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Temperature dependence of lower critical field Hc1(T ) shows nodeless superconductivity in FeSe
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We investigate the temperature dependence of the lower critical field Hc1(T ) of a high-quality FeSe single
crystal under static magnetic fields H parallel to the c axis. The temperature dependence of the first vortex
penetration field has been experimentally obtained by two independent methods and the corresponding Hc1(T )
was deduced by taking into account demagnetization factors. A pronounced change in the Hc1(T) curvature is
observed, which is attributed to anisotopic s-wave or multiband superconductivity. The London penetration depth
λab(T ) calculated from the lower critical field does not follow an exponential behavior at low temperatures,
as it would be expected for a fully gapped clean s-wave superconductor. Using either a two-band model with
s-wave-like gaps of magnitudes �1 = 0.41 ± 0.1 meV and �2 = 3.33 ± 0.25 meV or a single anisotropic
s-wave order parameter, the temperature dependence of the lower critical field Hc1(T ) can be well described.
These observations clearly show that the superconducting energy gap in FeSe is nodeless.
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I. INTRODUCTION

Superconductivity in Fe-based superconductors (FeSCs)
has been studied intensively due to the relatively large
transition temperatures Tc up to 55 K,1–4 a high upper critical
field, and a layered structure similar to the cuprates. Super-
conductivity emerges when the magnetic order is suppressed
by charge doping or by applying an external pressure, and
takes place within FeAs, FeP, or FeSe crystallographic planes.
These planes are separated by layers of other elements serving
as charge reservoirs. Among the very few members of this
FeSCs class becoming superconducting at ambient pressure
and without doping, we find the iron selenide, FeSe. This
compound has the simplest crystal structure and stoichiometry
while keeping a moderate superconducting critical tempera-
ture of about 8 K for polycrystalline samples.5 Furthermore,
high-quality single crystals with rather large dimensions can be
grown,6–8 which are necessary for an accurate determination
of bulk physical properties. Interestingly, if the tetragonal
FeSe system is submitted to a pressure of 8.9 GPa, a huge
enhancement of the Tc up to 36.7 K is obtained.5,9 This system
also stands out due to the absence of nesting between the
hole and electron pockets of the Fermi surface.5 In addition,
density functional calculations of the electronic structure
indicate that the electron-phonon coupling cannot explain
superconductivity at such a high transition temperature.10

Therefore, FeSe falls into the category of unconventional
superconductivity and appears as an ideal candidate to study
the fundamental properties of superconductivity in clean
iron-based superconductors.

One of the crucial issues to elucidate the mechanism leading
to high-temperature superconductivity is the nature of pairing,
e.g., the symmetry and structure of the superconducting order
parameter. Up to now, there have been several investigations
on the pairing symmetry of FeSe superconductors. Thermal
conductivity measurements11 show the absence of nodes in

the superconducting gap. Furthermore, recent upper critical
field studies of β-FeSe crystals have revealed that two-band
effects dominate Hc2(T ), with the possible influence of a
spin paramagnetic effect.12 The presence of both an isotropic
s-wave and extended s-wave order parameters coexisting in
a superconducting single-crystal FeSe has also been proposed
based on specific-heat measurements.13 Very recently, multiple
Andreev reflection spectroscopy pointed to the existence of
two-gap superconductivity.7 In addition, muon-spin rotation
studies of the penetration depth λ−2

ab (T ) in FeSe0.85 were con-
sistent with either two-gap (s + s) or anisotropic s-wave order
parameter symmetries, thus implying that the superconducting
energy gap contains no nodes.14 In contrast to that, scanning
tunneling spectroscopy experiments in the stoichiometric FeSe
provided clear evidence for nodal superconductivity.15 The
observed gap function was attributed to an extended s-wave
pairing structure with a mixture of sx2+y2 and sx2y2 pairing
symmetries.16 Clearly, to date, there is no general consensus
on the origin of the superconducting pairing mechanism in
FeSe compounds and further measurements to elucidate this
issue are necessary.

The lower critical field Hc1(T ), i.e., the thermodynamic
field at which the presence of vortices into the sample becomes
energetically favorable, and the magnetic penetration depth
λ(T ) are very useful parameters, providing key information
regarding bulk thermodynamic properties. Indeed, the gap
properties of different families of FeSCs have been investi-
gated by tracking the Hc1(T ) and the magnetic penetration
depth.17–23 The gap properties of these compounds display
single to double gaps and even the presence of nodes.
This variety of gap properties appears to be related to the
nature and the level of doping. It should be mentioned that
this quest for new multiband superconductivity is a timely
subject due to the possible emergence of nonmonotonic
vortex-vortex interactions, a fingerprint of so-called type
1.5 superconductivity.24–26
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The main motivation of the present paper is to tackle a
longstanding question concerning whether the superconduct-
ing properties of these materials can or cannot be accounted
for a nodal order parameter. To that end, we reliably determine
the temperature dependence of the Hc1 from magnetization
measurements. We then compare the most popular approach
of determining the first vortex penetration as the point of
deviation from a linear M(H ) response, to the value obtained
from the onset of the trapped magnetic moment (Mt ). Although
this latter approach to determine Hc1(T ) has been performed
in detail in high-Tc superconductors, i.e., YBa2Cu3O0.69 as
reported in Ref. 27, its application to Fe-based superconductors
still needs to be presented. In particular, our results show that
the method of the trapped magnetization onset is more sensitive
than the method determined from the point of deviation from
a linear M(H ) response. In addition, a kink around 7 K is
obtained on the Hc1(T ) curve, which can be accounted for
the anisotopic s-wave or multiband superconductivity in this
system. Our analysis further shows that the superconducting
gaps determined through fittings to the in-plane London
penetration depth cannot be described with the single-band
weak-coupling BCS scheme; rather, it implies the presence
of either two s-wave-like gaps with different magnitudes
and contributions or a single anisotropic s-wave gap. Our
London penetration depth results are contrasted to values
obtained through the more sophisticated technique of muon-
spin rotation.14

II. EXPERIMENT

We investigated a selected platelike FeSe single crystal
grown in an evacuated quartz ampoule using the AlCl3/KCl
flux technique with a constant temperature gradient of 5◦C/cm
along the ampoule length (the temperature of the hot end
was kept at 427◦C, and the temperature of the cold end
was about 380◦C). The phase purity of the resulting crystal
was checked with x-ray diffraction.7 The sample has lateral
dimensions a × b × c = 1.05 ± 0.08 × 1.25 ± 0.1 × 0.02 ±
0.01 mm3 with a mass of 1.2 mg. Magnetization measurements
were performed using a superconducting quantum interference
device magnetometer (MPMS-XL5) from Quantum Design.
The good quality of the crystals is confirmed from a sharp
specific-heat jump (9.45 mJ/mol K2 with zero residual specific
heat γr ),13 indicative of a complete superconducting volume.
The temperature dependence of resistance R(T ) demonstrates
a metallic behavior with Tc = 9.4 K.7

III. RESULTS AND DISCUSSIONS

A. Irreversible magnetization

Figure 1(a) presents the field dependence of the isothermal
magnetization M at certain selected temperatures up to 40 kOe
for H ‖ c (main panel) and H ‖ ab [see the inset of Fig. 1(a)].
For H ‖ c, the magnetic irreversibility presents a second
peak, whereas no second peak is observed for H ‖ ab. This
significant anisotropic behavior in the appearance of the
second peak has been reported previously in other Fe-based
superconductors, e.g., Ba(Fe0.93Co0.07)2As2 (Ref. 28) and
LiFeAs (Ref. 29) single crystals, and is typically associated
with the nature of pinning.30 As reported in the 122 and 111
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FIG. 1. (Color online) (a) Magnetic field dependence of the
isothermal magnetization M vs H loops measured at different
temperatures ranging from 2 to 8 K up to 40 kOe with the field
parallel to both the c axis and ab plane as an inset. (b) and (c)
present the temperature dependence of the magnetic susceptibility χ

after demagnetization correction in an external field of 1 Oe applied
along c and ab, respectively. The χ has been deduced from the dc
magnetization measured with H ‖ c and H ‖ ab following ZFC and
FC protocols for FeSe single crystals.

systems, the second peak is regarded as the crossover from
plastic to elastic pinning.28,29

Figures 1(b) and 1(c) show the temperature dependence of
the magnetic susceptibility of the FeSe single crystal measured
by following the zero-field-cooled (ZFC) and field-cooled (FC)
procedures in an external field of 1 Oe applied along the
c and ab axis, respectively. The ZFC data for both orienta-
tions show a sharp diamagnetic signal, thus confirming bulk
superconductivity in our investigated system. The magnetic
susceptibility exhibits a superconducting transition with an
onset transition temperature T

χ
c of 9.4 K for both orientations.

The clear irreversibility between FC and ZFC measurements
is a consequence of a strong vortex trapping mechanism,
either by surface barriers or bulk pinning. Notice that the
magnetic moment in field-cooled conditions for the H ‖ c

axis becomes positive for T < Tc [see Fig. 1(b)]. A similar
behavior has been observed in conventional as well as Fe-based
superconductors.31

The fact that the hysteresis loops for both orientations
are symmetric around M = 0 points to the relatively weak
surface barriers and is indicative of strong bulk pinning.
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This consideration holds for all studied temperatures, even
close to Tc, and guarantees that vortex penetration occurs at
a field close to Hc1. In contrast to that, if surface barriers
were predominant, the first vortex entrance could take place
at much higher field (∼Hc). This is a very important point
in order to obtain reliable estimations of the thermodynamic
lower critical field, as we will discuss below. It is worth noting
that the superconducting M(H ) exhibits a very weak magnetic
background. This indicates that the sample contains negligible
amounts of magnetic impurities.

From the magnetization hysteresis loops M(H ), we calcu-
lated the critical current density Jc by using the critical state
model with the assumption of field-independent Jc:32,33

Jc = 20�M[
a

(
1 − a

3b

)] , (1)

where �M = Mdn − Mup, Mdn and Mup are the magnetiza-
tions measured with decreasing and increasing applied field,
respectively, and a (cm) and b (cm) are sample widths (a < b).
The unit of �M is in electromagnetic unit per cubic centimeter
and the calculated Jc is in ampere per square centimeter. We
obtain Jc(2 K) ∼ 1.34 × 104 A/cm2 for H ‖ c and Jc(2 K) ∼
1.8 × 104 A/cm2 for H ‖ ab. These values are lower than
those reported in Ba-122, 1111, 11, and the 111 systems29,34–36

and higher than those observed in K0.64Fe1.44Se2.37

B. Experimental determination of the lower critical field

Determining the lower critical field from magnetization
measurements has never been an easy task, particularly since
Hc1 is an equilibrium thermodynamic field, whereas the
magnetization curve is highly irreversible as a consequence
of metastable vortex states far from equilibrium. The most
popular method to estimate Hc1 (here tagged as method A)
consists of detecting the transition from a Meissner-like linear
M(H ) regime to a nonlinear M(H ) response, once the vortices
penetrate into the sample and build up a critical state. This
transition is not abrupt, therefore bearing a substantial error
bar.

These sorts of measurements are obtained by tracking the
virgin M(H ) curve at low fields at several temperatures, as
shown in the upper panel of Fig. 2 for H ‖ c. We have adopted
a rigorous procedure (i.e., with a user-independent outcome) to
determine the transition from linear to nonlinear M(H ), which
consists of calculating the regression coefficient R of a linear
fit to the data points collected between 0 and H , as a function
of H . Then, Hc1 is taken as the point where the function R(H )
departs from 1. This procedure is illustrated for a particular
temperature T = 3 K in the inset of the upper panel of Fig. 2.

An alternative and seemingly more reliable way to deter-
mine the lower critical field (here tagged as method B) can
be obtained by measuring the onset of the trapped moment
Mt as described in Refs. 27 and 38. In contrast to method A,
where a heavy data postprocessing is needed, now a careful
measurement protocol needs to be followed with little data
analysis. Indeed, the trapped flux moment Mt is obtained
by (i) warming the sample up to temperatures above Tc

(T = 20 K), then (ii) cooling the sample at zero field down
to the chosen temperature; subsequently (iii) the external
magnetic field is increased to a certain maximum value Hm and
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FIG. 2. (Color online) The upper panel shows the superconduct-
ing initial part of the measured magnetization curves of β-FeSe single
crystals at various temperatures for H ‖ c. The dashed line depicts
the Meissner line (linear fits between 0 and 15 Oe). The inset depicts
an example used to determine the Hc1 value using the regression
factor R at T = 3 K (see text). The lower panels present the field
dependence of the typical plot of

√
Mt vs H at various temperatures.

The solid lines are a linear fit to the high-field data of
√

Mt vs H . Hc1

values are determined by extrapolating the linear fit to
√

Mt = 0.

(iv) measurements are made of the remanent magnetization Mt

after the applied field has been switched off. The field Hm at
which Mt deviates from zero determines the Hc1 value at the
desired temperature. It is important to notice that this method
furnishes us with a rather independent determination of Hc1,
weakly linked to the first procedure (method A) described
above.

When taking into account the reversible magnetization, the
trapped magnetic moment is Mt ∝ (H − Hc1)2.27 Then the
extrapolation

√
Mt → 0 determines the exact value of the Hc1.

The lower panel of Fig. 2 presents the typical plot of
√

Mt

versus the applied field H for our FeSe single crystal. The
solid line is a linear fit to the high-field data of

√
Mt vs H . Hc1

is determined by extrapolating the linear fit to
√

Mt = 0.
Once the values of Hc1 have been experimentally deter-

mined, we need to correct them to account for the demagneti-
zation effects. Indeed, the deflection of field lines around the
sample leads to a more pronounced Meissner slope given by
M/Ha = −1/(1 − N ), where N is the demagnetization factor.
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FIG. 3. The lower critical fields of the FeSe single crystal for
the field applied parallel to the c axis. Hc1 has been estimated by
two different methods—from the extrapolation of

√
Mt → 0 (see the

lower panels of Fig. 2) and from the regression factor (see the inset
of the upper panel in Fig. 2). The bars show the uncertainty estimated
by the deviating point of the regression fits and the linear fit of

√
Mt .

The inset shows the ratio of Hc1(T ) values obtained by both methods.

Taking into account these effects, the absolute value of Hc1 can
be estimated by using the relation proposed by Brandt:39

qdisk = 4

3π
+ 2

3π
tanh

[
1.27

c

a
ln

(
1 + a

c

)]
, (2)

where qdisk ≡ (|M/Ha| − 1)(c/a), and a and c are the di-
mensions perpendicular to the field and thickness of our
investigated sample, respectively. For our sample we find
N ≈ 0.9623. In addition, an alternative way to determine
the demagnetization factor is from a rectangular prism ap-
proximation based on the dimensions of the crystal, giving us
N ≈ 0.9688.40

The corrected values of Hc1 obtained by following the
two methods described above are illustrated in Fig. 3 for
H ‖ c. Even though both procedures yield different values
of Hc1, the ratio of both methods is just a constant factor
with no change in the shape or the dependence (see the inset
of Fig. 3). This fact shows that both methods can provide a
qualitative estimation of the temperature dependence of Hc1.
However, method B shows lower Hc1 values than method A,
which means that the former method is much more sensitive
than the latter method, although to obtain a more quantitative
result we should compare these methods to high resolution
imaging techniques such as magneto-optical imaging, Bitter
decoration, or scanning Hall probe microscopy.

C. Theoretical fitting of the lower critical field

Irrespective of the method used to obtain Hc1, a pronounced
change of the curvature is observed around 7 K. This may
be attributed to the anisotopic s-wave or multiband nature of
superconductivity in our system. This behavior is reminiscent
of that reported for the two-band superconductors MgB2

(Ref. 41) and Fe-based superconductors,17,19 in which similar
Hc1(T ) curves were well fitted by a two-gap weak-coupling
BCS model.
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FIG. 4. (Color online) Upper panel: The temperature dependence
of the London penetration depth λ−2

ab (T ) for FeSe. The solid red line
is the fitting curve using the two-gap model. The dashed and dashed
dotted lines show the contributions in the two-band model of the big
gap and small gap, respectively (see text). The blue line corresponds to
a single-gap BCS curve. The saturation yields λab(0) = 445(15) nm.
Lower panel: The fitting curves (solid lines) were obtained within
the following anisotropic s-wave and d-wave models of the gap
symmetries (see text). The inset presents the temperature dependence
of the magnetic penetration depths λab(T ) of FeSe.

Alternatively, in order to shed light on the pairing
symmetry in our system, we determined the temperature
dependence of the magnetic London penetration depth (λab)
applied along the c axis by using the following formula
(taking the demagnetization effect into account): μ0H

‖c
c1 =

(φ0/4πλ2
ab) ln κc, where φ0 is the magnetic-flux quantum and

φ0 = h/e∗ = 2.07 × 10−7 Oe cm2, and κc = λab/ξab = 72.3
(Ref. 42) is the Ginzburg-Landau parameter. The results of
these calculations are shown in the inset of Fig. 4. Since we
believe that method B is more accurate in determining Hc1,
we have calculated λab only for this method. The penetration
depth of our FeSe shows similar behavior to the penetration
depths as reported in LiFeAs.19 At low temperatures, λab(T )
does not show the typical exponential behavior expected for
a fully gapped clean s-wave superconductor.

Furthermore, if we compare our data to the single-gap BCS
theory (i.e., a weak-coupling approach), we find that a single
BCS gap cannot be reconciled with our experimental data
(see the blue dashed line in Fig. 4). Indeed, the single BCS
gap leads to a rather different trend and shows a systematic
deviation from the data in the whole temperature range below
Tc. In addition, it largely misses the kink around 7 K.
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LaFeAsO0.9F0.1 (Ref. 52), and FeSeTe (Ref. 53). Lines are guides to
the eye. The arrows show that both gap values are determined using
the lower critical field Hc1(T ) studies.

Knowing that (i) a single isotropic gap scenario cannot
describe our data and (ii) the presence of two superconducting
gaps is observed in a variety of different pnictides (see Fig. 5),
we applied a phenomenological two-gap model reported by
Carrington and Manzano.43 Within this model, the temperature
dependence of each energy gap can be approximated as43

�i(T ) = �i(0) tanh{1.82[1.018( Tci

T
− 1)]0.51}. In the Carring-

ton and Manzano approach the one-band expression is straight-
forwardly generalized to the two-band case. The obtained
experimental temperature dependence of λ−2(T ) is fitted
using a model of two BCS superconducting bands within
the clean limit approach for a London superconductor with
different gaps.44 According to Ref. 45, for each band, λ−2

i (T )
is given by

λ−2
i (T ) =

�i(T ) tanh
(

�i (T )
2kBT

)
λ2

i (0)�i(0)
, (3)

where λi(0) is the residual penetration depth for each band,
and kB is the Boltzmann constant. Considering different
contributions of each band to the whole λ−2(T ), the following
expression was used: λ−2(T ) = rλ−2

1 (T ) + (1 − r)λ−2
2 (T ),

with r being the weighting factor that indicates the contribution
of the small gap.

To calculate the theoretical curves, the parameters �1(0),
�2(0), and their respective ratios are adjusted. The results
of the calculation using the above equations are shown in
Fig. 4. The best description of the experimental data is obtained
using values of �1(0) = 0.41 ± 0.1 meV, �2(0) = 3.33 ±
0.25 meV, and r = 0.2. The calculated penetration depth data
are represented by the solid red line in the upper panel of Fig. 4.

The temperature dependence of the magnetic penetration
depth of the anisotropic s-wave and d-wave gap calculations
were performed using the following functional form:14,46

λ−2
ab (T )

λ−2
ab (0)

= 1 + 1

π

∫ 2π

0

∫ ∞

�(T ,ϕ)

(
∂f

∂E

)
EdEdϕ√

E2 − �(T ,ϕ)2
,

(4)

f = 1

[1 + exp(E/kBT )]
, (5)

where f is the Fermi function, ϕ is the angle along the
Fermi surface, and �(T ,ϕ) = �0δ(T/Tc)g(ϕ) (�0 is the
maximum gap value at T = 0). The function g(ϕ) is given
by gd (ϕ) = | cos(2ϕ)| for the d-wave gap, while gs(ϕ) =
(1 + a cos 4ϕ)/(1 + a) for the anisotropic s-wave gap.47 The
results of the analysis are presented in the lower panel of
Fig. 4 by solid lines. The best description of the experimental
data for the anisotropic s wave is obtained using values of
�0 = 1.663(5) meV, a = 4.772, and λab(0) = 430(15) nm.
For the d-wave case, we get �0 = 2.045(5) meV. It is obvious
that the d-wave case cannot describe the penetration depth
data. On the other hand, the experimental data are well
described for both anisotropic s- and two-gap s-wave models.

It is interesting to compare the extracted values with
those obtained previously on the off-stoichiometry compound
FeSe0.85 (see Table I). It is worth mentioning here that
the two-gap model describes the in-plane penetration depth
data on FeSe0.85 with gap values of 1.60 and 0.38 meV,
substantially different from the values we report here for
FeSe.14 This might not be surprising since it has been well
established that changing the Se content not only leads to a
different Tc but, as shown by McQueen et al.,54 slight changes
from the ideal 1:1 ratio in FeSe lead to severe changes in
the superconducting properties. For instance, the low-field
magnetization data of various FeSe1±δ samples showed that
the strongest superconducting signal occurs for the most
stoichiometric sample, whereas it has been shown that for
the FeSe0.82 case there is no superconducting signal.55

The extracted gap values for the two-gap s-wave model are
also different from �1,2(0) = 2.5 and 5.1 meV, reported for
FeTe0.55Se0.45,56 but comparable to the two-band s-wave fit
for the multiple Andreev reflection spectroscopy57 [�1,2(0) =
0.8 ± 0.2 and 2.75 ± 0.3 meV]. Such a multigap nature seems
to be a common scenario for Fe-based superconductors. It

TABLE I. The superconducting transition temperature Tc (K), the d-wave approach (�0 = meV), the anisotropic s-wave approach (�0 =
meV), two s-wave gaps (meV), and the London penetration depth λab(0) extracted from the the temperature dependence of the London
penetration depth for FeSe and FeSe0.85 (Ref. 14).

System Tc d wave Anisotropic s wave Two s waves λ (nm) Ref.

FeSe 9.4 2.045(5) 1.663(5) 0.41 and 3.33 445(15) This work
FeSe0.85 8.26 1.8(5) 2.2(3) 0.38 and 1.6 405(7) 14
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should be noted that both gap values are not far from those re-
ported for LiFeAs single crystals,19 but are much smaller than
those reported in Ba0.6K0.4Fe2As2 and Ba0.45K0.55Fe2As2.17,51

The lower gap in LiFeAs, Ba0.6K0.4FeAs, and in our sys-
tem is smaller but significantly affects the zero-temperature
penetration depth. It should be pointed out that such a small
gap is also in line with specific-heat data on a similar FeSe
crystal.13 The contribution to the in-plane penetration depth
data from each band is also shown in Fig. 4 by dashed and
dotted lines, respectively. In fully gapped superconductors,
the penetration depth data should show a flat behavior
at low temperatures. However, using the two-band model,
we can get an expected saturating behavior below 0.4 K,
indicating a full-gap superconducting state. This saturation
yields λab(0) = 445(15) nm, which is somewhat smaller
than [560(20) nm] in Fe(Te, Se).58 Our estimated λab(0)
value is indeed comparable to the λab(0) value [405(7) nm]
derived from muon-spin rotation studies.14 Our results provide
another strong evidence that FeSe is not a simple single
gap.

Finally, for the sake of comparison, the gap
amplitudes as a function of Tc of FeSe single
crystals are shown in Fig. 5, together with
Ba(Fe1−xCox)2As2 (Ref. 48) for 0.05 � x � 0.146,
Ba0.68K0.32Fe2As2,49 Ba0.65Na0.35Fe2As2,31 KFe2As2,50

LiFeAs,19 Ba0.45K0.55Fe2As2,51 LaFeAsO0.9F0.1,52 and
FeSeTe.53 As it can be seen, the gap values differ for different
compounds within the 122 family and also for 11, 111, and
1111 compounds. Furthermore, Ponomarev et al.57 have
proven that the small and larger gaps increase linearly with
Tc. It is also clear that the larger gap increases stronger
than linear with Tc for Tc � 30 K. In addition, the values of
the underdoped, optimally, and overdoped K-doped data fit
onto the same curves of �1(0), �2(0). On the other hand,
for the large gap values, a tendency for strong-coupling

effects, e.g., the compounds with the highest Tc, as in K-
and Na-doped superconductors, is given. Very recently
the evolution of the electronic structure of the single-layer
FeSe film during the annealing process illustrates that
the superconductivity is in the strong-coupling regime. In
addition, both the superconducting gap and the transition
temperature increase with the annealing process.59 We do not
yet have a good understanding for such large gap behavior,
especially above 30 K. However, it is worth mentioning that
the contribution of both gap values fits well with the other
hole- and electron-doped 122 systems as well as with the 111
and 1111 compounds.

D. Summary

In conclusion, we have determined the temperature depen-
dence of the lower critical field Hc1(T ) of FeSe by the onset
of either the trapped moment or nonlinear M(H ) response.
Assuming either two s-wave-like gaps with magnitudes �1 =
0.41 ± 0.1 meV and �2 = 3.33 ± 0.25 meV, or an anisotropic
s-wave using values of �0 = 1.663 meV, we account for the
temperature dependence of the lower critical field Hc1(T ).
These observations clearly show that there are no nodes in the
superconducting energy gap of FeSe. The London penetration
depth λab(T ) is calculated from the lower critical field and
yields λab(0) = 445(15) nm.
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