheduling algorithm for real-
time applications running on processors with a temperature
constraint [20]. A temperature constraint may be sufficient
if only timing faults are considered and if the designer has
control over the post-deployment thermal environment, e.g.,
fan speed and ambient temperature. If wear is also considered,
then lower temperatures are better. In addition, due to factors
such as a high ambient temperature or a broken fan, the peak
temperature minimization approach will maximize the number
of systems that still meet the temperature constraint under
severe conditions. Unfortunately, there is little research that
targets peak temperature control directly. Bansal et al. were
among the first to study the problem of peak temperature
minimization using continuous dynamic speed scaling for
uniprocessors running independent tasks [21]. Jayaseelan and
Mitra presented a task sequencing technique to minimize the
peak temperature for periodic real-time tasks running on a
single processor [22]. Neither work considers MPSoCs nor
task dependencies.

For multiprocessors and MPSoCs, the problem of assigning
and scheduling real-time tasks is an important topic that has
received significant research attention. Some papers focus
on meeting hard real-time constraints [23] while others aim
to optimize energy consumption in the presence of timing
constraints [24]. Since most real-time scheduling problem
variants are NP-hard, many heuristics have been proposed
to solve large problem instances with different optimality cri-
terion [25]. Once again, the focus is usually placed on meeting
the thermal constraint instead of minimizing peak temperature.
For example, Rao et al. presented a method to maximize
throughput by determining speeds of different cores subject
to a peak temperature constraint [26]. Mulas et al. proposed a
task migration algorithm that balances the loads on different
cores to reduce hotspots [27]. Coskun et al. used online
learning [28] and integer linear program (ILP) [29] to reduce
the frequency of peak temperature constraint violations. Jung

et al. used dynamic thermal management (DTM) to minimize
energy while meeting a peak temperature constraint [30]. An
approximation algorithm for minimizing the peak temperature
of ideal processors was proposed by Chen et al. for real-
time tasks with no precedence constraints [31]. In addition,
a temperature-aware task assignment and voltage selection
algorithm was proposed by Sun et al. for three-dimensional
stacked-wafer MPSoCs [32]. However, this solution cannot be
used to solve our problem since only homogeneous cores are
considered and spatial thermal variation is ignored (the peak
temperature of 3-D MPSoCs is strongly influenced by vertical
inter-core heat flow).

Xie and Hung were the first to propose a collection of
heuristics for temperature-aware processor allocation, task as-
signment, and scheduling [11]. However, the proposed heuris-
tics either consider spatial or temporal thermal variations, but
not both types of variations at the same time. In Section Sec-
tion V, we show that their technique can deviate significantly
from optimality.

Finally, Paci et al. claim that temperature-aware design
is unnecessary in low-power embedded systems [33]. While
their conclusions hold for very low-power embedded pro-
cessors because on-die temperature variation is small, our
results show substantial (> 30 ◦C improvement) benefits from
temperature-aware design for MPSoCs containing processor
cores characterized by the Embedded Systems Benchmarks
Consortium [34] using the thermal model in Section II-B.

I.B. Contributions
This article makes the following main contributions. We

present a mixed-integer linear programming (MILP) formu-
lation for assigning and scheduling tasks with hard real-
time constraints on an MPSoC to minimize the chip peak
temperature. Our formulation considers spatial and temporal
thermal variations. It relies on a phased steady-state thermal
analysis directly integrated within the MILP formulation.
The phased steady-state thermal analysis produces a separate
steady-state thermal profile for each power profile occurring
during the schedule. Extensions for temperature-dependent
leakage power modeling, DVFS, finer-grained thermal mod-
eling, and inter-task communication modeling are given.

To solve problem instances that are large or for which
the effects of heat capacitance are significant, we propose a
heuristic task assignment and scheduling framework in which
the actual method for computing the thermal profile can
be selected as appropriate. Specifically, phased steady-state
thermal analysis is used when task durations are long relative
to the time constants of the cores. Transient thermal analysis,
in which temperatures are time-dependent, is used otherwise.

To exploit slack in the system where the effects of heat
capacitance are significant, we use the concept of delay (i.e.,
idle time) insertion in our transient analysis based heuristic to
further reduce the chip peak temperature while guaranteeing
hard real-time deadlines.

I.C. Organization
The paper is organized as follows. In Section II, we intro-

duce our system model, state our assumptions, and formally

3

define the problem. We motivate the need for a temperature-
aware assignment and scheduling algorithm in Section III. We
describe our formal approach in Section IV and present our
flexible heuristic framework in Section V. We introduce and
incorporate the concept of delay insertion into our heuristic
framework in Section VI. The benefits and efficiency of
our approach are experimentally determined in Section VII.
Section VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM DEFINITION

The system model and the temperature-aware real-time MP-
SoC assignment and scheduling problem are now described.

II.A. Task Model

In our model, J represents the set of hard real-time tasks
to be executed. For each task j ∈ J , the worst-case execution
time when running on core m is denoted by E(j, m), the
deadline by D(j), and the release time by R(j). Note that
R(j) = 0 and D(j) = ∞ if no release time and deadline
constraints are associated with task j. A directed acyclic graph
(DAG) is used to capture data dependencies among tasks. In
a DAG, nodes represent tasks and directed edges indicate data
dependencies between pairs of tasks. Let Γj1,j2 denotes the
dependency between tasks j1 and j2 where

Γj1,j2 =

{
1 if task j1 is immediately precedes task j2

0 otherwise
(1)

A task j may execute only after all its predecessor tasks
have completed and j has been released, i.e., the current
time is at or later than R(j). For now, we assume that
there is no communication cost among dependent tasks. This
assumption will be relaxed in Section IV-E. For periodic
systems, we guarantee schedule validity by scheduling out to
the hyperperiod of all tasks [35]. The hyperperiod is the least
common multiple of the periods of all tasks in the problem
specification.

II.B. Thermal Model

We model an MPSoC with a set of cores, M . For each
core m ∈ M , its width, height, and location are specified.
Based on the floorplan, the set of neighbors of core m, Nm,
thermal conductance to a neighbor n, Gn(m,n), and thermal
conductance to the heatsink element above it, Gh(m), can
be calculated. For each task and core combination, P (j, m)
indicates the power consumption of core m when executing
task j. We discuss an extension to this power model to account
for leakage power in Section IV-B.

Thermal analysis estimates the heat transfer through hetero-
geneous materials among heat producers (e.g., transistors) and
heat consumers (e.g., heatsinks attached to an MPSoC). In the
task assignment and scheduling phase, we will adopt a coarse-
grained discrete heat flow model analogous to widely-used
compact models [36] to balance thermal analysis efficiency
and accuracy. However, the algorithm framework proposed in
Section V can be used with any thermal analysis technique.

In our thermal model, which is based on the classical Fourier
heat flow model, each core corresponds to a discrete thermal
element. (Section IV-D discusses how our approach can be
modified to support finer-grained thermal element modeling.)
The heatsink on top of the cores is modeled using multiple
thermal elements and its partitioning corresponds to the layout
of the cores. Since the heatsink is usually larger than the
processor itself, we model heatsink overhang using additional
thermal elements; the heatsink overhangs the chip by 25%
of its length and width. The interface layer is included within
the heatsink instead of being modeled explicitly. (The interface
material is usually very thin so lateral heat flow within it can
be neglected.) Lateral heat flow between cores and heatsink
elements is modeled.

To perform thermal analysis, we take advantage of the well-
known duality between electrical and thermal circuits. The
temperature of each thermal element can be expressed as
a function of its power consumption, the ambient tempera-
ture, and the temperatures of neighboring thermal elements.
Figure 1(a) depicts the circuit representation of this model.
Here, TA denotes the ambient temperature, GA(h) is the
conductance from the heatsink element h to the ambient, and
Gnh(h, g) is the conductance between heatsink elements h
and g. The current source Pm denotes the power consumption
of core m. The terms Gh(m) and Gn(m,n) were as defined
previously.

The temperature of core m at time t, T (t,m), can be
determined using the node thermal analysis of the circuit in
Figure 1(a):

0 =
∑

n∈Nm

(T (t, m)− T (t, n)) ·Gn(m,n) + C(m) · dT (t, m)
dt

+ (T (t, m)− T (t, h)) ·Gh(m)−
∑
j∈J

α(t, j,m) · P (j,m)

(2)

0 =
∑

g∈Nh

(T (t, h)− T (t, g)) ·Gnh(h, g) + C(h) · dT (t, h)
dt

+ (T (t, h)− T (t,m)) ·Gh(m) + (T (t, h)− TA) ·GA(h),
(3)

where T (t, h) is the temperature of the heatsink element h
directly above core m at time t, C(m) is the capacitance of
core m, C(h) is the capacitance of heatsink element h, and
α(t, j,m) = 1 if task j is active on core m at time t. In the
above two equations, if the heatsink element h is a heatsink
overhang element, then the term (Th − Tm) ·GH(m) = 0.

The thermal conductance of core m to the heatsink element
h directly above it, Gh(m), can be computed as shown by
Serway [37]:

Gh(m) =
Aream

Rchip ·Areachip
, (4)

where Aream denotes the area of core m, Areachip represents
the area of the chip, and Rchip = thsi

Ksi ·Areachip
, thsi is the

thickness of silicon, and Ksi denotes its thermal conductivity.
In our experiments, we set thsi and Ksi to be 0.6 mm and
148 W/mK, respectively.

4

The conductance of a heatsink element h to the ambient
can be calculated in a similar manner. That is, we substitute
Aream and Areachip in Eq. 4 by the area of the heatsink
element under consideration and the area of the entire heatsink,
respectively. In addition, we replace Rchip with RHS in Eq. 4,
where RHS = Tactive−Tambient

Pchip
− Rchip , Pchip being the total

power consumption of the chip and Tactive the average active
layer temperature when all cores are busy and Tambient is the
ambient temperature. We set Tactive and Tambient to 90 ◦C
and 45 ◦C, respectively.

We compute the conductance between core m and its
neighbor core n as follows.

Gn(m,n) =
wmn · thsi ·Ksi

Lmn
, (5)

where wmn is the length of intersection between cores m and
n, Lmn is the distance between the midpoint of m and that
of n. The lateral conductance between two heatsink elements
can be computed in a similar fashion. We assume that the
heatsink is made of copper, with a thickness of 1 mm and
thermal conductivity of 400 W/mK.

II.C. Problem Definition

Consider the floorplan of a chip containing a set of cores,
M , and a set of hard real-time tasks, J as described above,
determine a static assignment of tasks to cores and a static,
non-preemptive schedule of tasks on the cores such that all
precedence constraints and real-time deadlines are met, and
the chip peak temperature, Tmax , is minimized.

III. MOTIVATING EXAMPLE

Since average power (i.e., energy) for a fixed duration and
peak power are related to chip temperature, it is natural to
question whether optimizing peak temperature can produce
significantly different results than optimizing peak power or
average power. Let us consider a task set containing two
identical tasks, j1 and j2, each with a deadline of 5 ms. For
this example, the MPSoC is arranged as shown in Figure 1(b)
(core sizes are not necessarily drawn to scale in the diagram).
Task execution times (E) and associated power consumptions
(P) are shown near the respective cores. To minimize energy,
tasks j1 and j2 are both assigned to core m2. The resultant
chip peak temperature is 65.30 ◦C. If our objective were to
minimize peak power, then task j1 would be assigned to core
m2 and task j2 to core m1, also resulting in a peak temperature
of 65.30 ◦C. However, if task j1 were executed on core m4 and
task j2 on core m1, the peak temperature would be reduced
to 65.16 ◦C, which is about 0.14 ◦C cooler. This difference is
the first point in the plot in Figure 2.

While the improvement in this case is small, the power
density of the chip in the above example is only 0.19 W/mm2.
The power density can be as high as 0.79 W/mm2 for
90 nm processors, 2.02 W/mm2 for 65 nm processors, and
7.24 W/mm2 for 45 nm processors [38]. To obtain similar
chip power densities, we repeated the previous experiment in
which the setup is explained earlier but increased each core
power consumption by factors of 2, 5, 10, 15, and 20. The

1/GA(k)

Tm

Tn

1/GH(m)

1/GH(n)

TA

1/GA(h) Th

Tg1/GA(g)

1/GNH(h,g)

Pm

Pn

+
-

1/GN(m,n)

Tk

C(m)

C(n)

CH(h)

CH(g)

(a) Equivalent circuit diagram of the ther-
mal model

m1 m2

m3 m4

P = 7W

P = 5W P = 10W

P = 10W

E = 2ms

E = 2ms

E = 3ms

E = 5ms

(b) Floorplan for the mo-
tivating example with task
execution time (E) and
power consumption (P)
for each core. Diagram not
to scale

m1 m2 m3

m6 m5 m4

16W 14W 16W

16W 14W 16W

(c) A 2×3 floorplan

Fig. 1. Circuit and floorplans

resulting chip power densities are 0.39 W/mm2, 0.97 W/mm2,
1.95 W/mm2, 2.92 W/mm2, and 3.89 W/mm2. In each case, the
heatsink conductance parameters to the ambient are adjusted
to model improved cooling solutions necessary to maintain
an average active layer temperature below the temperature
constraint.

Although task assignments and schedules are the same as
before, chip peak temperatures increase when the higher power
density cores are used. Figure 2 shows the reductions in chip
peak temperatures when the peak temperature is optimized
instead of peak power or energy for the example in Figure 1(b)
and different chip power densities mentioned above. The x-
axis shows the chip power density (in terms of factors men-
tioned previously). The y-axis shows the difference between
the peak temperature obtained from energy or peak power
minimization and that from peak temperature minimization.
As can be seen from the plot, the advantages of minimizing
the chip peak temperature directly increase with increasing
chip power density, resulting in up to 20 ◦C reduction in peak
temperature for this example.

Energy and peak power minimization suffer from the same
weakness: neither considers spatial thermal effects. In fact,
energy minimization ignores both temporal and spatial thermal
variation while peak power minimization considers temporal
thermal variation but ignore spatial thermal variation. The
peak temperature of an MPSoC is increased by crowding
the same amount of energy consumption into less time and
space. Hence, to minimize the chip peak temperature, tasks
should be assigned and scheduled in careful consideration of
thermal interaction with neighboring cores. In addition, our
example indicates that although there are many cases in which
minimizing peak power produces different (and potentially
better) results than minimizing energy, the same results are
produced for some problem instances.

IV. MILP-BASED APPROACH

In this section, we present our formal approach in solving
the problem defined in Section II-C. We also describe how

5

Fig. 2. Differences in peak temperatures: peak temperature minimization vs.
peak power and energy minimization

our model can be extended to account for leakage power,
dynamic voltage and frequency scaling (DVFS), and inter-task
communication, as well as to include a finer-grained thermal
model. A discussion on some limitations of the MILP-based
approach is given at the end of the section.

IV.A. MILP Formulation

We now present our MILP formulation for the problem
defined in Section II-C. We begin by defining the following
variables.

δ(j, m) =

{
1 if task j is assigned to core m

0 otherwise
(6)

η(j1, j2) =

{
1 if task j1 starts before task j2

0 otherwise
(7)

β(j1, j2,m) =

1 if task j2 executes on core m, precedes1,

and overlaps with task j1

0 otherwise
(8)

To enforce consistency, we let

β(j, j, m) ≡ δ(j, m). (9)

The β(j1, j2,m) variables capture the overlapping execution
of different tasks and play a key role in computing the peak
temperature. They are also useful in computing the peak power
as will be shown later. We use ts(j) and tf (j) to denote the
start and finish time of task j, respectively, yielding

tf (j) ≡ ts(j) +
∑

m∈M

δ(j, m) · E(j,m) (10)

≡ ts(j) + et(j). (11)

MILP formulations have long been proposed for modeling
the task assignment and scheduling problem in a hetero-
geneous multiprocessor environment [39]. However, energy
minimization has often been the main objective. Such solutions
ignore both temporal and spatial thermal variation. Even peak
power minimization only considers temporal thermal variation.
To take both types of thermal variation into account, we

1Precedence is not necessary but is sufficient and simplifies the test.

directly minimize the chip peak temperature, Tmax , which is
the highest temperature at any position on the chip during a
schedule of duration SL, i.e.,

Tmax = max
m∈M,t∈[0,SL]

τm(t), (12)

Using Eq. 2 and Eq. 3 to compute the temperature at each
node at any given time corresponds to dynamic or transient
thermal analysis. Unfortunately, transient thermal analysis is
computationally expensive. This makes the use of transient
thermal analysis in the MILP formulation impractical; the
MILP would only be able to solve very small problem
instances, thereby making it difficult to validate a heuristic.
For this reason, we set the capacitance values in Eq. 2 and
Eq. 3 to zero to obtain the steady-state temperature at each
node when predicting temperatures in our MILP formulation.
In Section IV-F, we indicate the situations in which the
MILP-based approach with steady-state analysis is appropriate
and inappropriate. In addition, we present a solution to the
more general problem of dynamic temperature optimization
in Section V.

From the thermal model in Section II-B, it might appear
necessary to compute the steady-state temperature, τm(t), of
a core m at every time instant t to determine Tmax . Even
if we discretize the time duration SL, this approach may
still be too costly; task execution times can vary dramatically,
resulting in some tasks executing for hundreds of thousands
or millions of time units. To overcome this difficulty, we
make the following observations: 1) core power consumptions
only change at the beginning or end of a task execution, and
2) the steady-state temperature of a core only experiences
a rapid change when the power consumption of at least
one core on the chip changes. Hence, we can significantly
reduce the number of computations needed to obtain Tmax .
Specifically, we only evaluate the temperature of each core
m immediately after every task i starts or finishes executing
on any core in the MPSoC and denote this temperature by
T (i,m). Consequently, the objective function of the MILP
can be expressed as

minTmax , where Tmax ≥ T (i,m),∀m ∈M,∀i ∈ J. (13)

T (i,m) satisfies the constraints given in Eq. 2 and Eq. 3,
which are rewritten in Eq. 14 and Eq. 15, respectively. Note
that the capacitance values are set to zero: steady-state analysis
is used.

T (i,m) ≡ THS (i, h) +
1

GH(m)

∑
j∈J

β(i, j, m) · P (j, m)

+

1
GH(m)

∑
n∈Nm

GN (m,n) · [T (i, n)− T (i, m)]

(14)
0 = (THS (i, h)− T (i,m)) ·GH(m) + (THS (i, h)− TA)

·GA(h) +
∑

g∈Nh

(THS (i, h)− THS (i, g)) ·GNH (h, g).

(15)

Note that Eq. 14 is only linear if we can treat P (j,m) as a
constant given task j and core m. For now, we assume that

6

this is the case. We will discuss the more general case where
P (j, m) is not a constant in Section IV-B.

The following constraints are used to guarantee schedula-
bility.

1) Every task j is assigned to exactly one core m:

∀j ∈ J
∑

m∈M

δ(j,m) = 1 (16)

2) Every task j meets its deadline:

∀j ∈ J ts(j) + et(j) ≤ d(j) (17)

3) Precedence constraints are honored:

∀i, j ∈ J ts(j) ≥ tf (i) · Γi,j (18)

4) All tasks execute for their durations without overlap:

∀j1, j2 ∈ J

1 ≤ η(j1, j2) + η(j2, j1) (19)
ts(j1) ≤ ts(j2) + (1− η(j1, j2)) · Λ (20)
ts(j2) ≤ ts(j1) + η(j1, j2) · Λ (21)

∀j1, j2 ∈ J, j1 6= j2,∀m ∈M

tf (j1) ≤ (2− δ(j1,m)− δ(j2,m)) · Λ+
ts(j2) + Λ · (1− η(j1, j2)) (22)

tf (j2) ≤ (2− δ(j1,m)− δ(j2,m)) · Λ+
ts(j1) + Λ · η(j1, j2), (23)

where Λ is a constant greater than or equal to the largest
deadline in the task set. Item 20 states that task j1 must start
before task j2 if η(j1, j2) = 1. Item 22 guarantees that task
j1 finishes before task j2 starts if tasks j1 and j2 are executed
on the same processor and task j1 precedes task j2. Similar
conditions hold for Item 21 and Item 23.

Consider a situation where tasks i and j execute on cores
m and n, respectively. Further, task i precedes task j and their
executions overlap. At the start of task i, we only need to con-
sider the power consumption of core m. However, at the start
of task j, we must take into account the power consumptions
of both cores to correctly compute the chip peak temperature.
For this reason, we must ensure that β(j1, j2,m) = 1 only
when δ(j2,m) = 1 and ts(j2) ≤ ts(j1) ≤ tf (j2) − ε, where
ε is a small constant used to prevent imprecise floating point
computations from making it appear as if contiguous tasks
overlap in time. Therefore,

∀m ∈M,∀j1, j2 ∈ J, j1 6= j2

tf (j2) ≥ ts(j1) + (β(j1, j2,m)− 1) · Λ (24)
ts(j2) ≤ ts(j1) + (1− β(j1, j2,m)) · Λ (25)

1 ≥ β(j1, j2,m) + δ(j1,m) (26)
tf (j2)− ε− (1− η(j2, j1)) · Λ− (1− δ(j2,m)) · Λ

≤ ts(j1) + β(j1, j2,m) · Λ (27)

The above MILP formulation finds an assignment and
schedule that minimize the chip peak temperature. We would
like to point out that our formulation can readily be mod-
ified to produce an assignment and schedule that minimize

peak power. We simply substitute the objective function by
minPmax where

Pmax ≥ ∀i∈J

∑
m∈M

∑
j∈J

β(i, j, m) · P (j, m). (28)

On the other hand, if total energy is to be minimized, the
following objective function can be used

Etotal ≥
∑
j∈J

∑
m∈M

P (j, m) · E(j, m) · δ(j,m), (29)

where Etotal denotes the total energy. We will show in Sec-
tion VII that directly minimizing peak temperature generally
yields better results than approximating it with peak power or
total energy minimization.

IV.B. Modeling Power Consumption

In Eq. 14, the parameter P (j, m) captures the power con-
sumption of core m while executing task j, and

P (j, m) = Pdyn(j, m) + Pleak (j, m) (30)

where Pdyn and Pleak are the dynamic (switching) power
and the leakage power due to executing task j on core m,
respectively.

Assuming average switching activity is used to evaluate
Pdyn(j,m), we can treat Pdyn(j,m) as a constant. The
leakage power, Pleak (j, m), however, is a superlinear function
of temperature. Simply treating Pleak (j, m) as a constant may
lead to an underestimation of the chip peak temperature,
causing hardware throttling at run-time, which may, in turns,
cause hard real-time deadlines to be missed.

Though integrated circuit (IC) leakage power is a superlin-
ear function of temperature, it is possible to approximate in
the operating temperature ranges of integrated circuits using
a piecewise linear function with only about 5% error in
leakage estimation [40]. Therefore, we can model the power
consumption required to execute a task j on core m at
temperature Tm as

P (j, m) = K1(j,m) · Tm + K2(j, m), (31)

where K1(j,m) and K2(j,m) are constants that depend on
core m and task j. Consequently, Eq. 14 can be rewritten as

T (i,m) ≡ Th(i, h) +
1

Gh(m)

∑
n∈Nm

Gn(m,n)

· [T (i, n)− T (i,m)] +
1

Gh(m)

·

∑
j∈J

β(i, j, m) · (K1(j, m) · T (i, m) + K2(j, m))

 .

(32)

To eliminate the nonlinear term β(i, j, m)·T (i,m), we replace
β(i, j, m) · T (i, m) with a new variable λ(i, j, m). In other
words,

λ(i, j, m) =

{
K1(j,m) · T (i, m) if β(i, j, m) = 1
0 otherwise,

(33)

7

We then add the following constraints to our MILP formula-
tion.

∀m ∈M,∀i, j ∈ J

λ(i, j, m) ≥ 0 (34)
λ(i, j, m) ≤ β(i, j, m) · Λ (35)
λ(i, j, m) ≥ (K1(j, m) · T (i,m))− (1− β(i, j, m)) · Λ

(36)
λ(i, j, m) ≤ (K1(j, m) · T (i,m))− (β(i, j, m)− 1) · Λ

(37)

It can readily be verified that if λ(i, j, m) satisfies Eq. 34–37,
then Eq. 33 holds, which is precisely what the term β(i, j, m)·
T (i, m) represents.

Therefore, solving the MILP instance given in Eq. 14,
Eq. 15 (with β(i, j, m) ·T (i, m) being replaced by λ(i, j, m)),
Eq. 15–27, and Eq. 34–37 leads to an exact solution to the
problem defined in Section II-C, assuming that steady-state
analysis is acceptable.

IV.C. Incorporating Dynamic Voltage Scaling

Many modern processors support dynamic voltage and
frequency scaling (DVFS). Although using DVFS to minimize
energy will generally also reduce peak temperature, energy
minimization alone is not equivalent to peak temperature
minimization. Energy minimization does not consider tempo-
ral or spatial thermal variation. It is, however, possible and
beneficial to consider DVFS in conjunction with our peak
temperature optimization technique. Our MILP formulation
from Section IV-A can be modified as follows.

For each core m, the set of discrete voltage levels, Km, must
be specified. We also redefine E(j, k,m) to be the execution
time of task j on core m at voltage level k and P (j, k,m) to
be the power consumption required to execute task j on core
m at voltage level k. The binary variables δ(j, k,m) are also
redefined to be 1 if task j is assigned to core m at voltage
level k. Consequently, from Eq. 14,∑
j∈J

β(i, j, m) · P (j,m) =
∑
k∈K

∑
j∈J

ν(i, j, k,m) · P (j, k,m),

where

ν(j1, j2, k, m) =

{
1 if δ(j2, k,m) = 1, β(j1, j2,m) = 1
0 otherwise.

The constraints in Eq. 14–27 can be readily modified for use
in the new formulation.

IV.D. Finer-Grained Thermal Model

The thermal model (Section II-B) can further be refined
by using multiple thermal elements for each core, where each
thermal element may have different power consumption and/or
correspond to a particular functional unit of the core. We omit
this refinement due to lack of realistic benchmarks for which
power profile variations within cores are known. When such
benchmarks become available, only minor modifications to
the solution in Section IV-A will be needed. Specifically, the
binary variables δ(j,m, x) must be redefined to take the value

of 1 if j executes on core m and x is a thermal element
belonging to core m. In addition, the variables in Eq. 8 must
be modified accordingly.

It is worth noting that while a core power consumption may
vary depending on the actual instructions that are being exe-
cuted, the relative change in temperature at the functional-unit
level is rather slow due to the relatively large RC time constant
of the functional units. For this reason, the finer-grained
thermal model presented here would be accurate enough and it
is not necessary to model variation in instruction-level power
consumption [41].

IV.E. Modeling Inter-Task Communication

In some situations, communication cost for a task to send
data to its successors is not negligible. Given that the time
to send data from task i to task j using shared memory is
expressed by parameter C(i, j), our MILP formulation from
Section IV-A can be modified to capture inter-task communi-
cation by simply substituting Eq. 18 with the following

∀i, j ∈ J ts(j) ≥ (tf (i) + C(i, j)) · Γi,j . (38)

IV.F. Limitations of MILP-Based Approach

While the solution provided by the MILP formulation in
Section IV-A is optimal, there are two main limitations to
the MILP-based approach: 1) the MILP formulation cannot
be used to efficiently solve large problem instances, as the
problem defined in Section II-C is NP-hard, and 2) due to
the use of steady-state analysis, the MILP formulation may
overestimate the chip peak temperature when task execution
times are short compared to the RC thermal time constant of
the cores (i.e., the constant influencing the rate of temperature
change in response to power consumption change). That is,
steady-state analysis can be used to accurately predict the
temperature when task execution times are long compared
to the core RC time constants, though transient analysis
should otherwise be used to permit more accurate temperature
prediction, thereby allowing more aggressive scheduling of
short tasks that do not cause temperatures to converge to
steady-state values during execution.

V. ASSIGNMENT AND SCHEDULING HEURISTIC
FRAMEWORK

To trade off accuracy in temperature estimation for running
time, we propose an assignment and scheduling heuristic
framework where either steady-state or transient analysis can
be used, depending on the characteristics of the tasks under
consideration. Additionally, our heuristic framework can be
used in conjunction with any thermal modeling tool.

Our framework uses a binary search based approach to
minimize peak temperature under functionality and timing
constraints. It takes as inputs upper and lower temperature
bounds, as well as the maximum number of iterations, maxIter.
It then uses the average of the upper and lower bounds on the
peak temperatures as the target peak temperature to find an
assignment and schedule. If an assignment and schedule is
found while staying below the target temperature, the current

8

target temperature will be used as the upper temperature bound
for the next iteration of the binary search. Otherwise, it will
be used as the lower temperature bound.

We introduce the key part of our framework:
ThermalSched, a list scheduling [42] algorithm, which
is summarized in Algorithm 1. For a given task j, the
earliest start time (EST(j)) and latest start time (LST(j)) are
computed. The mobility of task j can then be calculated as the
difference between LST(j) and EST(j). A potential challenge
in computing EST(j) and LST(j) is that the execution time
of task j is unknown prior to the selection of a core. Our
solution is to use the smallest execution time of task j as
given by the fastest core when computing EST(j) and LST(j)
to maximize the mobility of task j, for all j ∈ J .

The steps for task assignment and scheduling follow. Ready
tasks are ordered in a non-decreasing order of mobility. A
ready task is a task whose predecessors have finished execut-
ing. Given a ready task j, ThermalSched selects the fastest
available core that allows the task to meet its deadline while
keeping the peak temperature below the target temperature.
The fastest available core is chosen to maximize the mobility
of the successors of task j, thereby improving schedulability.
If no core is fast enough to execute task j by its deadline,
ThermalSched terminates. (We ignore Lines 24–25 and
35–36 in Algorithm 1, and the variables currentDelay and
dMaxIter for now. Their use will be explained in the next
section.) Our search-based scheduling approach permits the
use of an efficient list scheduler without global knowledge of
temperature variation.

Observe that Algorithm 1 does not provide any details
regarding the actual computation of the thermal profile (Line
17). Since predicting highly accurate thermal profiles increases
time complexity, we propose to use two techniques based on
the observations made in Section IV-F to balance accuracy and
time complexity.

V.A. Steady-State Analysis Based Heuristic

As explained in Section IV-F, if task execution times are
long compared to the thermal time constants of the cores,
steady-state analysis can usually predict the resultant chip
temperature in a fairly accurate manner. In such a case, the
use of steady-state analysis reduces the running time of the
heuristic.

The steady-state thermal profile can be computed by ex-
pressing Eq. 2 and Eq. 3 for all the thermal elements as
a system of linear equations of the form A · T + B = 0,
and of size |E| × |E|, where |E| is the total number of
thermal elements. Since the thermal conductance matrix A
is fixed once a floorplan is given, the inverse of the matrix
can be pre-computed once and the temperature matrix can be
updated using a constant number of multiplications in each
iteration. ThermalSched therefore has a time complexity
in O(|J |2 · |M |3). The time complexity of the steady-state
thermal analysis based heuristic (SSAB) is in O(|J |2 ·|M |3 ·
maxIter).

Algorithm 1 ThermalSched(G(V,E), targetTemp, dMaxIter)
1: compute EST(j), for all tasks // earliest start time
2: compute LST(j), for all tasks // latest start time
3: compute avgE // average execution time over all tasks and

cores
4: mobility(j) ← LST(j) - EST(j), for all tasks
5: currentTime ← 0
6: busy(m) ← 0, for all cores
7: while there are unscheduled tasks do
8: RT ← ready tasks in non-decreasing order of mobility
9: for each j ∈ RT do

10: invalidCount ← 0
11: fastestCore ← −1
12: bestExeTime ←∞
13: for each m ∈M do
14: δ(j, m)← 0
15: endTime ← E(j,m) + currentTime
16: if not busy(m) and endTime ≤ D(j) then
17: compute projected thermal profile for

[currentTime,nextIdleTime] // nextIdleTime
is the next earliest time when all cores become
idle

18: peakTemp ← maxm∈M T (j, m)
19: if peakTemp ≤ targetTemp then
20: if E(j,m) < bestExeTime then
21: fastestCore ← m
22: bestExeTime ← E(j,m)
23: currentDelay ← 0
24: else if currentTime > 0 then
25: [fastestCore, bestExeTime, currentDelay] ←

DelayInsertion(G(V,E), j, m, currentTime,
targetTemp, dMaxIter, avgE)

26: else if not busy(m) then
27: invalidCount ← invalidCount + 1
28: if invalidCount = |M | then
29: return INFEASIBLE
30: else if fastestCore 6= −1 then
31: δ(j, fastestCore)← 1 // assign j to fastestCore
32: ts(j) ← currentTime + currentDelay
33: tf(j) ← ts(j) + E(j, fastestCore)
34: busy(fastestCore) ← 1
35: if currentDelay > 0 then
36: break // allow no tasks to start executing between

currentTime and currentTime + currentDelay
37: update EST(j), for all unscheduled tasks
38: update mobility(j), for all unscheduled tasks
39: nextSchedPoint← min{tf (j) : tf (j) > currentTime+

currentDelay}
40: for each m ∈M do
41: if m becomes idle at nextSchedPoint then
42: busy(m) ← 0
43: currentTime ← nextSchedPoint
44: return FEASIBLE

9

V.B. Transient Analysis Based Heuristic

If task execution times are short, it is desirable to use tran-
sient analysis to compute the projected thermal profile, as ex-
plained in Section IV-F. Essentially, any existing thermal anal-
ysis technique can be used in our task assignment and schedul-
ing heuristic framework. To validate our transient analysis
based heuristic (TAB), we will use HotSpot [36] in our
experiments. Due to the use of transient analysis to predict
the temperatures, the transient analysis based heuristic has a
time complexity of O(|J |2·|M |·maxIter ·O(HotSpot)), where
O(HotSpot) is the worst-case running time of HotSpot.

A potential drawback of our flexible heuristic framework
is that we always try to schedule as many tasks as possible
in a given scheduling point provided that the chip peak
temperature remains within the target temperature bound. In
some situations, it may be better to schedule fewer tasks at
a time to allow the chip to cool down before executing more
tasks, potentially reducing the chip peak temperature. Based
on this observation, we now introduce the concept of delay
insertion.

VI. DELAY INSERTION

As stated previously, Algorithm 1 always tries to schedule as
many tasks as possible at every scheduling point to maximize
the mobility of later tasks. One possible consequence of this
greedy approach to task assignment and scheduling is that
the chip peak temperature may be so close to the target
temperature that no future ready task can execute without
violating the target temperature bound, thus requiring a higher
target temperature to find a feasible task assignment and
schedule. To address this weakness in our heuristic framework,
we introduce the concept of delay insertion. That is, when the
chip peak temperature is at or near the target peak temperature,
we delay the execution of the next ready task by introducing
an idle interval before the task starts to allow the chip to
cool down. This improves the probability of later tasks being
scheduled without exceeding the target temperature bound.

Since the steady-state thermal analysis assumes fast temper-
ature rises and falls, an idle time (or a delay inserted) between
task executions has no effect on the resultant peak temperature.
On the other hand, transient thermal analysis would capture
the cooling effects of delay insertions. Hence, the concept of
delay insertions applies to the TAB heuristic only.

To demonstrate the potential benefits of delay insertions,
we use the following simple example. Consider a system with
5 identical real-time tasks running on the MPSoC shown in
Figure 1(b) with the associated execution time and power con-
sumption for each core. Again, to obtain a chip power density
that is similar to the the one for the 65 nm processors [38], we
multiplied the power consumption of each core by a factor of
10. Without inserting any idle times, our TAB heuristic finds
a feasible assignment and schedule with a peak temperature
of 51.60 ◦C. Now, assume that there exists an algorithm that
can insert the appropriate delays after some task executions,
then the peak temperature could be reduced to 49.88 ◦C.

In the above example, delay insertion only reduces the chip
peak temperature by 1.72 ◦C because there are only 5 tasks

in the system with relatively short execution times. In other
words, executing these tasks on the example MPSoC does
not significantly raise the chip peak temperature. If our tasks
require 10× the original execution times, i.e., a mean of 30 ms,
then delay insertions would reduce the chip peak temperature
by 3.87 ◦C, from 66.22 ◦C to 62.35 ◦C.

We now explain the use of delay insertions in our heuristic
framework in more detail. Whenever an attempt to sched-
ule a task on a core fails because the target tempera-
ture bound is exceeded, DelayInsertion is called (Line
24–25 of Algorithm 1). If an idle time has successfully
been inserted into the schedule, our heuristic will immedi-
ately move on to the next scheduling point, i.e., by set-
ting currentTime to min{tf (j) : tf (j) > currentTime +
currentDelay} and continue the assignment and scheduling
process (Lines 35–36 and Line 39 of Algorithm 1). No other
tasks that are yet to be scheduled are allowed to run during
[currentTime, currentTime + currentDelay). This not only
simplifies the algorithm, but is also quite reasonable since it is
unlikely that when an idle time has been inserted (i.e., when
the current chip peak temperature is at or near the target
temperature), another task can execute within the interval
[currentTime, currentTime + delay) without exceeding the
target temperature itself.

Algorithm 2 DelayInsertion(G(V,E), j, m, currentTime, tar-
getTemp, dMaxIter, avgE)

1: upperDelay ← avgE
2: lowerDelay ← 0
3: delay ← (upperDelay + lowerDelay) / 2
4: iter ← 0
5: oldPeakT ← 0
6: newPeakT ← 0
7: while iter < dMaxIter do
8: compute projected thermal profile for

[currentTime, currentTime + delay] and
[currentTime + delay ,nextIdleTime] // nextIdleTime
is the next earliest time when all cores become idle

9: newPeakT ← maxm∈M T (j, m)
10: if targetTemp > newPeak and |oldPeakT − newPeakT|

< ε then
11: if E(j,m) + delay < bestExeTime and currentTime +

delay + E(j, m) ≤ D(j) then
12: fastestCore ← m
13: bestExeTime ← E(j,m)
14: return [fastestCore, bestExeTime, delay]
15: else
16: return FAILURE
17: else if targetTemp > newPeakT then
18: upperDelay ← delay
19: else
20: lowerDelay ← delay
21: oldPeakT ← newPeakT
22: delay ← (upperDelay + lowerDelay) / 2
23: iter ← iter + 1

Our delay insertion algorithm is shown in Algorithm 2. To
find the appropriate idle time to insert without sacrificing the

10

schedulability of future tasks, we use a binary search based
approach. In each iteration, Algorithm 2 attempts to schedule
the current task onto the core currently under consideration
such that the resultant peak temperature does not exceed the
target peak temperature. Should this prove to be possible,
Algorithm 2 will keep this scheduling and assignment if the
current configuration minimizes the task finish time until now.
Hence, if an assignment and schedule exists for the current
task that does not involve delay insertions, that assignment and
schedule will likely be selected (this design choice maximizes
the mobility of future tasks). Algorithm 2 will halt when
either the maximum number of iterations dMaxIer has been
reached or when an appropriate idle time has been found. The
appropriate idle time is found when the current assignment and
schedule does not exceed the target temperature and the chip
peak temperature has converged (Line 10 of Algorithm 2).

In our implementation, the search begins by setting the
upper bound on the delay to the average execution time of
all task and core combinations and the lower bound delay
to 0. We decided to use the average task execution times as
the upper bound for the following reasons: 1) if the upper
bound is too large, DelayInsertion can be unfortunately
slow, and 2) DelayInsertion is most likely invoked when
the chip temperature is near the target temperature. Inserting
an idle time similar to the average task execution time would
allow, on average, the chip to cool down enough to allow most
tasks to eventually be scheduled on the current core without
sacrificing the efficiency of the heuristic.

VII. EXPERIMENTAL RESULTS

We quantify the benefits of our proposed approach and
assess the quality of our heuristic framework in this section.

VII.A. Experimental Setup

In our experiments, we used the Embedded System Syn-
thesis Benchmarks Suite (E3S) [34]. E3S contains 17 pro-
cessing elements (PEs). From the E3S benchmarks, each PE
is associated with a size, power value, and task execution
times. Out of these 17 PEs, 12 have less than 3 W power
consumption. In our experiments, we used the following 11
cores: AMD K6-2 450, AMD K6-2E 400 Mhz/ACR, AMD
K6-2E+ 500 Mhz/ACR, AMD K6-IIIE+ 550 Mhz/ACR, IBM
PowerPC 405GP 266 Mhz, IBM PowerPC 750CX 500 MHz,
IDT32334 100 MHz, IDT79RC32V334-150, IDT79RC64575
250 MHz, Motorola MPC555 40 MHz, and TI TMS320C6203
300 MHz. (Note that we did not use all 17 cores because for
each floorplan, we attempted to use cores with similar sizes.)
The E3S task sets follow the organization of the EEMBC
benchmarks [34]. There are five benchmarks in total: Auto (24
tasks), Consumer (12 tasks), Networking (13 tasks), Office (5
tasks), and Telecom (30 tasks). Each benchmark represents an
application, as its name indicates. Each sink task, which does
not have any successors, has a hard real-time deadline.

For the E3S benchmarks, we experimented with a number
of floorplans with 2×2, 2×3, and 3×3 core arrangements.
Each benchmark has different floorplans, as specific tasks
are required to run on specific cores among the 11 cores

TABLE I
FLOORPLAN CONFIGURATIONS.

Benchmark First Row Second Row Third Row
Auto-2x2-1 14, 7 1, 7
Auto-2x2-2 1, 7 1, 7
Auto-2x3 1, 7, 7 1, 7, 7
Auto-3x3 14, 14, 14 1, 1, 1 7, 7, 7
Consumer-2x2-1 7, 7 11, 11
Consumer-2x2-2 7, 7 9, 7
Consumer-2x3 7, 7, 7 11, 11, 11
Consumer-3x3 7, 7, 7 9, 9, 9 7, 7, 7
Networking-2x2-1 2, 3 4, 5
Networking-2x2-2 5, 5 4, 4
Networking-2x3 5, 4, 5 5, 4, 5
Networking-3x3 5, 5, 5 4, 4, 4 5, 5, 5
Office-2x2-1 4, 3 4, 12
Office-2x2-2 4, 3 4, 3
Office-2x3 4, 8, 4 3, 8, 3
Office-3x3 3, 8, 3 8, 12, 8 3, 8, 3
Telecom-2x2-1 14, 7 1, 7
Telecom-2x2-2 1, 7 1, 7
Telecom-2x3 1, 7, 7 1, 7, 7
Telecom-3x3 14, 14, 14 1, 1, 1 7, 7, 7

TABLE II
CORE NAMES.

Index Core
1 AMD ElanSC520-133 MHz
2 AMD K6-2 450
3 AMD K6-2E 400Mhz/ACR
4 AMD K6-2E+ 500Mhz/ACR
5 AMD K6-IIIE+ 550Mhz/ACR
6 Analog Devices 21065L - 60 MHz
7 IBM PowerPC 405GP - 266 Mhz
8 IBM PowerPC 750CX - 500 MHz
9 IDT32334-100 MHz
10 IDT79RC32364-100
11 IDT79RC32V334-150
12 IDT79RC64575-250MHz
13 Imsys Cjip 40 Mhz
14 Motorola MPC555 - 40MHz
15 NEC VR5432 - 167 MHz
16 ST20C2 50 Mhz
17 TI TMS320C6203-300MHz

mentioned above. The specific configuration of each floorplan
is provided Table I and the corresponding core names in
Table II. The chips consist of heterogeneous cores. Since
cores with different power consumptions tend to have different
areas, the vertical and lateral thermal conductance between
neighboring cores, and between cores and heatsink elements
will vary and can be computed as described in Section II-B.

We also used TGFF [43], which is a pseudo-random task
graph generator, in our experiment to generate 10 additional
benchmarks. For each benchmark, there are up to 5 task graphs
and the total number of tasks ranges from 4 to 29 tasks (this is
similar to the number of tasks in the E3S benchmarks). Each
task has at most 3 predecessors and 2 successors. A 2×2 core
arrangement was used, with an average core width and height
of 5 mm and an average power consumption of 10 W.

VII.B. MILP Formulation Performance

In this set of experiments, we used CPLEX with AMPL to
solve instances of the MILP formulation in Section IV for
optimal peak temperature, energy, and peak power. Each E3S

11

50

55

60

65

70

75

80

85

90

2x
2v

1

2x
2v

2

2x
3

3x
3

2x
2v

1

2x
2v

2

2x
3

3x
3

2x
2v

1

2x
2v

2

2x
3

3x
3

2x
2v

1

2x
2v

2

2x
3

3x
3

Office Consumer Networking Telecom

P
e
a
k
 T

e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

Benchmarks

Temperature

Peak Power

Energy

Fig. 3. Peak temp. minimization vs. energy and peak power minimization

benchmark was run against two 2×2, one 2×3, and one 3×3
floorplan.

We first examine the temperature differences between using
peak temperature minimization as the objective in the MILP
formulation and using energy or peak power minimization.
The solutions from the MILP solver are shown in Figure 3.
The x-axis shows the different benchmarks and floorplans.
The y-axis shows the resultant peak temperatures. Some
results are unavailable due to the MILP solver running out of
memory before finding a solution. Our approach reduces peak
temperatures by up to 24.66 ◦C, and 9.19 ◦C on average, when
compared to the method that minimizes energy. Most of the
improvement results from considering the effects of temporal
thermal variations.

The results in Figure 3 do not show significant differ-
ences in peak temperatures between our approach and the
approach that minimizes peak power. This is because the
low-power embedded cores used in our benchmarks have low
power densities. For example, the floorplans for the Consumer
benchmarks resulted in a chip power density ranging from
0.27 W/mm2 to 0.36 W/mm2 with an average chip power
density of 0.32 W/mm2. As a result, little spatial temperature
variation was observed. However, spatial temperature variation
will increase when higher power density chips are used, as
explained in Section III.

To obtain chip power densities similar to those described
by Link and Vijaykrishnan [38] for 65 nm processors, we
multiplied each core’s power consumption by 10. The resultant
chip power densities ranged from 0.75 W/mm2 to 3.13 W/mm2

with an average power density of 2.28 W/mm2. As shown
in Figure 4, for these cores our method reduces peak tem-
peratures by up to 23.25 ◦C, and 9.58 ◦C on average when
compared to the method of peak power minimization and
these results prove that spatial thermal variations need to be
considered.

There exist situations where optimal peak temperature can-
not be obtained by minimizing either energy or peak power.
This situation was observed in the Networking benchmark with
a 2×3 core arrangement (depicted in Figure 1(c), diagram not
drawn to scale). Due to the characteristics of this benchmark,
at least two cores must be active simultaneously at some point
in time. In the case of energy and peak power minimization,

50

70

90

110

130

150

170

190

2x
2v

1

2x
2v

2

2x
3

3x
3

2x
2v

1

2x
2v

2

2x
3

3x
3

2x
2v

1

2x
2v

2

2x
3

3x
3

Office Consumer Networking

P
e
a
k
 T

e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

Benchmarks

Temperature

Peak Power

Energy

Fig. 4. Peak temp. minimization vs. energy and peak power minimization
for higher power density chips

the optimal solution consists of executing on cores m2 and m5
in parallel. This yields an optimal peak power of 28 W and an
optimal energy of 35.46 J. The peak temperature obtained in
this case is 61.45 ◦C. Using our approach, cores m3 and m4
execute simultaneously. This solution gives an optimal peak
temperature of 58.15 ◦C, which is about 3 ◦C lower than either
energy or peak power minimization. However, this solution
yields a peak power of 32 W and a total energy of 36.20 J,
which means that neither energy nor peak power minimization
can achieve this optimal peak temperature.

Even in the cases where peak power (or energy) minimiza-
tion can yield optimal peak temperature, it is still relevant
to minimize peak temperature directly. First, there is no
guarantee that an optimal peak temperature will be obtained
by minimizing peak power, as the latter considers temporal
thermal variation but ignores spatial thermal variation. Second,
there may exist a range of possible peak temperatures as a
result of a single optimal peak power. If such a range is large,
the actual peak temperature of a chip can vary significantly.

To illustrate this scenario, we performed an additional
experiment using a slightly modified Consumer benchmark.
In this version, task deadlines were modified in such a way
that at least two tasks must execute in parallel. We used a
2×3 floorplan with homogeneous processors. The experiment
was run twice. In the first run, we used the original chip
power density. The chip power density was then increased by
a factor of 10 (once again to obtain similar power densities
as described by Link and Vijaykrishnan [38]) in the second
run. For this benchmark, there exist four distinct parallel core
assignments yielding the same optimal peak power but differ-
ent peak temperatures. The left bars in Figure 5 show the peak
temperatures for each of these four assignments in the first run.
The right bars show the range of possible peak temperatures
of the chip with a higher power density. The results show that
the difference in peak temperature for the same peak power
can be over 5 ◦C for the higher power density chip. Clearly,
peak power minimization is not sufficient, especially when it is
predicted that the power density of future chips will continue
to increase, resulting in even higher spatial thermal variation.

Finally, when using the TGFF benchmarks described earlier,
the MILP solved eight out of ten problem instances. Minimiz-

12

Fig. 5. Bar plot showing a range of peak temperatures using peak power
minimization

45

50

55

60

65

70

75

80

85

90

2x
2v

1

2x
2v

2

2x
3

3x
3

2x
2v

1

2x
2v

2

2x
3

3x
3

2x
2v

1

2x
2v

2

2x
3

3x
3

2x
2v

1

2x
2v

2

2x
3

3x
3

Office Consumer Networking Telecom

P
e
a
k
 T

e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

Benchmarks

MILP

SSAB

X&H

Fig. 6. Perf. of steady-state analysis based heuristics (based on HotSpot)

ing peak temperature directly instead of minimizing energy
reduced peak temperatures by 9.41 ◦C on average and up to
24.19 ◦C. In addition, when compared to the method of peak
power minimization, peak temperature minimization reduced
peak temperatures by 1.27 ◦C on average and up to 6.71 ◦C.

The above results allow for a general conclusion to be
drawn. Average power minimization ignores both temporal and
spatial thermal variation, while peak power minimization only
considers temporal thermal variation. Peak temperature min-
imization takes both types of thermal variation into account.
In addition, task mobility given a floorplan and other tasks
in the same benchmark explain why our approach obtains a
higher peak temperature reduction for some benchmarks than
the others.

VII.C. Performance of Steady-State Analysis Based Heuristic

We assess the performance of our SSAB algorithm (Sec-
tion V) by comparing its solutions to the ones from the MILP
(Section IV-A) as well as the results from Xie’s and Hung’s
Heuristic 1 [11], which we refer to as the X&H heuristic. The
X&H heuristic calls HotSpot to compute the temperatures.
Figure 6 compares the results from the SSAB and X&H
heuristics to the optimal solution from the MILP formulation.
We used HotSpot to compare the peak temperatures for a fair
comparison. Results for benchmarks that were not successfully
solved by the X&H algorithm are omitted.

The X&H heuristic deviates from the optimal solution by
10.94 ◦C on average and 38.40 ◦C in the worst case. On the
other hand, the SSAB heuristic finds an optimal solution in
many cases while giving results that deviate by at most 3.40 ◦C
from optimality (and 0.22 ◦C on average) requiring at most 50
binary search iterations for each benchmark. Both heuristics

require similar running times, but the SSAB heuristic never
performs worse than the X&H heuristic.

When the X&H heuristic was tested against the 10 TGFF
benchmarks mentioned previously, we found that it could only
solve two of the benchmarks, with a maximum deviation from
optimality of 7.74 ◦C. On the other hand, the SSAB heuristic
could solve four, one of which was a benchmark that the
MILP solver could not find a solution to. For the three other
benchmarks, the SSAB heuristic found the same solutions as
the MILP solver.

To demonstrate that the SSAB heuristic can efficiently
solve larger problem instances, we considered a benchmark
that consists of 30 tasks and a 4×4 core arrangement of
homogeneous processors. First, we attempted to use the MILP
solver. As expected, no solution was returned, as the 3.58 GB
RAM workstation on which CPLEX was executing ran out of
memory. On the other hand, the SSAB heuristic was able to
find a solution using no more than 50 binary search iterations
within 9 seconds.

On a final note, our thermal model is a discretized Fourier
heat flow model and while it is not exactly the same model
used in HotSpot, the experiments in this section showed that on
average, the peak temperatures from the two models differed
by less than < 5 ◦C. This indirectly served as a validation of
our thermal model.

VII.D. Performance of Transient Analysis Based Heuristic

We now assess the performance of the TAB heuristic (Sec-
tion V) using the same set of benchmarks as in Section VII-A.
The TAB heuristic calls HotSpot to determine transient tem-
peratures. Since the original task execution times for the E3S
benchmarks tend to be short, dynamic thermal effects can be
significant. We compare the peak temperatures obtained by
the MILP solver and the TAB heuristic, as shown in Figure 7.
When compared to the results from the MILP solver, the TAB
heuristic reduces the peak temperature by up to 0.67 ◦C and
0.06 ◦C on average. This is because transient analysis can more
accurately predict temperatures when performing assignment
and scheduling.

The TAB heuristic also improves the task finish times.
Let the speedup be the ratio of the finish time of the last
task in the MILP schedule to that in the TAB schedule.
The maximum, minimum, and average speedups are 78.13×,
1.21×, and 9.02×, respectively. Such a significant speedup
results from the TAB heuristic being much less pessimistic
in estimating temperatures and hence scheduling more tasks
in parallel. However, the SSAB heuristic is more efficient
than the TAB heuristic. Specifically, the SSAB heuristic is
about 175× faster than the TAB heuristic on average for
benchmarks with short task execution times; this difference
further increases for benchmarks with longer task execution
times.

VII.E. Performance of Transient Analysis Based Heuristic
with Delay Insertions

To determine the impacts of delay insertions (Section VI)
on reducing the chip peak temperature, we once again used

13

45

46

47

48

49

50

51

52

53

54

55

2x
2v

1

2x
2v

2

2x
3

3x
3

2x
2v

1

2x
2v

2

2x
3

3x
3

2x
2v

1

2x
2v

2

2x
3

3x
3

2x
2v

1

2x
2v

2

2x
3

3x
3

Office Consumer Networking Telecom

P
e
a
k
 T

e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

Benchmarks

MILP

TAB

Fig. 7. Perf. of transient analysis based heuristic (based on HotSpot)

the E3S and TGFF benchmarks. We compared the solutions
from the original TAB heuristic to those from the improved
TAB heuristic (iTAB). Once again, since the power density of
the E3S cores are quite low compared to the values described
by Link and Vijaykrishnan [38], we multiplied each core’s
power consumption by a factor of 10. The results for the E3S
benchmarks are shown in Table III. The first column shows
the benchmark names and associated floorplans. The second
main column presents the peak temperatures from the TAB
heuristic and the iTAB heuristic, as well as the differences
in peak temperatures for the original task execution times.
Finally, the last main column presents the data for the case
where task execution times are multiplied by a factor of 10.

With the original task execution times, the effect of delay
insertions is minimal for some benchmarks (e.g., networking).
In fact, for two of the telecom benchmarks, iTAB actually
performs worse than TAB. This is because iTAB always tries
to insert delays, even when it may not be optimal to do so. For
instance, if the chip is currently too hot to execute the next
ready task within the target peak temperature, iTAB would try
to insert some idle time before scheduling that task. However,
it may sometimes be better to select a different task that can
meet the target peak temperature constraint in Algorithm 1
without inserting delays.

When the execution times are increased by a factor of 10,
we see the benefits of using the iTAB heuristic. This is because
the average chip peak temperature is much higher than in the
original cases and inserting idle times between task executions
is very effective in cooling the chip down. On average, iTAB
produces solutions that reduce peak temperatures by 3.15 ◦C
on average and up to 11.92 ◦C.

iTAB did not significantly improve on the TGFF benchmark
solutions found by TAB (both found four out of ten). The
largest improvement in peak temperature was 1.71 ◦C. This
is because most tasks in the TGFF benchmarks did not have
enough slack for delay insertions to be effective.

Based on the above results, we can conclude that iTAB
reduces the peak temperature of systems with time slack.
It must be noted, however, that iTAB also requires longer
running times. On average, iTAB takes 19.2× longer to run
than the original TAB algorithm. Clearly, there is a trade-
off between solution quality and time complexity of these

TABLE III
EFFECTIVENESS OF DELAY INSERTIONS IN REDUCING CHIP PEAK

TEMPERATURES

Temperature (◦C)
Original Execution Times Execution Times × 10

Benchmark TAB iTAB Diff. TAB iTAB Diff.

Consumer 2×2-1 65.78 60.56 5.22 84.30 80.90 3.40
2×2-2 86.24 81.47 4.77 86.24 81.47 4.77
2×3 63.32 60.06 3.26 79.24 76.81 2.43
3×3 61.97 60.28 1.69 78.60 76.85 1.75

Networking 2×2-1 47.49 47.45 0.04 57.81 55.43 2.38
2×2-2 47.29 46.85 0.45 57.83 53.48 4.35
2×3 46.80 46.80 0.00 53.96 53.87 0.09
3×3 46.80 46.79 0.01 53.45 53.36 0.09

Office 2×2-1 54.22 54.22 0.00 75.96 75.96 0.00
2×2-2 54.14 54.14 0.00 75.37 75.37 0.00
2×3 54.21 54.21 0.00 67.91 67.89 0.02
3×3 54.13 54.13 0.00 67.43 57.94 9.49

Telecom 2×2-1 50.28 51.70 -1.42 72.06 65.53 6.53
2×2-2 49.48 52.79 -3.31 71.26 59.34 11.92
2×3 46.38 47.40 -1.02 51.37 51.30 0.08

algorithms.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a formal assignment and scheduling technique
that uses a mixed-integer linear program solver to optimize
IC peak temperature under precedence and hard real-time
constraints based on phased steady-state thermal analysis.
Experimental results showed a peak temperature reduction
of up to 30.75 ◦C and 10.09 ◦C on average for embedded
processors when compared to energy minimization. When
compared to peak power minimization, our approach reduced
peak temperature by up to 23.25 ◦C and 8.98 ◦C on average
for high power density chips.

To efficiently solve this NP-hard assignment and schedul-
ing problem, we also proposed a task assignment and schedul-
ing heuristic framework in which the actual method for tem-
perature prediction depends on task durations. Phased steady-
state analysis is appropriate when task execution times are
long compared to the time constants of the cores and transient
analysis should be used otherwise. Our phased steady-state
analysis based heuristic finds an optimal solution in many
cases, with a maximum deviation from optimality of 3.40 ◦C.
When compared to previous work, the heuristic achieves a
temperature reduction of 10.94 ◦C on average. The transient
analysis based heuristic models and exploits the transient
thermal effects of short tasks to further improve upon the
existing solution by 0.67 ◦C in the best case. Finally, we
showed that incorporating the concept of delay insertion into
the proposed heuristic framework results in an additional peak
temperature reduction of up to 11.92 ◦C.

Since real-time systems can exhibit great temperature varia-
tions at run-time due to the differences in actual task execution
times, we intend on exploring the peak temperature minimiza-
tion problem online to further reduce temperature and increase
system reliability.

REFERENCES

[1] E. Milchman, “Intel dual-core FAQ,” Wired News, July 2006.

14

[2] S. Y. Borkar, et al., “Platform 2015: Intel processor and platform
evolution for the next decade,” Intel Corporation, Tech. Rep., Mar. 2005.

[3] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture optimiza-
tion for heterogeneous chip multiprocessors,” in Proc. Int. Conf. Parallel
Architectures and Compilation Techniques, Sept. 2006, pp. 23–32.

[4] “Xbox360 Xenon,” 2006, http://domino.research.ibm.com/comm/
research projects.nsf/pages/multicore.Xbox360.html.

[5] “P4040: QorIQ Embedded Multicore Processor,” 2009,
http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=
P4040&fsrch=1.

[6] J. Srinivasan, et al., “Exploiting structural duplication for lifetime
reliability enhancement,” in Proc. Int. Symp. Computer Architecture,
June 2005, pp. 520–531.

[7] R. Viswanath, et al., “Thermal performance challenges from silicon to
systems,” Intel Technology Journal, vol. 4, no. 3, pp. 1–16, Aug. 2000.

[8] S. H. Gunther, et al., “Managing the impact of increasing microprocessor
power consumption,” Intel Technology Journal, vol. 5, no. 1, pp. 1–9,
Feb. 2001.

[9] Y. Li, et al., “Performance, energy, and thermal considerations for SMT
and CMP architectures,” in Proc. Int. Symp. Computer Architecture, Feb.
2005, pp. 71–82.

[10] T. Zhou, X. Hu, and E.-M. Sha, “Probabilistic performance estimation
for real-time embedded systems,” in Int. Workshop on Timing Issues
in the Specification and Synthesis of Digital Systems, Mar. 1999, pp.
83–88.

[11] Y. Xie and W.-L. Hung, “Temperature-aware task allocation and schedul-
ing for embedded multiprocessor systems-on-chip (MPSoC) design,” J.
VLSI Signal Processing, vol. 45, no. 3, pp. 177–189, Dec. 2006.

[12] J.-J. Chen, S. Wang, and L. Thiele, “Proactive speed scheduling for real-
time tasks under thermal constraints,” in Proc. Real-Time and Embedded
Technology and Applications Symp., Apr. 2009, pp. 141–150.

[13] S. Wang and R. Bettati, “Delay analysis in temperature-constrained hard
real-time systems with general task arrivals,” in Proc. Real-Time Systems
Symp., Dec. 2006, pp. 323–332.

[14] J. W. S. Liu, Real-Time Systems. Prentice-Hall, NJ, 2000.
[15] R. Mukherjee, S. Öğrenci Memik, and G. Memik, “Temperature-aware

resource allocation and binding in high-level synthesis,” in Proc. Design
Automation Conf., June 2005, pp. 196–201.

[16] P. Lim and T. Kim, “Thermal-aware high-level synthesis based on
network flow method,” in Proc. Int. Conf. Hardware/Software Codesign
and System Synthesis, Oct. 2006, pp. 124–129.

[17] R. Rao, et al., “An optimal analytical solution for processor speed control
with thermal constraints,” in Proc. Int. Symp. Low Power Electronics &
Design, Oct. 2006, pp. 292–297.

[18] R. Rao and S. Vrudhula, “Performance optimal processor throttling
under thermal constraints,” in Int. Conf. on Compilers, Architecture, and
Synthesis for Embedded Systems, Oct. 2007, pp. 257–266.

[19] A. Mutapcic, et al., “Processor speed control with thermal constraints,”
IEEE Trans. Circuits and Systems I, 2009, to appear.

[20] G. Quan, et al., “Guaranteed scheduling for repetitive hard real-time
tasks under the maximum temperature constraints,” in Proc. Int. Conf.
Hardware/Software Codesign and System Synthesis, Oct. 2008, pp. 267–
272.

[21] N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic speed scaling to
manage energy and temperature,” in Proc. Symposium on Foundations
of Computer Science, Oct. 2004, pp. 520–529.

[22] R. Jayaseelan and T. Mitra, “Temperature aware task sequencing and
voltage scaling,” in Proc. Int. Conf. Computer-Aided Design, Nov. 2008,
pp. 618–623.

[23] P. Gai, L. Abeni, and G. Buttazzo, “Multiprocessor DSP scheduling
in system-on-a-chip architectures,” in Proc. Euromicro Conf. Real-Time
Systems, June 2002, pp. 231–238.

[24] E. Seo, Y. Koo, and J. Lee, “Dynamic repartitioning of real-time
schedule on a multicore processor for energy efficiency,” in Proc. Int.
Conf. Embedded and Ubiquitous Computing, Aug. 2006, pp. 69–78.

[25] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures,”
IEEE Trans. Parallel & Distributed Systems, vol. 4, no. 2, pp. 175–187,
Feb. 1993.

[26] R. Rao and S. Vrudhula, “Efficient online computation of core speeds
to maximize the throughput of thermally constrained multi-core pro-
cessors,” in Proc. Int. Conf. Computer-Aided Design, Nov. 2008, pp.
537–542.

[27] F. Mulas, et al., “Thermal balancing policy for streaming computing
on multiprocessor architectures,” in Proc. Design, Automation & Test in
Europe Conf., Mar. 2008, pp. 734–739.

[28] A. K. Coskun, T. S. Rosing, and K. Gross, “Temperature management in
multiprocessor SoCs using online learning,” in Proc. Design Automation
Conf., June 2008, pp. 890–893.

[29] A. K. Coskun, et al., “Temperature-aware MPSoC scheduling for re-
ducing hot spots and gradients,” in Proc. Asia & South Pacific Design
Automation Conf., Jan. 2008, pp. 49–54.

[30] H. Jung, P. Rong, and M. Pedram, “Stochastic modeling of a thermally-
managed multi-core system,” in Proc. Design Automation Conf., June
2008, pp. 728–733.

[31] J.-J. Chen, C.-M. Hung, and T.-W. Kuo, “On the minimization of the
instantaneous temperature for periodic real-time tasks,” in Proc. Real-
Time and Embedded Technology and Applications Symp., Apr. 2007, pp.
236–248.

[32] C. Sun, L. Shang, and R. P. Dick, “Three-dimensional multi-processor
system-on-chip thermal optimization,” in Proc. Int. Conf. Hard-
ware/Software Codesign and System Synthesis, Oct. 2007, pp. 117–122.

[33] G. Paci, et al., “Exploring “temperature-aware design” in low-power
MPSoCs,” in Proc. Design, Automation & Test in Europe Conf., Mar.
2006, pp. 838–843.

[34] “Embedded microprocessor benchmark consortium,” http://www.eembc.
org.

[35] E. L. Lawler and C. U. Martel, “Scheduling periodically occurring tasks
on multiple processors,” Information Processing Ltrs., vol. 7, pp. 9–12,
Feb. 1981.

[36] K. Skadron, et al., “Temperature-aware microarchitecture,” in Proc. Int.
Symp. Computer Architecture, June 2003, pp. 2–13.

[37] R. A. Serway, Physics for Scientists & Engineers with Modern Physics.
Saunders College Publishing, 1990.

[38] G. Link and N. Vijaykrishnan, “Thermal trends in emerging technolo-
gies,” in Proc. Int. Symp. Quality of Electronic Design, Mar. 2006, pp.
625–632.

[39] L.-F. Leung, C.-Y. Tsui, and W.-H. Ki, “Simultaneous task allocation,
scheduling and voltage assignment for multiple-processors-core systems
using mixed integer nonlinear programming,” in Prof. Int. Symp. Circuits
and Systems, May 2003, pp. 309–312.

[40] Y. Liu, et al., “Accurate temperature-dependent integrated circuit leakage
power estimation is easy,” in Proc. Design, Automation & Test in Europe
Conf., Mar. 2007, pp. 204–209.

[41] N. Allec, et al., “ThermalScope: multi-scale thermal analysis for
nanometer-scale integrated circuits,” in Proc. Int. Conf. Computer-Aided
Design, Nov. 2008.

[42] G. De Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill Book Company, NY, 1994.

[43] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,”
in Proc. Int. Wkshp. Hardware/Software Co-Design, Mar. 1998, pp. 97–
101.

	Introduction
	Related Work
	Contributions
	Organization

	System Model and Problem Definition
	Task Model
	Thermal Model
	Problem Definition

	Motivating Example
	MILP-based Approach
	MILP Formulation
	Modeling Power Consumption
	Incorporating Dynamic Voltage Scaling
	Finer-Grained Thermal Model
	Modeling Inter-Task Communication
	Limitations of MILP-Based Approach

	Assignment and Scheduling Heuristic Framework
	Steady-State Analysis Based Heuristic
	Transient Analysis Based Heuristic

	Delay Insertion
	Experimental Results
	Experimental Setup
	MILP Formulation Performance
	Performance of Steady-State Analysis Based Heuristic
	Performance of Transient Analysis Based Heuristic
	Performance of Transient Analysis Based Heuristic with Delay Insertions

	References

