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Temperature dependence of polaronic transport through single molecules and quantum dots

Urban Lundin* and Ross H. McKenzie
Department of Physics, University of Queensland, Brisbane Qld 4072, Australia

~Received 27 March 2002; published 1 August 2002!

Motivated by recent experiments on electric transport through single molecules and quantum dots, we

investigate a model for transport that allows for significant coupling between the electrons and a boson mode

isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the trans-

port. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the

conductivity exhibits a crossover from coherent ~band! to incoherent ~hopping! transport. Here, the temperature

dependence of the differential conductance on resonance does not show such a crossover, but is mostly

determined by the lifetime of the resonant level on the molecule or dot.

DOI: 10.1103/PhysRevB.66.075303 PACS number~s!: 73.23.2b, 73.63.2b, 71.38.Fp

I. INTRODUCTION

In recent years there has been a growing interest in elec-

trical transport through single molecules1–4 and single elec-

tronic levels in quantum dots.5–7 Some molecular devices
exhibit switching behavior with large on-off ratios1 increas-
ing the motivation to construct molecular electronic devices.4

In some cases it has been found that the transport is quite
temperature dependent1 and it has been suggested8 that this
is due to the presence of low energy boson modes, such as
internal rotations, which couple strongly to the molecular
electronic states, and can easily be excited by small
temperatures.9,10 In a similar vein, in double quantum dots it
has been found that there are acoustic phonons which couple
strongly to the electrons.6,7

Some experimental values for the phonon energy have
been estimated in various papers. In Table I we give some
numbers for reference. We see that the boson ~usually pho-
non! frequency in these systems is quite small, correspond-
ing to temperatures in the range 0.5–50 K. In addition there
was a recent proposal10 to consider transport through a quan-
tum dot to a carbon nanotube cantilever with a resonant fre-
quency of the order of 100 MHz, corresponding to a phonon
energy of 0.4 meV. If the electron-phonon coupling is suf-
ficiently large polaronic transport might be important for
these systems. When the electron tunnels through it can ab-
sorb or emit bosons, thus altering its energy and the current.
If the temperature is much larger than the boson energy, there
are many bosons available for absorption and this might
heavily influence the current.

In 1959 Holstein11 predicted that for a periodic one-
dimensional molecular crystal with strong electron-phonon
coupling there should be a crossover from coherent ~band! to
incoherent ~hopping! transport with increasing temperature.
When increasing the temperature the effective bandwidth be-
comes narrower, this gives rise to a decrease in coherent
transport. In contrast, increasing temperature means that
more and more phonons are activated and we are in a regime
where phonon assisted intersite tunneling starts to contribute
to the conductivity. This coherent-incoherent crossover is be-
lieved to have been observed for the first time quite recently
in single crystals of pentacene.12 One aim of this paper is to
see whether a similar crossover should be seen in polaronic

transport through molecules and quantum dots. This might
be expected because of the mathematical similarity between
the models for periodic systems and the resonant tunneling
case. We might expect the tunneling amplitude between the
leads and dot to be reduced by polaronic effects, thereby
reducing the coherent part of the conductivity. When increas-
ing the temperature the electrons can tunnel with boson as-
sisted transport that enhances the tunneling, possibly leading
to a crossover behavior. There have been many theoretical
investigations of the effect of phonons on the transport
through molecules8,13–16 and quantum dots,17–22 but none of
them focuses on the temperature dependence of the current.
The purpose of this paper is to clarify this aspect of the
transport. Li et al.21 included a Hubbard term, but did not
consider multiphonon contributions. In a recent paper Em-
berly and Kirczenow16 made a thorough analysis of conduc-
tance through a molecular wire. A set of self-consistent equa-
tions where set up and solved to give the distribution
functions in the leads and molecule, and then transmission
probabilities were calculated. However, the temperature de-
pendence is not addressed in that paper.

In this paper we perform the analysis for the simplest
possible case, where the electrons interact with a single op-
tical boson localized on the dot or molecule. We anticipate
that this is sufficient to illustrate the main physics in the
more complicated case of many bosons, such as acoustic
phonons. In order to obtain analytical results we have to
assume that the coupling to the leads is small and the energy
level in the dot or molecule is not too close to the Fermi
energy in the leads.23,24 By assuming that the coupling to the
leads is small we can calculate the effects from the bosons

TABLE I. Typical values for parameters taken from experiment.

\v0 is the boson energy and G is the line width due to coupling to

the leads ~defined below! of the resonant level on the molecule or

dot. Imax is the maximal current driven through the system.

System \v0 G Imax

2 quantum dots ~Ref. 7! 40 meV 0.2 meV 3 pA

2 quantum dots ~Refs. 6,30! 30 meV 1 meV 5 pA

molecule ~Refs. 1,8! 3 meV 1 nA

C60 molecule ~Ref. 2! 5 meV 0.1 nA
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locally on the molecule/dot and then assume that the effect
on the leads from the bosons is negligible. This enables us to
use well-known results from mesoscopic transport theory.
The bosons are possibly most often phonons, but since the
theory will look identical ~assuming linear couping! for dif-
ferent types of bosons ~phonons, magnons, charge oscilla-
tions! we will simply refer to ‘‘bosons.’’ Even in photon
assisted tunneling through quantum dots side bands have
been observed when tuning the photon energy.25 In Sec. II
we will define the model we use and in Sec. III, we discuss
the approximations we have to make. Different limits for the
current are derived in Sec. IV, and in Sec. V we discuss the
differential conductivity.

II. CURRENT THROUGH A LEVEL COUPLED

TO A LOCAL BOSON MODE

We consider the simplest possible model Hamiltonian and
neglect the spin degree of freedom and any effects of
electron-electron interactions. The system we study consists
of the individual entities ~left lead, molecule or quantum dot,
and right lead! coupled via tunneling. We assume that we are
dealing with a resonant tunneling situation, but the states in
the dot ~or molecule or any single level system! couples to
some boson mode with characteristic frequency v0, as
shown in Fig. 1. The Hamiltonian is given by

H5H11H21H31H1221H223 , ~1!

where

H11H35(
k1

ek1
ck1

† ck1
1(

k3

ek3
ck3

† ck3
,

H25e0c2
†c21\v0a†a1Mc2

†c2~a1a†!,

H1225(
k1

t~ck1

† c21H.c.!,

H2235(
k3

t~ck3

† c21H.c.!.

Here e0 is the energy of the level in the dot/molecule and t is
the energy associated with hopping onto/off the dot. The
electronic dispersion in the leads are given by ek1

and ek3
. M

is the coupling to the local boson mode with energy \v0. We
disregard the spin dependence for simplicity.

First we make a unitary transformation to diagonalize the
Hamiltonian H2. The price we pay for this is that extra op-
erators attach to the tunneling term in the Hamiltonian. The

transformation is H2̄5eS
H 2e2S, where S5c†c(M /\v0)

3(a†
2a). This gives us

H̄25\v0a†a2Dc2
†c2 , ~2!

where

D5

M 2

\v0

2e0 . ~3!

When the central system is a quantum dot e0 ~and thus D)
can be adjusted by applying a gate voltage. After the trans-
formation the tunneling part of the Hamiltonian becomes

H̄1225(
k1

t~ck1

† c2X1H.c.!,

H̄2235(
k3

t~ck3

† c2X1H.c.!, ~4!

where

X5expF M

\v0
~a2a†!G . ~5!

The X factors can be absorbed into a renormalized electron
creation/annihilation operator in region 2, so that we are left
with the usual resonant tunneling Hamiltonian except that
the Greens function for the electrons on the molecule/dot has

an additional complication. ^Ttc(t)c†(0)&→^Ttc̄(t) c̄†(0)&
5^Ttc(t)c†(0)&^TtX(t)X†(0)&. A formula for the current
can be derived using a Landauer-Büttiker approach.26,27 First
we calculate the current from the left lead onto the dot from
the rate of change of particles in the left lead. A similar
expression for the current from the dot to the right lead is
derived and the total current through the system is obtained
by combining these two formulas. The derivation is pre-
sented in detail in Refs. 26 and 27. The result is that the
current is given by

I~V !52

2e

h
E de@ f 1~e !2 f 3~e !#Im$tr@GG2~e !#%. ~6!

The applied voltage across the system is V and it enters the
two Fermi functions ~the equilibrium Fermi level of the leads
is chosen to be zero! f 1(e)5 f (e2eV/2) and f 3(e)5 f (e
1eV/2). Further, G2(e) is the Green function for the quan-
tum dot including all effects from the boson system and the
tunneling to the leads. The parameter G is

G[
G1G3

G11G3

, ~7!

FIG. 1. Tunneling through a system with one level. The dashed

lines indicate the bosonic satellites ~see text!. The Fermi energy in

the leads is chosen to be zero. The electrons has to tunnel through

the barriers, and can absorb or emit bosons in the process, corre-

sponding to the lines below and above the central resonance, re-

spectively. The Hamiltonian given in Eq. ~1! contains terms describ-

ing the different parts of the system.
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where G1(3)52pt2D1(3)(e), D1(3) is the density of states
~DOS! in the left ~right! lead. G1(3) is the width of the central
resonance due to the tunneling to the left (G1) and right (G3)
lead. The total width of the local resonance, G2, is the sum of
the two, G25G11G3

For convenience we introduce the dimensionless param-
eters

g1[S M

\v0
D 2

,

g2[S G

\v0
D 2

.

We emphasize that there are many different energy scales
associated with the system: kBT , eV , \v0 , G , M, and e0.
The relative sizes of these energy scales have a significant
effect on the current through the system and what approxi-
mations can be made in evaluating it.

The electrons will deposit/absorb energy from the bosonic
system that has to be carried away/supplied. Therefore a
question arises about how to define the temperature, particu-
larly of the molecule or dot. We assume that the molecule/dot
is in equilibrium with a bath and that the tunneling rate is
small so that the system relaxes to the initial state after each
tunneling event. In a quantum dot the bath can be the sub-
strate that the quantum dot is manufactured on. For a mol-
ecule a surrounding cooling liquid1 can play the role of the
bath. Otherwise, we have to assume that the deposited or
absorbed energy is transferred to/from the molecule via the
leads. As far as we are aware, this assumption is also ~im-
plicitly! made in all other theoretical work on this subject.

III. APPROXIMATE EVALUATION OF THE GREENS

FUNCTION G2„e…

To be able to use Eq. ~6! we have to calculate the local
Green function G2(e). Due to the coupling to the leads find-
ing G2(e) is a highly nontrivial problem in many-body
theory.22–24 It is comparable in difficulty to the Kondo prob-
lem because of the possibility of nonperturbative effects.
This is true even in equilibrium ~i.e., in the absence of a bias,
V50). A recent study was made of a similar Hamiltonian
~with spin! using the numerical renormalization group.24 We
are interested in the nonequilibrium case where there is a
bias. In order to simplify the analysis we have to rely on
approximations, and the result will depend on how the X

operators from Eq. ~5! are decoupled. One alternative is to
assume that the coupling to the leads is small, G11G3!D ,
this is the approach taken here. This approximation is justi-
fied for small currents, as is the case in the systems consid-
ered here. If we were to include the effect on the leads from
the bosons on the molecule/dot there would be a narrowing
effect on G . Hewson and Newns used variational and pertur-
bation methods23 to show that this narrowing only takes
place if the following conditions apply:

M 2

\v0

.G , g1.1, \v0.Ge2g1,

\v0.uDu.

The conditions on the first line means that the electron-boson
coupling has to be large enough to form a polaron. The last
requirement on the first line means that individual boson
satellites can be distinguished from each other. The second
line tells us that if the level and boson satellites are too far
from the Fermi level it is energetically unlikely to have vir-
tual boson excitations, thus the leads are unaffected by the
bosons. The narrowing is approximately given by

t→te2g1(1/21nB), ~8!

where nB is the Bose function

nB5

1

eb\v021
~9!

and b51/kBT .
The above considerations apply to equilibrium (V50)

whereas we are interested in the nonequilibrium situation of
a finite bias, and particularly the resonant tunneling case
where one of the leads’ Fermi level is close to the dot/
molecule level (eV56D/2). In that case the narrowing of
the level width due to that lead ~but not due to the second
lead! may occur, e.g.,

G25G11G3→G11G3e2g1(112nB). ~10!

If G1;G3 this will lead to some quantitative but no signifi-
cant qualitative changes in the current-voltage characteristics
and so we will not consider them further.

We treat the leads as unaffected by the bosons, i.e., no
narrowing of the bands in the leads. This means that we
ignore the averages of the X operators that appear in the
tunneling part of the Hamiltonian, Eq. ~4!, the justification
for this is given above. Below we will also assume that the
leads give rise to a flat, energy independent, density of states.
This is sometimes called the wide band limit.19 Otherwise G
would be energy dependent. The quantum dot Green function
calculated using these approximations is

G2~ t !52iQ~ t !e (iD2G2/2)t/\e2F(t). ~11!

The factor e2F(t) is due to the coupling to the boson and can
be written28

e2F(t)
5e2g1(112nB) (

l52`

`

I l@2g1AnB~11nB!#e ilv0(t1ib/2),

~12!

where I l denotes a modified Bessel function.
We Fourier transform the Green function and get an ex-

pression for the total current
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I~V !52

eG

h
E

2`

`

de@ f 1~e !2 f 3~e !#e2g1(112nB)

3 (
l52`

`

I l@2g1AnB~11nB!#e2l\v0b/2

3

G11G3

~e1D1l\v0!2
1

~G11G3!2

4

. ~13!

We can interpret Im@ tr(GG2)# , in Eq. ~6!, as the transmis-
sion coefficient for the tunneling. We plot this in Fig. 2 for a
certain choice of parameters. The resonances to the left of
(e1D)/\v0 corresponds to absorption of bosons, and the
ones to the right to emission of bosons. The middle line can
be identified as the so called zero-boson transition. The width
of each satellite depends on G2 directly. When increasing the
temperature the satellites increase in amplitude, indicating
that it is easier to emit/absorb bosons. The asymmetry be-
tween negative and positive energies is due to the factor
e2l\v0b/2. This is a due to the fact that at low temperatures
there are no available bosons to absorb.

In Fig. 3 we plot the current as a function of voltage using
Eq. ~13! for a set of parameters. It show steps indicating that
more and more satellites participate in conducting electrons.
Note that the steps in Fig. 3 occur every second \v0. This is
simply because the satellites are positioned equidistant on
each side of the central resonance, we have to increase the
voltage by 2\v0 in order to cover the satellite. The first
satellite starts to contribute to the current when eV52D . A
decrease of G2 (g2 decrease! results in sharper steps, and a
decrease in the amplitude of the current. When G@\v0

~large g2) the step structure disappears. Increasing the tem-
perature results in the step structure being washed out to a
smooth curve.

When increasing M, the amplitude of the current drops

due a decrease of the factor e2(M /\v0)2(112nB) in Eq. ~13!.
Increasing the temperature has the same effect. Without any

coupling to the boson (M ,g150) we get a single resonant
level without any satellites. This can be seen in Fig. 4 where
we plot the current as a function of e0, the location of the
energy level in the dot or molecule. The application of a gate
voltage in a quantum dot would be equivalent to changing
the level e0 ~or D).6,7 We see a shoulder developing corre-
sponding to the first boson satellite. A similar effect has been
seen in a double quantum dot system.6 The absence of a
boson absorption peak in Fig. 4 is due to the low tempera-
ture, this comes from the factor e l\v0b/2. If we increased the
temperature, or the electron-boson coupling, enough there
would be more side bands visible.

IV. LIMITING BEHAVIOR FOR THE CURRENT

In order to better understand the influence from the
bosons on the current. Let us now have a look at the current
in some limits.

FIG. 2. Transmission coefficient Im@ tr(GG2)# , as a function of

the energy, for three different temperatures. The satellites are due to

the boson modes. g15(M /\v0)2
50.5 and g25(G/\v0)2

50.09.

The vertical axis is normalized to the highest peak in the plot.

FIG. 3. Current as a function of the applied voltage for different

choice of coupling strengths. We set kBT50.1\v0 and D5\v0/2.

FIG. 4. Current as a function of the location of the energy level

in a quantum dot when bosons are present (g150.1) and absent

(g150). kBT50.03\v0 and we put g250.5. eV is set to 0.2\v0

so that we only scan a small region around e0. Parameters are taken

from Ref. 7. We only see the boson emission satellite due to the low

temperature and the small electron-boson coupling.
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A. MÄ0

If we put the coupling between the boson and the elec-
trons to zero, we get

I~V !52

e

h
E

2`

`

de@ f 1~e !2 f 3~e !#
G1G3

~e2e0!2
1

~G11G3!2

4

.

~14!

This would correspond to resonant tunneling without any
bosons.

1. kBTšG ,eV

In this limit Eq. ~14! reduces to the linear response ex-
pression

I

V
5

4e2

h

pG

kBT cosh2S e0

kBT
D

. ~15!

A similar form was used by Qin et al.7 to fit their experimen-
tal data.

2. TÄ0

If the temperature goes to zero we can approximate the
Fermi functions with step functions. Then, the integral over e
can be performed and the result is

lim
T→0

I~V !5

2eG

h
F tan21S eV22e0

G11G3
D1tan21S eV12e0

G11G3
D G .

~16!

Further, if eV and 2e0 is small compared to G11G3 we can
use the property that tan21(x);x , and we get

lim

(eV ,2e0)/(G11G3)!1
T→0

I5
4e2G

h~G11G3!
V , ~17!

i.e., a linear regime at low voltages. If, on the other hand, we
take V→` in Eq. ~16! we get

lim

V→`
T→0

I5

eG

\
. ~18!

This means that the whole resonant level contributes maxi-
mal to the current.

B. MÅ0

1. eVškBT ,\v0

In this case we get the same limit as in Eq. ~18! even if
MÞ0 from Eq. ~13!. This can be seen in Fig. 3 where all
curves tend to the same value at large V. If we have that
eV@D ,kBT we can replace f 1(e)2 f 3(e) by a factor 1, and
the integral would extend between 2eV/2 and eV/2. But
since eV is greater than all other energies we extend the

integral from 2` to ` . The integral gives a contribution p .
All parts coming from the boson gives 1 and we again have
the limit

I~eV@D ,kBT !.
eG

\
. ~19!

This limit can be seen in Fig. 3 where all curves tend to the
same limit at high applied voltage.

2. kBT™\v0

Let us now investigate the limit kBT!\v0. In this limit
~corresponding to low temperatures! we can approximate the
Bose function as nB.e2\v0 /kBT

!1. All terms correspond-
ing to positive l vanishes. This is a result of the physical fact
that positive l corresponds to boson absorption but at T50
there are no bosons. The Bessel function can be approxi-

mated as I l(z);
1

l!
(z/2) l when z→0. Then we get that the

current becomes

IkBT!\v0
52

2eG

h
e2g1E

2`

`

de@ f 1~e !2 f 3~e !#

3 (
l52`

0
g1

ulu

ulu!

G11G3

2

~e1D1l\v0!2
1

~G11G3!2

4

.

~20!

3. kBTš\v0

For high temperatures we approximate the Bose function
as nB.kBT/\v0. The argument in the Bessel function is
large and we can use the property

I l~z !.
ez

A2pz
, z@1. ~21!

Using this, the current becomes

IkBT@\v0
52

2eG

h

e2g1

\v0

4kBT

A4pg1kBT/\v0

E
2`

`

de@ f 1~e !2 f 3~e !#

3 (
l52`

`

G11G3

2

~e1D1l\v0!2
1

~G11G3!2

4

. ~22!

C. Saddle point approximation

If g2@1 ~i.e., G@\v0) we can evaluate the current using
a saddle-point approximation similar to that used previously
in Refs. 29 and 10. The exponential factor, e2F(t)

[^X(t)X†(0)& , in Eq. ~12! can be written as

e2g1[(nB11)(12e2iv0t)1nB(12e iv0t)]. ~23!
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We approximate the exponential function in the exponent,
ez;11z1z2/2, and we get

G2~ t !.2ie i(D1g1\v0)t/\2G2t/2\2g1/2(112nB)(v0t)2
. ~24!

Let us assume that we can neglect the term linear in t in the
exponent compared to the quadratic one, i.e., g1@g2. We
Fourier transform the resulting Green function and get that
the relevant factor entering Eq. ~6! becomes

Im@G2~e !#.

expF2

~g1\v01D1e !2

2g1~\v0!2~112nB!
G

v0Ag1~112nB!
. ~25!

This approximation gives a broad Gaussian line shape cov-
ering all the boson satellites. This is in contrast to the indi-
vidual boson satellites shown in Fig. 2. Using the saddle
point approximation would give a Gaussian line shape in
I(e0), whereas a Lorentzian line shape occurs in the regime,
kBT!G!\v0, illustrated in Fig. 4.

The current using Eq. ~25! is plotted in Fig. 5, and com-
pared to the full expression ~13!. In this figure we can clearly
see that the saddle point approximation cannot reproduce the
actual current. Only for a small range of bias voltages, for
low temperature and large coupling is there an agreement.

V. DIFFERENTIAL CONDUCTANCE

The differential conductance, defined by

C5

dI

dV
, ~26!

more clearly reveals the effect of the bosons. In general this
is given by

C5

e2Gb

h
E

2`

`

de$ f 1~e !@12 f 1~e !#1 f 3~e !@12 f 3~e !#%

3e2g1(112nB) (
l52`

`

I l@2g1AnB~11nB!#

3e2l\v0b/2

G11G3

2

~e1D1l\v0!2
1

~G11G3!2

4

. ~27!

Later we will set eV52D , which corresponds to resonant
transport through the zero phonon feature. If we let the tem-
perature go to zero in this expression we can approximate the
Fermi functions together with the temperature as a delta
function, bn f(e)@12n f(e)#;d(e), and again only negative
l contributes, corresponding to emission of bosons, and we
get

@C~V !#T→05

e2G1G3

2h
e2g1 (

l52`

0
g1

ulu

ulu!

3F 1

~D1l\v01eV/2!2
1

~G11G3!2

4

1

1

~D1l\v02eV/2!2
1

~G11G3!2

4
G .

~28!

We define

~C res!
0[@C~eV52D !#T→0 . ~29!

For the particular case D@\v0 ,g1\v0, this simplifies to
(C res)

0.(2e2/h)@G/(G11G3)#e2g1, showing how polaronic
effects reduce the differential conductance.

In Fig. 6 we plot the differential conductance as a function
of the applied voltage for different values of temperature and
coupling parameters. The peak at eV52D correspond to the
zero-boson peak, and in the consecutive peaks one, two,
three, . . . , and so on, bosons are emitted or absorbed. As
seen in this figure increasing the temperature, or the level
widths, drastically affects the shape of the differential con-
ductance.

In Fig. 7 we plot the differential conductance on reso-
nance with the zero phonon line as a function of temperature
for a range of parameters. In this figure we see that the dif-
ferential conductance generally decreases with increasing
temperature, in contrast to the nonmonotonic dependence
found by Holstein11 for periodic molecular crystals. The cor-
responding crossover behavior does not occur for transport
through molecules/quantum dots, since this would be indi-
cated by an upturn in Fig. 7 when increasing the temperature.
The absence of a crossover can also be seen by looking at
Fig. 3 from that the slope at eV52D ~i.e., the differential
conductance! is almost constant when changing g1 from 0 to

FIG. 5. Failure of the saddle point approximation. Current cal-

culated in two different ways: the full lines were obtained using the

exact result @Eq. ~13!# and the dashed lines using the saddle point

approximation @Eq. ~25!# in the expression for the current. We see

that the saddle approximation does not reproduce the full expres-

sion for the current. Here we set kBT50.1\v0 and D5\v0/2.
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0.5. If we were to calculate the differential conductance in
the limit when kBT@\v0 from Eq. ~22! we see that the
temperature dependence of the differential conductance is

governed by the pre-factor e2g1(\v0/4kBT)/A4pg1kBT/\v0

and this is a strictly decreasing function of the temperature,
for reasonably values of g1. Thus, there will never be an
upturn in the differential conductance when increasing the
temperature. This general behavior is not changed when g1 is
changed. Even an increased applied voltage, meaning that
more boson satellites contributes, was not able to induce a
crossover. However, changing G does alter the amplitude of
the differential conductance, as seen in Fig. 7.

As mentioned above the temperature behavior is domi-
nated by G . If we put M50 in Eq. ~27! we can write the
differential conductance as

@C res#M→05

e2G

h

G̃

kBT
E

2`

`

dyF f 8~y !1 f 8S y1

2e0

kBT
D G

3

1

y2
1~ G̃/kBT !2

, ~30!

where G̃[(G11G3)/2. If we now take e050 or kBT!e0 we
will have that the differential conductance is a universal

function of G̃/kBT , i.e,

@C res#M→05F~ G̃/kBT !. ~31!

This can be seen in the lower graph in Fig. 7, where the two
graphs for g150 ~but g250.02 and 2.0, respectively! col-
lapse on the same line when the temperature axis is rescaled.

VI. CONCLUSION

In conclusion we see that the polaronic transport through

a single molecule or quantum dot does not clearly exhibit the

crossover from coherent to incoherent transport expected for

the case of a periodic molecular crystal considered by

Holstein.11 The general behavior of the temperature depen-

dence of the differential conductance is in large unaffected

by the presence of the bosons. The temperature dependence

is mostly determined by the linewidth ~due to coupling to the

leads! of the resonant energy level. The bosons produce side
bands corresponding to absorption and emission of bosons.
We also stressed that because of the interaction of the po-
laron on the dot or molecule with the leads there are poten-
tially some very interesting problems in many-body
physics23,24 to be explored in the model system we have
considered.
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