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Using Landau level spectroscopy, we determine the temperature dependence of the energy band
gap in zirconium pentatelluride (ZrTe5). We find that the band gap reaches Eg = (5±1) meV at low
temperatures and increases monotonously when the temperature is raised. This implies that ZrTe5
is a weak topological insulator, with non-inverted ordering of electronic bands in the center of the
Brillouin zone. Our magneto-transport experiments performed in parallel show that the resistivity
anomaly in ZrTe5 is not connected with the temperature dependence of the band gap.

Zirconium pentatelluride (ZrTe5) is a narrow-gap sys-
tem widely explored in the past [1–4], often in the con-
text of so-called resistivity anomaly [5–10]. More re-
cently, theoretical studies of ZrTe5 that were primarily
focused on topological properties induced a renewed in-
terest in this system. In particular, the ZrTe5 monolayer
was proposed to be a large-gap quantum spin Hall in-
sulator [11]. Over the past few years, a number of ex-
periments has been performed on bulk and thin layers of
ZrTe5 and expanded our knowledge about this material
considerably. The experimentally observed phenomena
in ZrTe5 comprise the magneto-chiral effect [12, 13], the
giant planar Hall effect [14], the quasi-quantized quan-
tum Hall effect [15, 16], pressure-induced superconduc-
tivity [17], or optical conductivity that is linear in photon
energy [18, 19].

This series of important experimental observations
contrasts with our current understanding of low-energy
excitations in ZrTe5. In fact, no consensus has been so far
established whether the electronic bands in bulk ZrTe5
have normal or inverted ordering, i.e., whether this ma-
terial is a strong or weak topological insulator (STI or
WTI). Ab initio calculations favor the STI phase [20],
but their prediction force may be limited in a system
close to the topological phase transition. Experimen-
tally, both STI and WTI phases have been reported,
see Refs. [13, 21–25] and [26–30], respectively, based on
transport, ARPES and optical data.

In this work, we explore, using THz/infrared magneto-
spectroscopy, the temperature dependence of the band
gap in ZrTe5, in order to test the topological phase of
this material. We find that the gap is non-zero at low
temperatures, Eg = (5 ± 1) meV at T = 5 K, and it
increases with T monotonously. Such behaviour is con-
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sistent with ZrTe5 being a weak topological insulator.
Our experiments were performed on bulk ZrTe5 syn-

thesized using self-flux growth [12]. The explored sam-
ple was attached using GE varnish to a metallic holder
that was covered by a thin paper sheet, and surrounded
by the helium exchange gas. The temperature was con-
trolled locally, using a heating coil, and measured by two
Cernox thermometers placed at two different locations
nearby the sample. A relatively large thickness of the
sample (≈0.5 mm) was chosen to avoid effects related
to the temperature-induced strain. Results obtained on
this sample, presented here, were reproduced on several
other specimens with different thicknesses, and glued in
different configurations.

We measured relative magneto-reflectivity, RB/R0, in
the Faraday configuration, i.e., with the wave vector of
light propagating parallel to the magnetic field aligned
with the b crystallographic axis. The radiation of a
globar was analyzed by the Bruker Vertex 80v Fourier-
transform spectrometer and delivered via light-pipe op-
tics to the sample located in a superconducting coil. A
part of the reflected signal was deflected towards an ex-
ternal bolometer, using a silicon beamsplitter. In addi-
tion, magneto-transport data were collected in-situ, i.e.,
in parallel with magneto-optical measurements. To this
end, electric contacts were created using graphite paste
in a standard 4-contact configuration.

An illustration of the collected magneto-reflectivity
data is presented in Fig. 1. It comprises relative magneto-
reflectivity, RB/R0, measured at T = 80 K plotted (a)
in a form of a stacked-plot of spectra taken at selected
values of B, and (b) as a false-color map. The observed
response is in line with preceding magneto-optical stud-
ies of ZrTe5 [19, 22, 31, 32]. It closely resembles the
magneto-optical response of Landau-quantized electrons
in a conical band [33], nevertheless, the characteristic

√
B

dependence of inter-LL excitations is here only approxi-
mate. The observed transitions extrapolate to a non-zero
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FIG. 1. (a) Stacked-plot of relative magneto-reflectivity
spectra, RB(ω)/R0(ω), collected on ZrTe5 at T = 80 K and
plotted for selected values of B. (b) the false-color plot of
RB/R0 plotted with a step of 40 mT. Weakly B-dependent
features, nearly horizontal in the plot are phonons, accompa-
nied at low energies (below 10 meV) by an interference pat-
tern. This appears since ZrTe5 becomes transparent at low
energies when a sufficiently strong magnetic field is applied.
The vertical line in (a) at 23 meV shows the position of the
most pronounced phonon mode in ZrTe5 [18].

energy in the limit of vanishing B, thus indicating a band
gap in ZrTe5.

To extract the band gap, we have plotted and ex-
amined the first field-derivative of the collected spec-
tra, d/dB[RB/R0], (Fig. 2a-e) and associated the cor-
responding maxima with energies of individual inter-LL

resonances. This approach is applicable for absorption
lines on a positive dielectric background. When addi-
tional dissipative processes appear in the background,
the position of the resonance may be shifted from the
inflection point of RB(ω)/R0(ω) towards the maximum.
This uncertainty increases the error bar of the below ex-
tracted/discussed values of the velocity parameter, but
has a minor influence on the width of the band gap – the
main target of our analysis.

To understand the observed response in the simplest
possible manner, we neglect the relatively flat dispersion
of electrons along the magnetic field (b axis in our case),
see Ref. [19] and interpret our data in terms of excitations
in the spectrum of two-dimensional Landau-quantized
massive Dirac electrons: E±

n = ±
√

∆2 + v22e~nB where
n = 0, 1, 2 . . .. Here v stands for the velocity parameter
averaged in the plane perpendicular to B (a-c plane) and
+(−) refers to the conduction (valence) band. The band
gap corresponds to the value of Eg = 2∆.

The conventional selection rules for electric-dipole
transitions, n → n ± 1, imply the existence of a series
of interband inter-LL excitations: E+

n+1(n) − E−
n(n+1) =

√
∆2 + v22e~Bn +

√
∆2 + v22e~B(n + 1). In our data,

such transitions are visible for n = 0, 1, 2, 3 and 4. In
addition, cyclotron resonance (CR) absorption appears.
In a weakly electron-doped sample, only the fundamental
CR mode of electrons (0+ → 1+) is active at low tem-

peratures, at the energy of
√

∆2 + v22e~B −∆. At ele-
vated temperatures, the fundamental CR mode of holes
(1− → 0−) emerges as well, at the same photon energy.
In contrast to a preceding study [34], we did not observed
any series of excitations that would indicate another gap.
The outlined massive Dirac model was used to fit the low-
B part of the data (below 1 T), see Fig. 2f-j. This is due
to Zeeman effect, which scales linearly with B and which
starts to impact visibly the magneto-optical response of
ZrTe5 at higher magnetic fields, see Ref. [22, 32].

Despite the apparent simplicity of the massive Dirac
model, all observed transitions can be well-reproduced
in the chosen range of low magnetic fields and also for
all explored values of T (see Figs. 2f-j). Certain devi-
ations appear in the region when transitions approach
phonon lines (horizontal dotted lines in Figs. 2f-j) which
are excluded from the fitting procedure. This allows
us to extract the temperature dependence of v and ∆
which are the only adjustable parameters of the used
model (see Figs. 2k and l). The extracted values evolve
smoothly and monotonously with temperature. The ve-
locity parameter decreases slightly, which likely reflects
only the unit cell increasing in size. This in turn im-
plies a decrease in the overlap of atomic functions, and
consequently, overall flattening of the band structure.
The band gap gradually grows from the low-temperature
value, 2∆ = (5 ± 1) meV, which is consistent with the
preceding magneto-optical studies [19, 22, 32].

Interestingly, having established that the massive
Dirac model is valid, one may infer the width of the band
gap 2∆, as well as its increase with T , directly from the
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data in Figs. 2a-e without any fitting procedure. It sim-
ply corresponds to the separation between the lowest in-
terband line (0− → 1+ and 1− → 0+) and the fundamen-
tal CR mode (0+ → 1+ and 1− → 0−). Other methods,
presumably with a smaller resolution in energy, such as
the ARPES or STM/STS techniques, provide us with the
band gap larger by a factor of 3 or more [27–29, 35].

With increasing T , and above T = 100 K in partic-
ular, the observed interband inter-LL transitions visi-
bly weaken, see Figs. 2a-e. This is partly due to ther-
mally induced broadening of LLs, partly, when kBT ex-
ceeds ∆, due to charge carriers excited thermally to LLs
with higher indices. The latter reduces the transition
strengths via the corresponding occupation factor. At
low energies, the optical response becomes also modified
by thermally excited carriers. With increasing T , the
plasma edge forms gradually [19] and the simple one-
electron picture is then no longer applicable. Instead,
the observed CR mode starts to resemble, see Fig. 2e,
the upper CR branch in the classical magneto-plasma
response [36]: ~(ω2

c + ω2
p)1/2, where ωp and ωc are the

screened plasma frequency and bare single-electron cy-
clotron frequency, respectively.

Let us now discuss implications of our experimental
findings. Theoretical studies [11, 20, 37] suggest that
bulk ZrTe5 is a system close to a topological phase tran-
sition, which may, in fact, be the reason why no con-
sensus about the topological nature of ZrTe5 has so far
been achieved. Theoretically, only a relatively small in-
crease in the unit-cell volume is sufficient to bring ZrTe5
from the STI to WTI regime, i.e., from the inverted to
the normal ordering of bands at the center of the Bril-
louin zone. Importantly, the band gap always closes and
re-opens during such a topological phase transition.

Experimentally, it was shown that the unit-cell volume
in ZrTe5 increases monotonously with temperature [2].
Thanks to this, the temperature dependence of the band
gap was proposed [20, 37] to be an unambiguous sig-
nature of the topological phase in ZrTe5. In the STI
regime, the band gap is first supposed to shrink with in-
creasing T , then close completely, and finally, re-open in
the WTI regime. In contrast, a monotonous increase of
the band gap with temperature is expected in the WTI
regime. Only the latter scenario is consistent with our
data (Fig. 2g), thus implying the WTI phase in ZrTe5.
Let us note that the volume of the unit cell changes con-
siderably in the explored range of temperatures, approx-
imately by 0.5% [2].

Additional magneto-transport measurements, per-

formed along with the magneto-reflectivity experiments,
allowed us to correlate the evolution of the band gap
width with the well-known resistivity anomaly in ZrTe5.
This effect refers to a characteristic peak in resistiv-
ity appearing when the temperature increases, see, e.g.,
Refs. [5–10]. The temperature dependence of resistance
of the explored sample measured during the first cool-
down of the sample, RS(T ), is plotted in Fig. 2m along
with RS values measured prior to the sweeps of our
magneto-reflectivity measurements at a given fixed T .
We speculate that the small discrepancies between the
resistance values in the subsequent experiments, par-
ticularly visible at the peak value, could be due to a
thermal-cycle-induced change in the contact resistance.
This would modify the sourcing current, assumed to be
constant while extracting resistance value. The observed
profile, reaching maximum around Tp ≈ 75 K is perfectly
in-line with preceding experiments on samples with simi-
lar doping. In literature [24, 38], the appearance of resis-
tivity anomaly in ZrTe5 was sometimes associated with
the temperature-driven closure of the band gap around
Tp. Our data do not support such a conclusion.

In summary, we have extracted the temperature de-
pendence of the band gap in ZrTe5 using Landau level
spectroscopy. We have found that the band gap in-
creases monotonously, from the low-temperature value
of Eg = (5 ± 1) meV to nearly 20 meV at T = 140 K.
The observed behaviour is consistent with ZrTe5 being a
weak topological insulator.
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FIG. 2. (a-e) False-color plots of the first field-derivative of relative magneto-reflectivity, d/dB[RB/R0], measured at the
temperature of T = 5, 60, 80, 100 and 120 K. (f-j) The extracted positions of resonances at a given magnetic field and temper-
ature. The solid lines represent the fits of interband inter-LL transitions for the data collected below 1 T. The dashed lines
represent extrapolations of these fits to higher magnetic fields and energies. Dotted horizontal lines show energies of three most
pronounced phonon modes (at 6, 11 and 23 meV) observed in Refs. [18, 19]. (k) The extracted energy band gap of ZrTe5 as a
function of temperature. (l) The experimentally determined temperature dependence of the effective velocity parameter. (m)
The resistance anomaly in the explored ZrTe5 sample, with the maximum of RS(T ) around Tp ≈ 75 K. The blue dots show the
sample resistance during the first cool-down, the red circles before each run of the magneto-optical measurements at a given
T . The temperature corresponding to the maximum in resistivity is marked by the vertical dashed lines in (k-m).
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