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%e have calculated the temperature coefficient of the long-wavelength refractive index of
several group-IV and III-V semiconductors, using the Penn model for the electronic contribu-
tion to the dielectric constant. The isotropic band gap of this model is identified with the band
gap at the X point of the Brillouin zone, which can be simply expressed in terms of pseudo-
potential coefficients. The explicit temperature dependence of this gap is calculated by ap-
plying to these pseudopotential coefficients the appropriate Debye-%aller factors. The ther-
mal expansion effect is obtained in the manner suggested recently by Van Vechten. Good
agreement between the calculated and the observed temperature dependence of the long-wave-
length refractive index is found.

1. INTRODUCTION

Recently, Phillips's theory of ionicity' has been
applied successfully to calculate various proper-
ties, namely, ionization potential, cohesive ener-
gy,

' nonlinear optical susceptibilities, etc. , of
a large number of covalent and ionic compounds.
At the heart of this theory is a very simple isotrop-
ic one-gap model of the band structure due to Penn. '
Heine and Jonese pointed out that one reason why

such a simple model works for the diamond-type
semiconductors is that the gap on the surface of
the Jones zone is nearly constant over a large
area. By identifying the "Penn gap" with the band

gap at the center of the (110) Jones zone face, they
calculated the hydrostatic pressure coefficient of
the dielectric constant of Si and Ge. In this paper,
we generalize Heine and Jones's calculation to the
III-V semiconductors and obtain the "Penn gep" as
a function of the pseudopotential coefficients. We
then calculate with this model the temperature co-
efficient of the refractive index of several group-IV
and group-III-V semiconductors.

2. PENN MODEL

The electronic contribution to the long-wavelength
dielectric constant of a solid in the Penn model is
given by"

e(0) =1+D((o~/(o,'),
where v~ is the plasma frequency of the valence
electrons, ~ is the Penn gap, and D is a parameter
introduced by Van Vechten to take into account the
effect of d-like core electrons. It is difficult to
speculate on how D will vary with temperature and
volume. Since D is of the order of unity and its
variations are not expected to be large, we shall
neglect this factor in our calculation.

By differentiation of Eq. (1) with respect to tem-

perature (throughout this paper, pressure is a,s-
sumed to be constant when the d sign of differentia-
tion is used), we obtain

1 ck 6-1 1 df'd& 1 dc'& .

dT 6 QP& dT QPg dT

—3G —2 )

where e is the coefficient of linear expansion. In
Eq. (2) we have made use of the known proportion-
ality of && to the valence electron concentration.
We decompose the temperatux e coefficient of co,
which appears in Eq. (2) into its "explicit" temper-
ature dependence at constant volume and its volume
expansion effect:

3. EXPLICIT TEMPERATURE DEPENDENCE OF PENN GAP

Following Heine and Jones, we identify the Penn

gap ~ with the gap at the X point of the Brillouin
zone. As is well known, its energy is close to that
of the strongest peak in the oscillator strength and
the ref lectivity of the group-IV and group-III-V
semiconductors. ' An expression for this gap as
a function of the pseudopotential form factors v(111)
and v(220) has been calculated by Heine and Joness
for germanium-type materials using perturbation
theory. This expression can be easily generalized
to zinc-blende-type compounds. We find„ in ryd-
bergs)

( ) ( )
2[v,(111)+ v, (111)j

( )g S t2 2w a)'

where a is the lattice constant in Bohr radii. The
subscripts 8 and a of the pseudopotential coefficients
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TABLE I. Various parameters used for calculating the temperature dependence of the long-wavelength refractive
index of group-IV and III-V semiconductors.

Pseudopotential
coeff. ( Ry)~

v, (220) v,(111) v, (ill)

Coeff. of linear
expansion at

room temperature
(oK -f)

Debye temp.
e~ at
300'K

(K)
Lattice constant
{in Bohr radii)"

Si
Ge
GaAs
GaSb
InAs
InSb
InP
GaP

—0. 022
+ 0.337
+0.04
+0. 01
+0.01

0. 0
0. 0
0. 0

+0. 01
+0.03

—0.514
-0.811
—0.21
—0.23
—0.23
—0.22
—0.22
—0.20
—0. 23
—0.22

+0.07
+0. 06
+0. 08
+0. 06
+0. 07
+0. 12

5.7

12.0
16.0
10.9

12.3
15.7
9.6
9.1

1.1 x].0

2.5x].0 "
5.7&10 6

5.7~10 "
6. 3 &&10-'

5.4x10 6

5. 1& 10-6
4. 9xl0 "
5.8lxl0 '
5.3 ~10-"

647'
354'
360
230
270 ~

150'
420
470 ~

10.26
10.69
10.68
11.56
11.41
12.24
11.09
10.3
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v(220), t](200), and v(ill) denote their symmetric
and antisymmetric components, respectively. The
antisymmetric coefficients t],(200) and, (~ 11) are
responsible for the splitting of the X, conduetiu. .
bands [a sign in Eq. (4)] but does not change, to
first order, the average value of m~. Since the
splitting is known to be small for III-V compounds,
it can be neglected for the purpose of ealeulating
dielectric properties. We thus obtain

component of the pseudopotential n(g) by the appro-
priate Debye-%aller factor' '":

exp[-B(T) I g I'] = exp [- (ig I'/5)]( u')

(for cubic crystals).

For a crystal with x atoms per unit cell the average
square displacement of atom K is'4

[v.(&11)]'+[a.(ls1)]') .
(5)

( 3) 1 g ~~(~ . ~)
~

2COth2pQPg(q)

The values of the pseudopotential coefficients
t],(220), v, (111), and v, (111)for several group-IV
and group-III-V semiconductors are listed in Ta-
ble I together with other parameters relevant for
our calculations. The values of co obtained from
these parameters with Eq. (5) are listed in Table
II, together with the values obtained from the dielectric
constant [see Eq. (1)] by Van Vechten' and the en-
ergy Ez of the corresponding ref lectivity peak.
The good agreement between these three sets of
values confirms the validity of Eq. (5).

Equation (5) can be used to ca,lculate the tempera-
ture dependence of ~ by multiplying the Fourier

where P = AT, M~ is the mass of the Kth atom, N
is the number of unit cells per unit volume, &u&(q)

is the frequency of the normal mode with wave
vector q in the jth branch, and e(K, j, q) is the po-
larization vector of the corresponding displacement
of atom K.

In group-IV semiconductors, the two atoms of the
unit cell a.re identical and Eq. (7) simplifies to

1 ~ coth —,'Pe, (q)
2f]fM ~ & 2[]]&(q)

gi'e calculate SB(T)/sT with the Debye model for
the phonon spectrum and obtain with Eq (5)
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with

(10)

assumption cannot be checked until the Debye-Wai-
ler factors for the III-V compounds have been de-
termined. However, the results of our calculation
seem to support this assumption. Thus for the
III-V compounds we use the formula

We shall use in our calculation values of the Debye
temperature ea at room temperature, since most
experimental data are obtained around room tem-
perature. The function E(x) ha. s been evaluated
by Benson and Gill.

For the III-V compounds, it is no longer possible
to relate (u ) directly to the phonon spectrum with
Eq. (7) since the masses of the two constituent
atoms are not equal. However, for those of the
III-V compounds we are considering, we find that
the ratio of the heavier mass to the lighter is
smaller than 2. In the case of the alkali halides,
it was found that at room temperature the average
square displacements for the anion and cation differ
by less than 10/0 even for masses which differ by
a factor of 3.' Hence, we assume for the sake of
simplicity that(u, '„)=(uv). The validity of this

III ~+v ()g)

ST ST BT kT (Mnt+Mv) T

Combining Eqs. (5) and (6) we obtain

:-2 v, 220 — g 220

In order to simplify the evaluation of Eq. (12) we
note that for the semiconductors we are considering
t)(220)is small andlg(220) )

= 2 (g(111)) . Equation
(12) can thus be approximated by the expression

=-2~g(III)~ '~
fag BT v BT

with an error smaller than 1(g.

TABLE II. Calculated and experimental values of the Penn gap (d~, energy E2 of the highest peak in the reflection
spectrum, and temperature coefficient of co~ (theor) and E2 (expt).

Si

GaAs

~, (theor)
from Eq. (5)

(ev)

7. 8
29.6

4

5.35

Kg (expt)
from Eq. (1)

(ev)

4. 8

5.2

4. 1

Highest peak
zn reflection

spectrum
(z,) (ev)

12.6'

4. 44"

5. 0

5.3

d EOg
(cale)

(ev j'K)

—l. 17x 10 4

-4.6xlo 4

—1.9xlo 4

-3.3 x lO-4

-3.5 x lO-'

-3.8 x 10-4

-6.9x 10

-2.3 x 1O-'

-1.9 x 10-4

dEg
(expt )

(eV/'K)

-2.2xlO '"
+0.5xlo 4

-2.4x 1O-"
-2xlo 4'

-3.6 x 10-4"
-3.3xlO "
-4. lxlO '
-6.2 x 1O-4'

-3.6x 10
5.4xlo 4'

-4.5xlo 4

W. C. Walker and J. Osantowski, Phys. Bev. 134, A153 (1964).
B. B. L. Zucca and Y. B. Shen (unpublished). These values were measured at 5 K.

'M. Cardona and H. S. Sommers, Jr. , Phys. Bev. 122, 1382 (1961).
A. G. Thompson, J. C. Woolley, and M. Bubenstein, Can. J. Phys. ~44 2927 (1966).
'F. Lukes and E. Schmidt, inI'~oceedings ofthe International Conference of the I'hysics of Semiconductors, Exete~, 1962,

(The Institute of Physics and The Physical Society, London, 1962), p. 389.
M. Cardona, in Semiconductors and Semimetals, edited by B. K. Willardson and A. C. Beer (Academic, New York,

1967), VoI. 3, p. 140. Both are room-temperature values.
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4. VOLUME DEPENDENCE OF PENN GAP

The volume coefficient of v~ can be calculated
with Eq. (5) and the known derivatives of v(q) with
respect to (q (. Since this volume dependence is
only responsible for less than 20% of the total cal-
culated temperature dependence of ~, we choose
for its evaluation the simpler, although possibly
less accurate procedure given by Van Vechten.
We start with the equation

(~2+ C2)1/2 (14)

where ~„ is the homopolar energy gap of the materi-
al, and C the heteropolar energy gap. In order to
calculate the volume dependence of e it is neces-
sary to know the corresponding dependence of
&u„(~]44X:a '") and C,' For simplicity we take
(BC/BV)r = 0. Our result does not depend critically
on this assumption since C only accounts for a
small fraction of ~, whose volume dependence,
in turn, only accounts for a small fraction of the

total temperature dependence of co~. We thus find

(15)

5. TEMPERATURE DEPENDENCE OF LONG-WAVELENGTH
REFRACTIVE INDEX

We have listed in Table I the parameters used
for our calculation of (1/n) (Bn/BT)~ based on Eqs.
(2), (3), (13), and (15). We have used for the De-
bye temperature the values obtained from specific-
heat measurements. Batterman and Chipman'
found that the Debye temperatures obtained for Ge
and Si from x-ray intensity measurements were
about 2(P/]) lower than those from specific heat. This
fact introduces an uncertainty of about 40%%u]) in our
calculation of (I/e, ) (B&u, /BT)». We believe this
uncertainty is our main source of error.

In Table II we show the temperature coefficient
dm /dT calculated with Eqs. (13) and (15) and those
determined experimentally for E~. The agreement
is satisfactory.

In Table III we show the calculated value of (1/n)
x(dn/dT) at 300 K compared with experimental re-
sults. Theoretical I are the values obtained by us-
ing in Eq. (2) the calculated coefficients (I/&4) )

x (d&u /d T) while Theoretical II are the values ob-
tained by using the experimental (I/E2) (dE2/dT)
and assuming (I/+ ) (du /dT) = (1/E2) (dE2/dT) We.
note that the trend in the experimental values in
going from one material to another is better repre-
sented by Theoretical I than by Theoretical II. A
possible explanation is that the values of dEa/dT
determined by the wavelength modulation technique
are sensitive to the detailed critical point struc-
tures while + represents the somewhat different

TABLE III. Temperature coefficient of long-wave-
length refractive index of group-IV and III-V semicon-
ductors.

C
Si

GaAs

InAs
InSb

1 dn

n dT
(theor I)

( K-')

l. 1 x10
3.7x10 ~

6. 1x10 5

5.4x10-'

9.3x10 5

6.7x10 5

15.Ox10 5

3.6x10
2. 2x 10 '

1 dn

n dT
(theore II)

(oK '1)

4. 2x10 5

4. 2x10 '

5. 7x10 ~

5. 1 x10 5

8.0x10 5

12.4x10
10.3 x10-~

7. 4xlo '
11.9x10 5

~ 0 ~

6. 8x10 5

1 dn
n dT
(expt)
(oK-1)

0.5xl0 5

3.9x10
4.7 x10-"
6.9x10

10x10
4. 5x10 5

8.2x10 5

Ct ~ ~

11.9 x 10-5

2. 7 x10-'
3.7xlo '
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[v,))11)]' [v.]1)1)]')'

4v, ]1)1)v, ]111!)
(2v/a)' (16)

While Eq. (16) has the form of Eq. (14) and gives
good agreement with the experiment for the values
of C, Eq. (5) agrees better with the experimental
values of + for the semiconductors considered
in this work. In any case our results for (1/n)
(dn/dT) remain the same, since we still obtain
Eq. (13), even if Eq. (16) is used for ~ .

average gap. The agreement between the calculated
values of (1/n) (dn/dT) and the experimental values
is always better than 40%%uo, which is the error of
our calculation due to uncertainties in the Debye
temperature.

After this work had been completed, it was
brought to our attention that Phillips' had also gen-
eralized the Heine- Jones model to the zinc-blende-
type semiconductors. He obtained for v~
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The band structure of SiGe has been calculated using the coherent-potential approximation
in conjunction with a realistic but local pseudopotential model. The effects of alloy disorder
manifest themselves in complex band energies, each with an imaginary part inversely pro-
porhonal to the electron lifetime. Spectral functions and the alloy denisty of states are also
computed. The damping proves to be small, though it is not always given accurately by low-
order-perturbation theory about the virtual crystal. Moreover, within the present local
pseudopotential approximation, it affects only s electrons capable of penetrating the ionic
cores, since outside the core region the alloy pseudopotential is like that of either limiting
pure crystal. The effect of the damping on experimental quantities such as the optical ab-
sorption and electrical resistivity is very small.

I. INTRODUCTION

This paper describes a calculation of the band

structure of Sioe, in which we explicitly include the
effects of alloy disorder. These manifest themselves
in complex band energies with imaginary parts in-
versely proportional to the electron lifetime. Such

a calculation has been made feasible, and potential-

ly useful, by the development of the so-called co-
herent-potential approximation (CPA) by Soven, '

Taylor, Onodera and Toyozawa, ' and Velickf,

Kirkpatrick, and Ehrenreich. The CPA is a method
for treating the single-particle properties of sub-
stitutionally disordered binary alloys within the
framework of multiple-scattering theory. It consists
of approximating the configuration-averaged single-
particle alloy Green's function (6) by an operator
0 determined by the condition that an electron prop-
agating according to it should undergo, on the aver-
age, no scattering at each atomic site. The CPA
neglects effects due to the clustering of like atoms


