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The direct piezoelectric response d33 of �001�C-poled 0.955Pb�Zn1/3Nb2/3�O3–0.045PbTiO3

�PZN-4.5PT� and 0.98Pb�Zn1/3Nb2/3�O3–0.08PbTiO3 �PZN-8PT� has been investigated as a

function of temperature upon heating above 40 °C to the paraelectric phase. Using a Rayleigh-law

based analysis, it is shown that both the reversible/intrinsic and irreversible �extrinsic� contributions

to the response increase in both compositions as the phase transition to a tetragonal phase is

approached. The latter is likely due to an increased domain wall mobility close to the first order

transition temperature, which also gives rise to an increased frequency dispersion. Large reversible

direct piezoelectric responses d33�1600pm/V are observed for both compositions, which increase

dramatically close to the transition temperature. Most importantly, the reversible contribution is

always much larger than the irreversible part in the low temperature, domain-engineered phase, the

latter accounting for around 20% of the response in PZN-8PT, at 40 °C, and 5% in PZN-4.5PT. The

importance of this result to the validity of the adaptive phase model is discussed. © 2006 American

Institute of Physics. �DOI: 10.1063/1.2358408�

I. INTRODUCTION

Relaxor-based ferroelectric single crystals, �1

−x�Pb�Mg1/3Nb2/3�O3–xPbTiO3 �PMN-xPT� and �1

−x�Pb�Zn1/3Nb2/3�O3–xPbTiO3 �PZN-xPT�, remain the sub-

ject of much scientific interest. Rhombohedral, orthorhom-

bic, or monoclinic
1

crystals of either material oriented and

poled along the �001�C prototypic cubic direction exhibit at-

tractive, anhysteretic, strain-field behaviors and “giant” pi-

ezoelectric strain coefficients d33�2000pm/V.
2

Such con-

verse piezoelectric properties make PZN-xPT and PMN-

xPT very promising for next generation sensor and actuator

technology.
3

Directly relevant to the use of such crystals in sensor

applications �especially in marine-based devices� is their di-

rect piezoelectric response, that is, the generation of electri-

cal charge D under applied stress �. In an earlier article,
4

we

reported measurements of the direct piezoelectric response of

�001�C-poled, domain-engineered PMN-32PT and PZN-

4.5PT to dynamic stresses �at frequencies between 0.1 and

100 Hz� applied both along and perpendicular to the poling

direction; such measurements are referred to as longitudinal

d33 and transverse d31 modes, respectively, as shown in

Fig. 1.

Importantly, for small dynamic stresses ��10 MPa� ap-

plied perpendicular to the poling direction, the transverse d31

response �D3=d31�1� was found to be anhysteretic and lin-

ear. Such behavior is useful for sensors where hysteresis,

meaning the measured response is not a single-valued func-

tion of applied pressure, is undesired. In contrast, the longi-

tudinal d33 response �D3=d33�3� was found to be hysteretic

and nonlinear at all stresses, behavior unexpected from the

corresponding anhysteretic converse �strain-field� response
2

of such domain-engineered crystals. Moreover, d33 was

found to be a quasilogarithmic or power law function of

frequency,
5

similar to that observed in ceramic lead zirconate

titanate �PZT� and barium titanate
6,7

where it is characteristic

of domain wall motion.
6

Furthermore, the longitudinal response was found to be

adherent to the Rayleigh law �see Sec. II�. Rayleigh-law be-

havior is characteristic of pinned interface motion; again, it

is commonly observed in the direct piezoelectric response of

polycrystalline ferroelectrics where ferroelastic switching is

expected and these interfaces can be identified as non-180°

domain walls.
7,8

However, at least in �001�C-poled, domain-

engineered rhombohedral crystals, ferroelastic switching is

not expected when stress is applied along the poling

direction.
4,9

The origins of the hysteresis in the direct longitudinal

piezoelectric response remain unclear. However, it has been

postulated that the differing longitudinal and transverse re-

a�
Electronic mail: matthew.davis@epfl.ch

FIG. 1. Schematic drawing of the direct �charge-stress� piezoelectric mea-

surements in �a� longitudinal and �b� transverse modes. The arrows represent

the spontaneous polarization vectors of the constituent variants in the

domain-engineered structure formed by poling a pseudorhombohedral or

pseudo-orthorhombic crystal along �001�C.
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sponses are due to differing directions of polarization rota-

tion, the polar vectors in each domain variant of the polydo-

main structure rotating toward the poling direction in the

transverse mode �and likewise in the unipolar converse ef-

fect� but away from the poling direction in the longitudinal

mode.
4

The hysteretic response could also be due to a back-

ground stress-induced phase transition to an orthorhombic

phase
9,10

as evidenced in static load-unload cycles.
10

Nota-

bly, in the transverse mode the crystal will remain domain

engineered with respect to the poling direction throughout

the change of phase; in the longitudinal mode, the domain-

engineered structure is broken. Finally, it might be possible

that the motion of other interfaces rather than domain walls,

such as two-phase boundaries, is responsible for the

behavior.
4

Besides the hysteresis and nonlinearity discussed above

for many applications it is also useful to know the thermal

stability of a given piezoelectric material, i.e., the variation

of its piezoelectric properties with temperature; this will be

particularly true for sensor applications. In this article we

will present measurements of the direct piezoelectric re-

sponse of �001�C-poled PZN-4.5PT and PZN-8PT in the lon-

gitudinal mode upon heating between 40 °C and the depol-

ing temperature. The “extrinsic”
11

�from the irreversible

motion of pinned interfaces� and “intrinsic” �or lattice� con-

tributions to the response are separated quantitatively using a

Rayleigh-law based analysis; the evolutions of both contri-

butions through the phase transition to a high temperature

tetragonal phase are described. Importantly, it will be shown

that the intrinsic part accounts for the majority of the giant

piezoelectric response of these crystals under applied stress;

domain wall motion plays only a minor role.

To facilitate discussion of the results, �001�C-poled PZN-

4.5PT will be described as “pseudorhombohedral”;
9,10,12

that

is, it is assumed to be either rhombohedral or slightly dis-

torted monoclinic
13

MA at room temperature under zero ap-

plied field �although PZN-4.5PT is generally found to be

rhombohedral
14,15

�. It thus takes a 4R �Ref. 16� �or 4MA�

domain-engineered structure containing four degenerate,

pseudorhombohedral domain variants, each with polar vec-

tors equally inclined to the �001�C poling direction.
2

Simi-

larly, �001�C-poled PZN-8PT will be referred to as

“psuedo-orthorhombic”
10

at room temperature, meaning ei-

ther orthorhombic or slightly distorted monoclinic
13

MC;

both phases have been reported under zero field
14,17

and are

often difficult to resolve.
1

Therefore, �001�C-poled PZN-8PT

is 4O �Ref. 16� �or 4MC� domain engineered, again com-

posed of four degenerate domain variants.

II. QUANTITATIVE DESCRIPTIONS OF NONLINEARITY

For piezoelectric materials obeying the Rayleigh law, the

D-�dy charge density versus stress loop can be directly cal-

culated from a simple relationship between d33 and the dy-

namic stress amplitude �0, and vice versa:
4,8

d33 = d0 + ��0, �1�

D = �d0 + ��0��dy ±
�

2
��dy

2 − �0
2� , �2�

where �dy is the applied �dynamic� stress.

Firstly, Eq. �1� constitutes a linear description of the

stress dependence of d33; � is thus a measure of nonlinearity.

d0 is the zero-field piezoelectric coefficient and describes the

reversible component of d33; this will include the intrinsic

piezoelectric effect. Notably, for most ferroelectric materials,

any reversible extrinsic component �e.g., the field indepen-

dent contribution from domain wall motion� is small in com-

parison to the intrinsic component.
18

For the present pur-

poses, therefore, the experimentally determined sum of the

reversible extrinsic and intrinsic components d0 can be con-

sidered equal to the intrinsic component. On the other hand,

d33−d0=��0 describes the irreversible part and is a purely

extrinsic contribution.
8

Secondly, Eq. �2� describes a hysteretic, and therefore

lossy, charge-stress loop with a finite width �at �dy=0� of

�D=��0
2.

Finally, the dependence of the piezoelectric coefficient

upon the frequency f of the applied dynamic stress can be

written as
5,8

d33 = d33
�f=1 Hz� − � log�f� . �3�

It is defined by two parameters, �, again a measure of non-

linearity, and d
33

�f=1 Hz�
, the coefficient measured at 1 Hz. Al-

ternative descriptions of the frequency dispersion using a

power law have also been discussed.
5

III. EXPERIMENT

All measurements were made using the dynamic

Berlincourt-type method well described elsewhere.
8,19

For all

measurements, pressure is applied to the sample between two

flat, well-aligned steel plates. Dynamic ��dy=�0 sin�2�ft��

and static ��st� pressures are applied to the sample by a PZT

actuator and the resultant force on the sample is measured

with a quartz sensor. A prestress �P� is first applied by a

stepper motor to put the entire system in compression. Fur-

ther details about the measurements are given in a previous

article.
4

Notably, although the dynamic stress is a zero-

centered function the system is never allowed to go into

tension since the static component of stress �P+�st� is al-

ways greater than the dynamic one. The measured charge

density is shown center shifted as a mathematical

convenience.
4

The sample temperature was regulated using a

small furnace.

�001�C-oriented single crystals of PZN-4.5PT and PZN-

8PT were obtained from TRS Ceramics �State College, PA,

U.S.A.� with nominal dimensions of 3�3�3 mm3. These

sample dimensions were chosen to give a suitable aspect

ratio for longitudinal d33 measurements in the press.
4,9,20

Gold electrodes were sputtered onto opposite 3�3 mm2 sur-

faces and the crystals were poled by applying a small field

�200 V/mm� while cooling from the cubic phase to room

temperature. Samples were repoled between subsequent

heating runs.
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Direct measurements similar to those reported

previously
4

were made of the longitudinal response at tem-

peratures between 40 and 200 °C, upon heating. The static

stresses and dynamic stress amplitudes used for each mea-

surement are marked in the figure captions.

IV. RESULTS AND DISCUSSION

The variation in d33�f� as a function of temperature is

shown in Fig. 2 for a sample of �001�C-poled, domain-

engineered pseudo-orthorhombic PZN-8PT. Upon heating,

PZN-8PT transforms to a tetragonal phase at a temperature

�TFE-FE� close to 100 °C.
21,22

Hysteresis loops in both the

pseudo-orthorhombic and tetragonal phases, at 40 and

130 °C, respectively, are shown in Fig. 3. Importantly, as-

suming that the sample remains poled, the sample will be

monodomain 1T,
16

and no longer domain engineered, in the

tetragonal phase above TFE-FE. The large hysteresis in the

tetragonal phase, as shown in Fig. 3�b�, suggests the pres-

ence of 90° domains, probably induced by the applied static

pressure. This state will thus be referred to as quasimon-

odomain.

Close to room temperature, at 40 °C, the direct piezo-

electric response is already large ��2000 pm/V�, as reported

previously for �001�C-poled PMN-32PT and PZN-4.5PT.
4

Notably, there is a clear increase in d33 as the temperature is

increased towards TFE-FE in the pseudo-orthorhombic phase

�Fig. 2�. Similar behavior has been shown elsewhere, for

example, in �001�C-poled PMN-30PT �Ref. 23� and

PZN-9PT,
24

based on �small-field� resonance measurements.

d33�f� is characteristically large ��2000 pC/N� in the

4O domain-engineered state, approaching 3500 pm/V at

90 °C before the phase transition. It is much lower

��500 pm/V� above TFE-FE in the quasimonodomain 1T

state, where the crystal is no longer domain engineered and

the direct response is measured along the �001�C polar axis

of the tetragonal phase; in contrast, the direct response is

measured away from the polar axes of the constituent do-

mains in 4O PZN-8PT. The larger response of the domain-

engineered crystal might be expected from piezoelectric an-

isotropy, where the piezoelectric response is known to be

greater along nonpolar directions for all ferroelectric perovs-

kites in the vicinity of first order phase transitions between

ferroelectric phases.
25,26

Noticeably, Fig. 2 suggests that the frequency dispersion

increases near the ferroelectric-ferroelectric �FE-FE� phase

transition to a tetragonal phase. By fitting Eq. �3� to the

d33�f� data at each temperature from Fig. 2, as shown in Fig.

4�a�, we can plot the variation of nonlinearity � as a function

of temperature. This is shown in Fig. 4�b�. Notably, the fre-

quency dispersion quantified by the parameter � does indeed

increase toward the FE-FE phase transition in both pseudo-

orthorhombic and tetragonal phases.

Very similar behavior was observed in 4R, �001�C-poled

PZN-4.5PT, as shown in Fig. 5. Pseudorhombohedral PZN-

4.5PT also transforms to a tetragonal phase at a temperature

�TFE-FE� close to 100 °C.
27

Again, d33�f� is shown to increase

in the low temperature pseudorhombohedral phase as the

FE-FE phase transition is approached �Fig. 5�a�� from around

2000 pm/V at 40 °C to around 5000 pm/V just before the

phase transition. Again, the frequency dispersion, quantified

by �, is maximum very close to TFE-FE �Fig. 5�b��. Notably,

there is no qualitative difference between the behaviors of

4O PZN-8PT and 4R PZN-4.5PT, both of which are domain

FIG. 2. d33 as a function of temperature for �001�C-poled PZN-8PT mea-

sured upon heating at four frequencies: 1, 7, 10, and 50 Hz. Higher response

is observed at lower frequency ��P+�st�=2 MPa, �0=0.5 MPa�.

FIG. 3. Charge-stress loops for �001�C-poled PZN-8PT at two different temperatures and various frequencies: �a� at 40 °C in the pseudo-orthorhombic phase

and �b� at 130 °C in the tetragonal phase ��P+�st�=2 MPa, �0=0.5 MPa�.
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engineered at room temperature and undergo a temperature-

induced phase transition to a non-domain-engineered tetrag-

onal phase.

As noted in the Introduction, quasilogarithmic frequency

dependence of d33�f�, as observed in various ferroelectric

ceramics, is characteristic of irreversible domain wall

motion.
6,8

As shown above, frequency dispersion in the lon-

gitudinal, direct response of �001�C-poled PZN-4.5PT and

PZN-8PT increases to a maximum at the transition tempera-

ture TFE-FE. If the frequency dispersion is indeed due to the

motion of pinned domain walls then it seems that the extent

of this motion is maximal near FE-FE phase transitions.
28

As shown elsewhere, the dielectric loss tangent �tan 	�

also peaks at both TFE-FE and the depoling temperature Td in

�001�C-poled, 4R and 4O PMN-xPT and PZN-xPT.
9,22

Im-

portantly, the peak in dielectric loss �tan 	� and the minimum

in mechanical quality factor Q that occurs just below the

depoling temperature �or Curie temperature TC� in ferroelec-

trics and ferroelastics are commonly attributed to domain

wall motion.
29

Upon increasing temperature towards TC there

is a decrease in order parameter, or polarization in the case of

ferroelectrics. For tetragonal barium titanate and lead titan-

ate, for example, this corresponds to a decrease in

tetragonality.
30

Accordingly, the domain wall energy is re-

duced near TC, which leads to an increase in domain wall

mobility.
29

This is manifest in a peak in loss tangent at the

Curie temperature followed by a sharp decrease in the

paraelectric phase; above TC, all extrinsic contributions from

domain walls vanish as they do.

The situation at transitions between ferroelectric phases

at TFE-FE is less clear. However, in both barium titanate and

potassium niobate, the orthorhombic distortion does decrease

with increasing temperature before the FE-FE transition to a

tetragonal phase.
30

Notably, the coercive �electric� field EC

also falls.
30

Similar behavior is observed close to the mor-

photropic phase boundary
1

�MPB� in PZT ceramics which

constitutes a chemically induced, first order phase

transition.
25

In the tetragonal phase, there is a very marked

decrease in tetragonality with decreasing lead titanate to-

wards the MPB;
30

this is accompanied by a strong decrease

in coercive field.
31

We might postulate, therefore, that the increase in fre-

quency dispersion d33�f� at TFE-FE evidenced in Figs. 4 and 5

and the related increase in dielectric loss evidenced

elsewhere
21,22

have the same origin: they are both related to

FIG. 4. �a� Logarithmic dependence of d33 on frequency for �001�C-poled PZN-8PT at 130 °C. �b� Variation of the low frequency �1 Hz� piezoelectric

coefficient and the coefficient of nonlinearity � defined by Eq. �3� with temperature upon heating.

FIG. 5. �a� Temperature dependent piezoelectric coefficient and �b� its frequency dispersion in �001�C-poled PZN-4.5PT. Measurements were made at 1, 7, 10,

and 50 Hz. ��P+�st�=2 MPa, �0=0.5 MPa�.
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an increased domain wall mobility close to the first order

phase transition between ferroelectric phases.

As noted in Sec. II, according to the Rayleigh law, the

charge-stress hysteresis loop width at the origin ��dy=0� is

given by �D=��0
2. This can be taken from experimental

charge-stress loops, for a given frequency, and used to cal-

culate the irreversible �or extrinsic� contribution to the piezo-

electric response: that is, ��0 in Eq. �1�. The reversible �in-

trinsic� part d0 can be quite simply calculated from the

measured piezoelectric coefficient d33 by subtracting ��0.

This has been done for the data taken from �001�C-poled

PZN-8PT and PZN-4.5PT; the results are shown in Figs. 6

and 7.

Figure 6 shows the intrinsic �reversible� and extrinsic

�irreversible� contributions to d33 �at 1 Hz� as a function of

temperature for �001�C-poled, 4O PZN-8PT, assuming

Rayleigh-law behavior. Notably, both the intrinsic and ex-

trinsic contributions are shown to peak near TFE-FE �Fig.

6�a��. Interestingly, the extrinsic contribution ���0� peaks

10 °C after both the intrinsic contribution �d0� and the total

measured response �d33�.

Importantly, in the low temperature, domain-engineered,

pseudo-orthorhombic phase, the intrinsic contribution is al-

ways much larger than the extrinsic contribution. However,

this is not true in the quasimonodomain, 1T tetragonal state

where the reversible contribution is smaller than the irrevers-

ible one. The relative importance of the irreversible contri-

bution is more clearly shown in Fig. 6�b�, where it is plotted

as a proportion of the total response ���0 /d33�. In the 4O

domain-engineered state, the irreversible contribution is

never more than 25% of the total. In contrast, it reaches

around 60% of the total response in the quasimonodomain

1T state.

The behavior of 4R, �001�C-poled PZN-4.5PT was found

to be similar, as shown in Fig. 7, except that here the revers-

ible contribution was always larger than the irreversible con-

FIG. 6. �a� Intrinsic and extrinsic contributions to d33 assuming Rayleigh behavior in the direct piezoelectric response of �001�C-poled PZN-8PT �f =1 Hz�.

�b� Proportion of the extrinsic contribution to the total measured response.

FIG. 7. �a� Intrinsic and extrinsic contributions to d33 assuming Rayleigh behavior in the direct piezoelectric response of �001�C-poled PZN-4.5PT

�f =1 Hz�. �b� Proportion of the extrinsic contribution to the total measured response.
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tribution, even in the tetragonal phase. However, the relative

size of the irreversible component was again larger in the 1T

tetragonal phase being �15% compared to 5% at 40 °C in

the 4R domain-engineered state. The second peak in the ir-

reversible response upon heating near 120 °C is perhaps due

to the proximity of the depoling temperature �Td�140 °C in

PZN-4.5PT� and the increased mobility of domain walls dis-

cussed above.

The peaks in the irreversible contribution for each mate-

rial will likely have the same origin as the increased fre-

quency dispersion �coefficient ��, that is, in an increased

domain wall mobility. As discussed in the Introduction, al-

though ferroelastic switching is not expected, at least in the

4R domain-engineered structure, it could be driven by a

background stress-induced phase transition.
9,10

Importantly, in both domain-engineered 4R PZN-4.5PT

and 4O PZN-8PT the reversible contribution is always much

larger than the �purely extrinsic� irreversible contribution.

Pinned interface motion, for example, accounts for less than

25% of the response in �001�C-poled PZN-8PT �Fig. 6�b��

and less than 5% of the response of �001�C-poled PZN-4.5PT

�Fig. 7�b��, at room temperature, for the range of stresses

applied. In PZN-4.5PT the reversible response is around

1800 pm/V at 40 °C and rises to more than 5000 pm/V

close to the FE-FE phase transition �Fig. 7�a��. Similarly, the

reversible response of PZN-8PT is around 1600 pm/V at

40 °C and rises to nearly 3000 pm/V close to TFE-FE at

90 °C �Fig. 6�a��.

Calculations have shown that at least 80% of the giant

piezoelectric response of �001�C-poled, domain-engineered

PMN-33PT ��2000 pm/V� can be accounted for by the in-

trinsic piezoelectric anisotropy of the constituent

domains.
32,33

Similar calculations have shown that intrinsic

piezoelectric anisotropy accounts for at least 50% of the pi-

ezoelectric response of �001�C-poled, domain-engineered

PZN-9PT.
34

Thus, a majority intrinsic contribution to the di-

rect piezoelectric response of �001�C-poled PZN-4.5PT and

PZN-8PT might be expected. Moreover, the intrinsic contri-

bution, as measured along the non polar �001�C poling direc-

tion of each domain-engineered crystal, is also expected to

increase as the first order ferroelectric-ferroelectric phase

transition is approached.
25

There is significant evidence that the presence, rather

than motion, of domain walls in domain-engineered barium

titanate and potassium niobate leads to an increase piezoelec-

tric response,
35–39

especially when the domain structure be-

comes very fine ��10 
m �Ref. 38 and 39��. In the Rayleigh

model, this contribution would appear in the reversible part,

d0. At very low lead titanate contents, relaxor-ferroelectric

PMN-xPT �Ref. 40� and PZN-xPT �Ref. 41� are well known

to exhibit fine domain structures due to a low domain wall

energy.
42

However, crystals with compositions close to the

MPB, such as PZN-8PT,
41,43

exhibit �ferroelastic� domain

sizes larger than 50 
m in such compositions, the intrinsic

�lattice� contribution might be expected to dominate.

Another possible explanation for the giant piezoelectric

response of PMN-xPT and PZN-xPT is the “adaptive

phase”
44

model recently proposed by Jin et al.,
42

Viehland,
45

and Wang.
46

Noting the similarities
47

between relaxor-

ferroelectrics and martensites the authors propose a model

based on the fine-scale twinning of tetragonal �or rhombohe-

dral� domains. In their model, the lattice parameters of the

observed monoclinic and orthorhombic phases, derived from

x-ray diffraction measurements with a finite beam size, are

actually the volume-averaged parameters of the finely

twinned tetragonal �or rhombohedral� phase. Upon applica-

tion of an electric field, the progressive switching of more

and more domains leads to a rotation of the volume-averaged

polarization, rather than the intrinsic polar vector, and thus

the observation of increased monoclinic distortion in diffrac-

tion experiments. Such a model is indeed in agreement with

the experimental evolution of the lattice parameters as a

function of electric field and temperature, which satisfy the

required “invariance conditions.”
45,46

Importantly, in the adaptive phase model, the piezoelec-

tric response when a stress or electric field is applied along a

nonpolar direction is inherently coupled to local ferroelastic

domain wall motion, albeit on a very fine scale. That is, it

will be irreversible wherever domain walls are pinned and

Rayleigh-law hysteresis will be expected as a result. How-

ever, from the above it is clear that the majority of the �di-

rect� piezoelectric response of �001�C-poled PZN-4.5PT and

PZN-8PT is reversible. The reversibility of the microvariant

switching proposed by the adaptive phase model should be

addressed further.

V. CONCLUSIONS

The dynamic, direct piezoelectric response of

�001�C-poled PZN-4.5PT and PZN-8PT has been investi-

gated as a function of temperature. For both compositions,

and for the loading conditions used here, d33 is shown to

increase dramatically towards the phase transition to a tetrag-

onal phase; such information will be useful for the applica-

tion of such crystals as sensors. Qualitative differences have

been evidenced between the behavior in the low temperature,

domain-engineered 4R and 4O structures of PZN-4.5PT and

PZN-8PT, respectively, and the high temperature, quasimon-

odomain tetragonal phase.

Reversible and irreversible �extrinsic� contributions to

the response have been quantified over the temperature

range. Both the irreversible contribution and the quasiloga-

rithmic frequency dispersion d33�f� peak close to the

ferroelectric-ferroelectric phase transition to a tetragonal

phase. Both likely have their origin in the pinned motion of

non-180° domain walls.

Finally, for the temperatures and loading conditions con-

sidered here, the reversible contribution to the piezoelectric

response of 4R and 4O domain-engineered crystals is always

greater than the irreversible �extrinsic� contribution; the

maximum irreversible contribution observed is around 30%

in �001�C-poled 4R PZN-4.5PT close to TFE-FE. The revers-

ible �intrinsic� contribution to the response rises from around

1600 pm/V at 40 °C to 2500 pm/V at 90 °C in PZN-8PT;

in PZN-4.5PT, it rises from around 2000 to over 5000 pm/V

in the same temperature range. This increase can be expected

from intrinsic piezoelectric anisotropy.
25

Importantly, the
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contribution from domain wall motion is minor; this result

might have consequences for the validity of the adaptive

phase model.
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