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We report resistance measurements in HgTe wells with an inverted band structure near the charge neutrality

point (CNP), where the system is expected to be a two-dimensional topological insulator with a dominant edge

states contribution. The sample resistance is found to be about 100 times higher than the resistance quantum

h/2e2. Surprisingly, instead of a strong temperature dependence expected in such a seemingly insulating state

the resistance at the CNP is found to be temperature independent at low temperatures. The experimental results

are compared to the recent theoretical models.
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I. INTRODUCTION

Two-dimensional (2D) topological insulators (TI) (quan-

tum spin Hall insulators) are characterized by a bulk energy

gap and gapless boundary modes that are robust to impurity

scattering and electron-electron interactions [1–3]. The 2D

quantum spin Hall insulator (QSHI) has been realized in HgTe

quantum wells with inverted band structure [4,5]. This system

is characterized by an intrinsic spin-orbit interaction, which

leads to the formation of helical edge modes with opposite

spin polarization counter propagating at a given edge.

The electron conductance of a 2DTI is quantized in units

of the universal value 2e2/h as was observed in short and

clean micrometer-scale Hall bars [5]. However, the quantized

ballistic transport has not been seen in a sample with

dimensions above a few microns [4–7]. Understanding why the

resistance quantization is difficult to observe in macroscopic

samples requires further investigation. An evaluation of the

deviation of the conductivity from the quantized value has

been performed in several theoretical models. In particular,

the combined effect of the weak interaction and disordered

scattering in helical Luttinger liquid (LL) channel results

in a temperature dependent deviation from 2e2/h which

scales with temperature to the power of 4 (Ref. [8]) or 6

(Refs. [9,10]). Another way to understand the observation

of resistance exceeding the quantized value is to consider

the possible scattering processes at the edge. Classical and

quantum magnetic impurities introduce the backscattering

between counter propagating channels [11]. Using a somewhat

different approach, an edge state transport theory in the

presence of spin orbit Rashba coupling has been developed

[12].

Recently interaction of the helical states with multiple

puddles of charge carriers formed by fluctuations in the donor

density has been considered in 2D topological insulators

based on HgTe quantum wells [13]. Using scanning gate

microscopy, well-localized metallic regions along the edge

have been found [14], probably due to potential fluctuations,

which might be responsible for scattering between the counter-

propagating states. This model also agrees with the observation

of mesoscopic fluctuations in resistance with gate voltage,

which can be qualitatively explained by the presence of charge

puddles in the well [4,5,15].

Despite the existence of a large number of theoretical

models and predictions, the temperature dependence of re-

sistance in long 2DTI samples has not yet been systematically

studied. In the present paper, we investigate resistance of the

2DTI with a dominant edge state contribution to the tran-

sport. The experiment demonstrates a weak temperature

dependence of resistance at a level 100 times higher than the

quantum unit 2e2/h. One of the possible explanations is the

fluctuation of the local insulating gap width induced by smooth

inhomogeneities, which can be represented as metallic puddles

or dots [13].

II. EXPERIMENT

The Cd0.65Hg0.35Te/HgTe/Cd0.65Hg0.35Te quantum wells

with (013) surface orientations and width d of 8–8.3 nm were

fabricated by molecular beam epitaxy. A detailed description

of the sample structure has been given in Refs. [16–18].

Device A is designed for multiterminal measurements, while

device B is a six-probe Hall bar. Device A consists of three

4 μm wide consecutive segments of different length (2, 8,

32 μm), and seven voltage probes. Device B was fabricated

with lithographic length 6 μm and width 5 μm (Fig. 1, top

panel). The ohmic contacts to the two-dimensional gas were

formed by the in-burning of indium. To fabricate the gate, a

dielectric layer containing 100 nm SiO2 and 200 nm Si3Ni4
was first grown on the structure using the plasmochemical

method. Then a TiAu gate with the dimensions 62 × 8 μm2

(device A) and 18 × 10 μm2 (device B) was deposited. Several

devices with the same configuration have been studied. The

density variation with the gate voltage is (1.09 ± 0.01) ×
1015 m−2 V−1. The electron mobility in these samples is a

function of the carrier density with a maximum of the order
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FIG. 1. (Color online) (a) Resistance RLocal as a function of gate

voltage at zero magnetic field measured between various voltage

probes for samples A and B, T = 4.2 K, I = 10−9 A. The inset shows

resistance dependence on the effective distance between probes L.

Top panel shows schematic view of the samples. The perimeter of the

gate is shown by a blue rectangle.

of μn = 250 × 103 cm−2/V s at ns = 2 × 1011 cm−2, while

the hole mobility shows a saturation μp = 20 × 103 cm−2/V s

for the carrier density above ps = 1.5 × 1011 cm−2. Transport

measurements in the described structures were performed in a

variable temperature insert (VTI) cryostat (temperature range

1.4–60 K), in a He3 cryostat (temperature range 0.3–3 K)

and in a dilution refrigerator (temperature range 0.05–2 K).

We used a standard four point circuit with a 3–13 Hz ac

current of 0.1–100 nA flowing through the samples. A typical

100 Mohm resistance connected in series with each sample

was used in order to keep the current constant. The carriers’

density in HgTe quantum wells can be electrically modified

with gate voltage Vg . A typical dependence of the four-terminal

R resistances of devices A and B as a function of Vg is shown

in Fig. 1. The resistance R of device A corresponds to the

configuration where the current flows between contacts 1 and

5 and the voltage is measured between different probes. The

measured resistance exhibits a peak that is much greater than

the universal value h/2e2, which is expected for the QSHI

phase. This value varies linearly with the distance between

probes L (see inset). It is worth noting that the contacts

to QSHI are assumed to be thermal reservoirs, where the

electron states with opposite spins are mixed. In contrast to

the quantum Hall effect, where the mixing of the edge states

occurs within metallic Ohmic contacts, in our samples this

takes place in the 2D electron gas region outside the metallic

gate due to a finite bulk conductivity. Therefore, the effective

length of the 1D channels L exceeds the distance between the

probes of the Hall bar by 3–4 μm. It would be expected that

reflection occurs when a 1D electron wave hits the interface

between the ungated part of the sample and the 2DTI regions,

which may result in a resistance greater than h/2e2. The linear

dependence of resistance on L rules out this possibility and

suggests that the high resistance value is more likely the

result of backscattering between counter propagating edge

channels.

One can see in Fig. 1 that device B shows a smaller and

narrower resistance peak. The Hall coefficient (not shown)

reverses its sign and Rxy ≈ 0 when R approaches its maximum

value [18], which can be identified as corresponding to

the charge neutrality point (CNP). The variation of the gate

voltage results in a shift of the Fermi level with respect

to the energy bands, transforming the quantum wells from

a n-type conductor to a p-type conductor via a QSHI

state.

Figure 2(a) shows the resistance of device A as a function

of inverse temperature. We see that resistance decreases

sharply for temperatures above 25 K while saturating below

FIG. 2. (Color online) (a) Resistance R1,5;7,6 corresponding to the

configuration when the current flows between contacts 1 and 5, and

the voltage is measured between contacts 7 and 6, as a function of

the inverse temperature at the charge neutrality point. The solid line

is a fit of the data with the Arrhenius function where � = 200 K.

The inset shows the schematic view of the sample. (b) Resistance

R1,5;8,7 (I = 1, 5; V = 8, 7) as a function of gate voltage for different

temperatures, (T(K): 1.5, 2.5, 3, 3.5, 4.2, 10, 19, 29, 40, 53, 62),

I = 10−9 A.

125305-2



TEMPERATURE DEPENDENCE OF THE RESISTANCE OF A . . . PHYSICAL REVIEW B 89, 125305 (2014)

20 K. We find that the profile of the R1,5;7,6 temperature

dependencies above T > 25 K fits very well the activation

law ∼exp(�/2 kT), where � is the activation gap. Figure 2(b)

shows the evolution of the resistance-voltage profile with

temperature. We see that the electronic part of the dependence

is weakly dependent on temperature in the accessible range of

temperature, while the hole part shows a strong T dependence

with a saturation at low T . The question about the temperature

dependence of the resistance outside of CNP in the region with

dominant bulk transport requires further detailed theoretical

and experimental study, which is out of scope of our paper.

The thermally activated behavior of resistance above 25 K

corresponds to a gap of 17 meV between the conduction

and valence bands in the HgTe well. Recent theoretical

calculations based on the effective 6 × 6 matrix Hamiltonian

predicted a gap of ≈30 meV for 8 nm HgTe wells with

the [013] interface [19]. The mobility gap can be smaller

than the energy gap due to disorder. It is worth noting that

the disorder parameter, which can reduce the energy gap

in QSHI, is related to the deviations of the HgTe quantum

well thickness from its average value [20] rather than to the

random potential due to charged impurities. The saturation

of resistance at low temperature is completely unexpected

FIG. 3. (Color online) (a) Resistance R1,4;5,6 (I = 1, 4; V = 5,

6) of sample B as a function of inverse temperature. The solid line

is a fit of the data with the Arrhenius function where � = 400 K.

The inset shows a schematic view of the sample. (b) Resistance

R1,4;5,6 as a function of temperature at the charge neutrality point

(Vg − VCNP = 0) for two different current values.

FIG. 4. (Color online) Resistance R of sample A as a function

of temperature at the charge neutrality point (Vg − VCNP = 0)

measured from various voltage probes in the temperature interval

4–0.3 K, I = 10−9 A. The top panel shows a schematic view of the

sample.

because the electrons are in a supposedly strongly localized

regime, where the electrical resistivity of the system is two

orders of magnitude greater than the quantum of resistance

h/2e2.

Figure 3(a) shows the resistance of device B as a function

of inverse temperature. The data above 25 K nicely fits with

activation behavior, however, the activation gap is two times

larger than in device A. We attribute the larger value of

� to the better quality of the sample. For example, Fig. 1

shows that the resistivity peak in device B is narrower, and

it could be argued that disorder in the sample is considerably

smaller. In order to prevent overheating effects by the applied

current, we study the current dependence of resistance. The

resistance does not change much when the current is varied

by three orders of magnitude and preserves the saturation with

lowering the temperature both at high and low currents. In

Fig. 3(b) we present the T dependence of R1,4;5,6 (I = 1, 4;

V = 5, 6) at the CNP for two values of current measured in

a wide temperature range 50 mK < T < 2 K. We see that for

both current levels resistance is constant and does not depend

on T .

In Fig. 4 we present the T dependence of resistance

in device A. We see that the resistance increases with the

temperature decreasing, but there is no significant tempera-

ture dependence in the temperature interval 4–0.3 K. This

behavior is also inconsistent with what might be expected

for Anderson localization, Fermi liquid, or Luttinger liquid

models [21].
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III. DISCUSSION

In the rest of this paper we will focus on several proposed

models that can explain the deviation of resistance from the

quantized value. The first scenario describes the problem

of a single quantum impurity interacting with the helical

edge Luttinger liquid state [11]. The spatially inhomogeneous

electrostatic potential leads to a bound state which traps

odd numbers of electrons and forms magneticlike impurities.

For a large Luttinger parameter K > 1/4 corresponding to a

weak electron-electron interaction, conductance is suppressed

at low but finite temperatures and restored to the quantized

value again for T → 0. For a strong interaction, which

corresponds to a small Luttinger parameter K < 1/4, the

system becomes a LL insulator and the conductance scales

with temperature as G(T ) ∝ T 2(1/4K−1). Note, however, that

for the top gated samples, parameter K can be estimated

by the expression given in Ref. [22]. In particular, we

obtain K ≈ 0.6, which corresponds to a weak coupling

regime.

The second scenario relies on the localization of electrons

due to fluctuations of the Rashba spin-orbit interaction caused

by charge inhomogeneity in the presence of e-e interactions

[12]. The localization length strongly depends on the Luttinger

parameter K and can exceed 10 μm for K > 0.35. Note,

however, that suppression of conductivity due to localiza-

tion leads to the exponential dependence on temperature.

Moreover, the Rashba-induced localization scenario predicts

a strong dependence on sample length, which disagrees with

our observations.

A third scenario has been recently suggested in Ref. [13],

where the inelastic spin flip backscattering within each bound-

ary due to multiple puddles created by the inhomogeneous

charge distribution has been considered. The puddles should be

small and rare in order to provide a small tunneling probability

in the bulk, while on the other hand, few puddles should occur

in the vicinity of the edge, allowing for spin dephasing between

counterpropagating states. Self-averaging resistance of the

sample with edge state dominated contribution to transport

is given by [13]:

R ∼
h

e2

1

g2
npλ

(

T

δ

)3

L, (1)

where np is the density of the puddles, λ = �v/Eg ≈ 18 nm

is the electron penetration depth into the puddles (v ≈
5.5 × 107 cm/s is the electron velocity, Eg ≃ 20 meV is the

forbidden gap), g is the dimensionless conductance within the

dot (puddle), δ is the mean level spacing within the dot, L

is the distance between probes (length of the edge states).

Rewriting Eq. (1) in the form R = h
e2 ρ0L and comparing

it with our results, shown in Fig. 1, we obtain ρ0 = 15 ×
103 (e2/h)/cm = 1.5 (e2/h)/μm. This confirms that coherent

ballistic transport might occur on the micron length scale. The

density of the puddles can only be roughly estimated from

the ratio of the total carrier density to the average number

of electrons in the puddles. Note that the puddles become

populated when the local potential fluctuations exceed half of

the forbidden gap. The resulting equations for characteristic

donor density n0 and density of puddles np have been obtained

in Ref. [13]:

n0 =
E2

gκ
2

8πe4ln
{

l2
g

/

[(2lg − ld )ld ]
} , (2)

np ∼
(

1

lgaB

)(

nd

n0

)

exp(−n0/nd ), (3)

where κ = 13 is the dielectric constant, lg ≈ 343 nm is the

distance to the gate, ld ≈ 8 nm is the distance to the donors,

nd ∼ 2 × 1011 cm2 is the donor density, and aB = 2�v
αEg

2 ≈
120 nm (α = e2/κ�v = 0.3). From Eqs. (2) and (3), we

found n0 ≈ 4 × 1010 cm2 ≪ nd and np ≈ 4 × 109 cm2. The

dimensionless parameter g can be estimated as g ∼
√

N ≈
1–2, where N is the number of electrons in the puddle N ∼
aBn

1/2

d ≈ 2–5. Combining all parameters we finally calculate

ρ0 = 2 × 103
(

T
δ

)3
(e2/h/cm) for g ∼ 1. Energy level spacing

is estimated from Coulomb blockade energy in the dot δ ∼
α2Eg ∼ 1–2 meV. At relatively high temperatures T ≈ 10 K

we obtain T ∼ δ and it is expected that the T dependence is

saturated. In this case calculations give a result which is two

times smaller than the experimental value (for g ∼ 1). Note,

however, that we don’t see any T 3 dependence at temperatures

below 10 K in a wide temperature interval (Figs. 3 and 4).

In this case we suppose that the energy δ is overestimated,

and it is almost two orders of magnitude smaller than is

expected from a reasonable size of puddles. Large puddles

would yield a large parameter g resulting in a small value of

relative resistivity ρ0. Therefore, our attempts to account for a

weak temperature dependence only increase the discrepancy

between theory and experiment. However, if a large enough

number of puddles are situated at the very edge of the sample,

interrupting the edge state current flow, perhaps the resulting

temperature dependence would be closer to that observed in

this experiment. It is worth noting that condition n0 ≪ nd

corresponds to large puddles separated by p-n junctions and

bulk conductivity could shunt the edge state contribution.

Observation of large nonlocal resistance indicates that bulk

conductivity is suppressed [7]. Further study will be needed

to better understand this behavior. In conclusion, we find

that, even when the resistance of the HgT quantum wells is

two orders of magnitude greater than the resistance quantum

h/2e2, implying a strongly localized regime, it is independent

of temperature, indicating the absence of an insulating phase.

We have attempted to compare these experimental findings

with a recent theoretical model [13] where the absence of

resistance quantization in a 2DTI is accounted for by tunneling

between the edge states and charge carrier puddles in the

bulk. We find that while the model gives a satisfactory

description of the high resistance value, the explanation of

its temperature dependence requires further elaboration of the

model.
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