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Abstract

Space and time dependent correlation functions in the Heisenberg XX0 chain

(in transverse magnetic field) are expressed in terms of Fredholm determinants of

linear integral operators at all temperatures. The obtained expression allows useful

computation of spectral shapes.

Moreover, these determinant expressions allow to evaluate the asymptotic be-

haviour of correlation functions.



1. INTRODUCTION

Recently essential developments have been made in the theory of quantum correlation

functions showing that correlators of quantum exactly solvable models satisfy classical

completely integrable differential equations [1]-[6] (this program for the example of the

nonrelativistic Bose gas is now fulfilled and presented in Ref. [7]). An important prelim-

inary step to obtain these differential equations is to represent correlation functions as

the determinants of Fredholm linear integral operators. For the nonrelativistic Bose gas

these representations were given in papers [8, 9] in the time independent case and in [10]

in the time-dependent case.

Here we present [11]-[14] determinant representations of this kind for the distance,

time and temperature dependent two-point correlation functions of the XX0 Heisenberg

chain. We further write differential equations for these correlators, and calculate their

asymptotics by constructing and solving a matrix Riemann problem, similarly to the case

of the nonrelativistic Bose gas [5], [15]-[17] (see also Ref. [7]).

2. XXO HEISENBERG QUANTUM CHAIN

The XX0 chain is the isotropic case of the XY model [18], being also the free fermions

point for the XXZ chain. The Hamiltonian describing the nearest neighbour interaction of

local 1/2 spins situated at the sites of the one-dimensional periodical lattice in transverse

magnetic field, with M (even) sites, is given as

H(h) = −
M∑

m=1

[σ(m)
x σ(m+1)

x + σ(m)
y σ(m+1)

y + hσ(m)
z ] . (1)

Pauli matrices are normalized as (σ(m)
s )2 = 1 (s = x, y, z). Moreover, we define σ

(m)
± ≡

1
2
[σ(m)

x ± iσ(m)
y ].

The ferromagnetic state | 0〉 ≡ ⊗M
m=1 |↑〉m (all spins up) is an eigenstate of the

Hamiltonian. All the other eigenstates can be obtained by filling this ferromagnetic state

with N quasiparticles (N = 1, 2, ..., M) with different quasimomenta pa, −π < pa ≤ π,

(a = 1, ..., N) and energies ε(pa),

ε(p) ≡ ε(p, h) = −4 cos p + 2h . (2)
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Periodical boundary conditions imply:

exp[iMpa] = (−1)N+1, a = 1, ..., N (3)

for the allowed values of quasimomenta. All the momenta of the quasiparticles of a given

eigenstate should be different, so that, e.g., for N = M one gets only one eigenstate

| 0′〉M = ⊗M
m=1 |↓〉m which is the ferromagnetic state with all spins down.

The model in the thermodynamical limit (M → ∞, h fixed) is the most interest-

ing. For h ≥ hc ≡ 2, ferromagnetic state | 0〉 (all spins up) is the ground state of the

Hamiltonian. For 0 ≤ h < hc, the ground state | Ω〉 is obtained by filling the ferromag-

netic state with quasiparticles possessing all the allowed momenta inside the Fermi zone,

−kF ≤ p ≤ kF , where

kF = arccos(h/2) ; h ≤ hc = 2 , (4)

is the Fermi momentum. At non zero temperature T > 0, the density of quasiparticles

in the momentum space is given as ϑ(p)/2π, where ϑ(p) ≡ ϑ(p, h, T ) is the Fermi weight:

ϑ(p) =
1

1 + exp[ε(p)/T ]
. (5)

3. CORRELATION FUNCTIONS

Temperature and time dependent correlators of local spins σ(m)
s (t)≡ exp[iHt]σ(m)

s exp[−iHt],

σ(m)
s ≡ σ(m)

s (0), s = x, y, z, are defined as usual:

g(T )
sr (m, t) ≡ 〈σ(n2)

s (t2)σ
(n1)
r (t1)〉T

=
Tr
{
exp[−H/T ]σ(n2)

s (t2)σ
(n1)
r (t1)

}
Tr {exp[−H/T ]}

. (6)

Due to translation invariance the correlators depend only on the differences,

m ≡ n2 − n1 , t = t2 − t1 . (7)

At zero temperature, only the ground state contributes to the traces in (6),

g(0)
sr (m, t) ≡ 〈Ω | σ(n2)

s (t2)σ
(n1)
r (t1) | Ω〉

〈Ω | Ω〉
(T = 0) . (8)
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In Ref. [18] the time-independent correlators of XY model were calculated at h = 0.

The simple answer for the correlator of the third spin components was given; for the XX0

chain it reduces essentially to the square modulus of the Fourier transform of the Fermi

weight. The result was generalized to the case of nonzero transverse magnetic field and

to the time-dependent correlator [19]; in our notation, for the XX0 model the last result

may be written

g(T )
zz (m, t) = 〈σz〉2T −

1

π2

∣∣∣∣∫ π

−π
dp exp[imp + 4it cos p]ϑ(p)

∣∣∣∣2 +

+
1

π2

(∫ π

−π
dp exp[−imp− 4it cos p]ϑ(p)

)(∫ π

−π
dq exp[imq + 4it cos q]

)
(9)

(for t = 0, the last term in the r.h.s. is equal to zero). Here

〈σz〉T
≡ 〈σ(n)

z (t)〉
T

= 1− 1

π

∫ π

−π
dp ϑ(p) ,

〈σz〉0 = 1− 2kF

π
, (10)

is the magnetization (not depending neither on n nor on t due to translation invariance).

Properties of these quantities were considered in much detail [18]-[21]. Real systems for

experimental comparisons were found [22].

Correlators of the other local spin components are indeed more complicated. In Ref.

[18] these correlators (for the XY model at t = 0, h = 0) were represented as the

determinants of m × m matrices (m is the distance between correlating spins). This

representation was investigated in detail in [20] (see also [23]). In Ref. [24] the structure

of the time-dependent correlators was investigated on the basis of an extension of the

thermodynamic Wick theorem. In Ref. [2], representation of the autocorrelator (m = 0,

t 6= 0) in the transverse Ising chain in critical magnetic field (closely related to correlators

in the XX0 chain at h=0) were given as Fredholm determinants of a linear integral

operator.

4. σ+σ− CORRELATION FUNCTIONS AT T = 0

Here the correlators (see (6), (7) for the notations)

g
(T )
+ (m, t) = 〈σ(n2)

+ (t2)σ
(n1)
− (t1)〉T

, (11)
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g
(T )
− (m, t) = 〈σ(n2)

− (t2)σ
(n1)
+ (t1)〉T

, (12)

for the XX0 model in a transverse magnetic field are given as Fredholm determinants of

linear integral operators. These representations, quite different from those of paper [18],

are instead similar to the representations of two-point correlators previously obtained for

the one-dimensional Bose gas [8]-[10].

In order to obtain these representations we proceed as follows [10]. The explicit

form for the eigenfunctions of Hamiltonian (1) is well known, being just the simplest

case of eigenfunctions of the XXZ model [25] with vanishing of two-particle scattering

phases. Using this explicit form one can represent the normalized mean value of, e.g.,

operator σ
(n2)
+ (t2)σ

(n1)
− (t1) on the periodical lattice with finite number M of sites (with

respect to any eigenfunction with N quasiparticles over the ferromagnetic vacuum) as

the determinant of a N ×N matrix. Then, in the thermodynamical limit, correlator (11)

is given by the Fredholm determinant of a linear integral operator.

We start with correlator (11), which, at zero temperature, is represented as follows:

g
(0)
+ (m, t) = exp[−2iht]

[
G(m, t) +

∂

∂z

]
det

[
Î + V̂ − zR̂(+)

]∣∣∣
z=0

. (13)

In the r.h.s. there is a Fredholm determinant. Linear operators V̂ and R̂(+) act on

functions f(p) on the interval −kF ≤ p ≤ kF (kF is the Fermi momentum (4)) as, e.g.,

(
V̂ f

)
(p) =

1

2π

∫ kF

−kF

dq V (p, q)f(q) . (14)

Operator Î is the identity operator (with kernel δ(p − q)). The kernels of operators V̂ ,

R̂(+), are

V (p, q) =
E+(p)E−(q)− E−(p)E+(q)

tan 1
2
(p− q)

−G(m, t)E−(p)E−(q) , (15)

R(+)(p, q) = E+(p)E+(q) , (16)

where functions E+, E−, are given as

E−(p) ≡ E−(m, t, p) = exp[− i

2
mp− 2it cos p] ,

E+(p) ≡ E+(m, t, p) = E−(p)E(m, t, p) (17)
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Functions G(m, t) and E(m, t, p) are defined as follow:

G(m, t) =
1

2π

∫ π

−π
dq exp[imq + 4it cos q] = imJm(4t) , (18)

(Jm is the Bessel function) and

E(m, t, p) =
1

2π
P
∫ π

−π
dq

exp[imq + 4it cos q]

tan 1
2
(q − p)

≡

≡ 1

2π

∫ π

−π
dq

exp[imq + 4it cos q]− exp[imp + 4it cos p]

tan 1
2
(q − p)

; (19)

here P means the principal value. It should be mentioned that kF = 0 for h ≥ hc ≡ 2.

In this case the ground state is the ferromagnetic state | 0〉 and the correlator is just the

“wave packet”:

g
(0)
+ (m, t) = exp[−2iht]G(m, t) =

1

2π

∫ π

−π
dq exp[imq − itε(q)] , (20)

5. σ+σ− CORRELATION FUNCTIONS AT T 6= 0

In the case of non zero temperature (T > 0) the representations are similar:

g
(T )
+ (m, t) = exp[−2iht][G(m, t) +

∂

∂z
] det

[
Î + V̂T − zR̂

(+)
T

]∣∣∣
z=0

, m ≥ 0 , (21)

Operators V̂T , R̂
(+)
T , act over the interval [−π, π],

(V̂T f)(p) =
1

2π

∫ π

−π
dq VT (p, q)f(q) , (22)

etc., their kernels being equal to

VT (p, q) =
√

ϑ(p) V (p, q)
√

ϑ(q) ,

R
(+)
T (p, q) =

√
ϑ(p) R(+)(p, q)

√
ϑ(q) , (23)

where ϑ(p) is the Fermi weight (5) and functions V (p, q), R(+)(p, q), are defined in eqs.

(15), (16).

Analogous representations are valid also for correlator (12):

g
(0)
− (m, t) = exp[2iht]

∂

∂z
det

[
Î + V̂ + zR̂(−)

]∣∣∣
z=0

, (24)

g
(T )
− (m, t) = exp[2iht]

∂

∂z
det

[
(Î + V̂T + zR̂

(−)
T

]∣∣∣
z=0

, (25)
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where V̂ and V̂T are the same operators as in (13), (21) and the kernels of operators R̂(−)

and R̂
(−)
T (acting over the interval [−kF , kF ], see (14), and [−π, π], see (22), respectively)

are

R(−)(p, q) = E−(p)E−(q) , (26)

R
(−)
T (p, q) =

√
ϑ(p) R(−)(p, q)

√
ϑ(q) , (27)

with functions E−(q) defined in (17). It is worth mentioning that the zero-temperature

correlator (24) is equal to zero for magnetic field h ≥ hc = 2.

The previous results allows the computation of spectral shapes, as done in [26] for the

high-excitation-emission spectra of one-dimensional Frenkel excitons.

6. ASYMPTOTICS OF CORRELATION FUNCTIONS AT T 6= 0

It was already mentioned that representations similar to those obtained above gave

an opportunity to obtain differential equations for correlation functions in the case of

impenetrable bosons (the V Painlevé transcendent in the equal time zero temperature

case [1] and integrable partial differential equations for time and temperature dependent

correlators [4, 5]). This allowed to construct exact asymptotics for the correlators [1, 16,

17]. Corresponding results have indeed be obtained for the XX0 chain [27]-[28].

The strategy is the following: after having expressed the correlation function as a

determinant of an integral operator (of Freedholm type), it is possible to show that

it satisfies a set of differential equations of Ablowitz and Ladik [29] type (integrable

discretization of the non-linear Schrodinger equation). This means that the correlation

function of the XXO model is the τ function of Ablowitz-Ladik’s differential-difference

equation.

It is then possible to solve Ablowitz-Ladik’s equation in the asymptotic limit of large

space and time separations, through the use of Matrix Riemann-Hilbert problem [7],[17].

The result reads as follow. We consider finite temperature 0 < T < ∞ and moderate

magnetic field 0 ≤ h < 2. The asymptotics are evaluated in those cases where both space

and time separation go to infinity m →∞, t →∞, in some direction φ:

m

4t
= cot φ, 0 ≤ φ ≤ π

2
. (28)
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Correlation function g
(T )
+ (m, t) decays exponentially in any direction, but the rate of

decay depends on the direction in space-time. In the space-like direction 0 ≤ φ ≤ π
4

we

have the following asymptotic behaviour:

g
(T )
+ (m, t) −→ C exp

{
m

2π

∫ π

−π
dp ln

∣∣∣∣∣tanh

(
h− 2 cos p

T

)∣∣∣∣∣
}

. (29)

In the time-like direction π
4
≤ φ ≤ π

2
we get instead:

g
(T )
+ (m, t) −→ C t2ν2

++2ν2
− exp

{
1

2π

∫ π

−π
dp |m− 4t sin p| · ln

∣∣∣∣∣tanh

(
h− 2 cos p

T

)∣∣∣∣∣
}

,

(30)

where the values ν± which define the pre-exponent are:

ν± =
1

2π
ln

∣∣∣∣∣tanh

(
h∓ 2 cos p0

T

)∣∣∣∣∣ , (31)

and p0 is defined through m
4t

= sin p0. It should be mentioned that the constant factor C

in (29) does not depend on the direction φ, but it does depend on φ in (30).

References

[1] M. Jimbo, T. Miwa, Y. Mori, M. Sato, Physica D1 (1980) 80;

[2] B.M. McCoy, J.H.H. Perk, R.E. Schrock. Nucl. Phys. B220 [FS 8] (1983) 35;

[3] A.R. Its, A.G. Izergin, V.E. Korepin. Phys.Lett. A141 (1989) 121;

[4] A.R. Its, A.G. Izergin, V.E. Korepin, Comm. Math. Phys. 129 (1990) 205;

[5] A.R. Its, A.G. Izergin, V.E. Korepin, N.A. Slavnov, Int. Jour. Mod. Phys. B4 (1990)

1003;

[6] A.R. Its, A.G. Izergin, V.E. Korepin, N.Ju. Novokshenov, Nucl. Phys. B340 (1990)

752;

[7] V.E. Korepin, A.G.Izergin, N.M. Bogoliubov, “Quantum Inverse Scattering Method,

Correlation Functions and Algebraic Bethe Ansatz” Cambridge University Press

(1992);

7



[8] A. Lenard, Jour. Math. Phys. 5 (1964) 930;

[9] A. Lenard, Jour. Math. Phys. 7 (1966) 1268;

[10] V.E. Korepin, N.A. Slavnov, Comm. Math. Phys. 136 (1991) 633;

[11] F.Colomo, A.V.Izergin, V.E.Korepin, V.Tognetti, Correlators in the Heisenberg

XXO Chain as Fredholm Determinants, Physics Letters A169 (1992) 243;

[12] F.Colomo, A.V.Izergin, V.E.Korepin, V.Tognetti, Determinant Representation for

Two-Points Correlators of the Heisenberg XX0 Chain in Transverse Magnetic Field,

Teor. Mat. Fiz. 94 (1993) 19, or Theor. Math. Phys. 94 (1993) 11.

[13] A.R. Its, A.G. Izergin, V.E. Korepin, N.A. Slavnov, Phys. Rev. Lett. 70 (1993) 1704;

[14] F. Colomo, A.R. Its, A.G. Izergin, V.E. Korepin, “Asymptotics of Correlators of

Quantum Spins”, in preparation;

[15] A.R. Its, A.G. Izergin, V.E. Korepin, Commun. Math. Phys. 130 (1990) 471;

[16] A.R. Its, A.G. Izergin, V.E. Korepin, Physica D53 (1991) 187;

[17] A.R. Its, A.G. Izergin, V.E. Korepin, G.G. Varzugin, Physica D54 (1992) 351;

[18] E. Lieb, T. Schultz, D. Mattis, Ann. Phys., 16 (1961) 407;

[19] T. Niemeijer, Physica 36 (1967) 377;

[20] B.M. McCoy, Phys. Rev. 173 (1968) 531;

[21] S. Katsura, T. Horiguchi, M.Suzuki, Physica 46 (1970) 67;

[22] M. D’Iorio, R.L. Armstrong, D.R. Taylor, Phys. Rev. B27 (1983) 1664;

[23] T. Tonegawa, Solid State Comm. 40 (1981) 983;

[24] J.H.H. Perk, H.W. Capel, Physica A89 (1977) 265;

[25] C.N. Yang, C.P. Yang, Phys. Rev. 150 (1966) 321.

8



[26] H. Suzuura, T. Tokihiro, Y. Ohta, Phys. Rev. B49 (1994) 4344.

[27] A.R. Its, A.G. Izergin, V.E. Korepin, N.A. Slavnov, Phys. Rev. Lett. 70 (1993) 1704;

[28] F. Colomo, A.R. Its, A.G. Izergin, V.E. Korepin, “Asymptotics of Correlators of

Quantum Spins”, in preparation.

[29] M.J. Ablowitz, J.F. Ladik, Stud. Appl. Math. 55 (1976) 213.

9


