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Temperature dependence of TiN elastic constants from ab initio molecular dynamics simulations
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Elastic properties of cubic TiN are studied theoretically in a wide temperature interval. First-principles

simulations are based on ab initio molecular dynamics (AIMD). Computational efficiency of the method is

greatly enhanced by a careful preparation of the initial state of the simulation cell that minimizes or completely

removes a need for equilibration and therefore allows for parallel AIMD calculations. Elastic constants C11, C12,

and C44 are calculated. A strong dependence on the temperature is predicted, with C11 decreasing by more than

29% at 1800 K as compared to its value obtained at T = 0 K. Furthermore, we analyze the effect of temperature

on the elastic properties of polycrystalline TiN in terms of the bulk and shear moduli, the Young’s modulus and

Poisson ratio. We construct sound velocity anisotropy maps, investigate the temperature dependence of elastic

anisotropy of TiN, and observe that the material becomes substantially more isotropic at high temperatures. Our

results unambiguously demonstrate the importance of taking into account finite temperature effects in theoretical

calculations of elastic properties of materials intended for high-temperature applications.

DOI: 10.1103/PhysRevB.87.094114 PACS number(s): 71.15.Pd, 65.40.−b, 62.20.de

I. INTRODUCTION

The physical and mechanical properties of transition-metal

nitrides such as chemical stability, high hardness, high melting

point, and excellent electrical and thermal conductivity, make

them attractive for technological applications and motivate

intense research. In particular, nitrides of early transition

metals, such as Ti, Cr, Hf, Zr, and their alloys with, e.g., Al and

Si, represent basic building blocks for modern commercially

available hard, wear-resistant coated cutting tools. It is well

established that a thermal treatment, either postgrowth or

upon the tool operation, strongly affects the coating film

performance. For instance, one observes a formation of

self-organized nanostructures1–4 and modification of the films

phase composition and microstructure at elevated temperature.

The exposure of the transition-metal nitrides to high temper-

ature and high pressure in technological applications can be

either beneficial or detrimental,5,6 underlying the importance

of studies of their thermal stability, microstructure evolution,

and hardness at conditions corresponding to operation condi-

tions of cutting tools.6–9

Various experimental techniques are employed for this

purpose.10 Differential scanning calorimetry has been used

successfully to study the thermal responses during anneal-

ing. Analytical scanning transmission electron microscopy

with energy dispersive spectroscopy and x-ray diffraction

(XRD) were used for microstructure characterization and

nanoindentation for mechanical property determination of as-

deposited and annealed coatings.6–9 At the same time, ab initio

computer simulations in the framework of density functional

theory (DFT) have become increasingly important for the

interpretation of the experimental information,11,12 predictions

of materials properties,13–20 and for the knowledge-based

materials design.4 The accuracy and reliability of theoretical

calculations have substantially increased, to the extent that in

the absence of corresponding experimental information, or in

cases when it is limited, computed properties have become

accepted by the research community almost at the same

level of trust as measured data. However, state-of-the-art DFT

simulations are still most often carried out for static models,

with atoms at fixed lattice positions. Even at zero temperature

this is an approximation, which neglects zero-point atomic

motion, and in certain cases leads to non-negligible errors

for such basic properties as lattice parameters.21 It has been

demonstrated that the errors for lattice stabilities due to the

neglect of temperature effects in simulations can be as large as

a factor of 2.22

One class of properties that has attracted particular interest

is the elastic behavior of transition-metal nitrides.16–20 Indeed,

it influences many important phenomena that determine the

hard-coating performance. For example, TiN films display a

completely elastic response at low loads.23 Furthermore, the

elastic anisotropy is essential for understanding and modeling

the spinodal decomposition,24 which occurs in some alloys of

transition-metal nitrides and it is believed to be the main reason

for the age hardening effect.7,8,25 At the same time, exper-

imental information on elastic properties of transition-metal

nitrides is mostly limited to their Young’s moduli.23,26–29 With

rare exceptions it does not include data on the single-crystal

elastic constants.30 Therefore, first-principles calculations

are employed to obtain the missing information on elastic

constants for these materials. Methodological advances20,31,32

have made it possible to extend the study of elasticity from

ordered compounds to disordered solid solutions. Still, to the

best of our knowledge all available calculations of elastic

properties of transition-metal nitrides are restricted to static

models at zero temperature. It is generally believed that the

inclusion of temperature effects cannot substantially increase

the predictive quality of the calculated elastic constants, and

that the increase in computational efforts is therefore not

justified unless one is interested in their behavior at extreme

conditions.33,34

One the other hand, the applied force of a cutting tool

against the work piece, together with the minimal contact

area, gives rise to stress and pressure levels of several

GPa at the cutting edge. The temperature can often raise

above 1000 K during the operation.35 Thus, in the case of

transition-metal nitrides we do deal with extreme conditions,
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both in industrial applications and in simulations of their

phase stability5,13–15 and microstructure evolution.36 In this

work we demonstrate the importance of taking into account

finite temperature effects in theoretical calculations of elastic

properties of materials intended for hard-coating applications.

We calculate elastic properties of prototypical transition-metal

nitride, TiN, within a wide temperature interval, from room

temperature to 1800 K. TiN is a general purpose coating for

numerous applications. It is commonly used in machining

ferrous materials, molding, the medical industry, as a diffusion

barrier in electronic components, as a corrosion resistant

material, and for decorative purposes. Besides being used on

its own, it is a basic material for modern alloys for hard

wear-resistant coatings on cutting tools. It has very high

melting temperature 3223 K,26 and its bulk modulus is believed

to be the highest for stoichiometric compounds. However, its

thermal stability is relatively low, and the hardness decreases

rapidly with temperature,6 indicating that bonds could become

softer. Thus, one can expect that in this material temperature

strongly affects the elastic constants, further justifying our

choice of TiN as a model system for the present study.

Our first-principles simulations of the temperature depen-

dence of TiN elasticity are based on ab initio molecular

dynamics (AIMD).33 Computational efficiency of the method

is greatly enhanced by a careful preparation of the initial state

of the simulation cell that minimizes or completely removes a

need for equilibration and therefore allows for parallel AIMD

calculations. We calculate bulk single-crystal elastic constants

C11, C12, and C44. Also, we analyze the effect of temperature

on the elastic properties of polycrystalline TiN in terms of the

bulk and shear moduli, the Young’s modulus and Poisson ratio.

We calculate single-crystal longitudinal and transverse sound

wave velocities as a function of propagation direction, and

investigate the temperature dependence of elastic anisotropy.

We observe that the material becomes substantially more

isotropic at high temperatures.

The paper is organized as follows. In Sec. II we give a

detailed description of the methodology for the calculations

of elastic constants, determination of sound velocities and

their anisotropies, and parallel implementation of AIMD.

We discuss our results in Sec. III, and summarize this work

in Sec. IV.

II. METHOD OF CALCULATION

A. General procedure

AIMD has been applied to calculate the temperature

dependent elastic constants of TiN. A grid of molecular

dynamics (MD) simulations over volumes and temperatures

has been set to find the equilibrium volume as a function

of the temperature. Next at each temperature five different

deformations have been generated, as described in Sec. II B

below, and AIMD simulations have been performed. The

elastic constants have been extracted from the derivative

of the stress-strain curve for each temperature. Here we

make a common approximation and neglect influence of

entropic contributions to the free energy on the stress-strain

relations.33

B. Elastic constants

In a cubic material using the Voigt notation the elastic

constants are defined by the relation37

σi =
∑

j

Cijǫj , (1)

where σi and ǫj are elements of the stress and strain tensors.

Due to cubic symmetry the elastic tensor Cij only has three

nonvanishing, inequivalent elements C11, C12, and C44. To

obtain the elastic constants a strain tensor

ǫ(η) =

⎛

⎝

η η/2 0

η/2 0 0

0 0 0

⎞

⎠ (2)

can be used, where η is the magnitude of the distortion. By

inserting it in Eq. (1) the following relations can be derived for

Cij :

dσ1(T )

dη
= C11(T ), (3)

dσ2(T )

dη
= C12(T ), (4)

dσ6(T )

dη
= C44(T ). (5)

By calculating the stress σi for a set of deformations ǫ(η) +
I , with η deviating a few percent from zero, the derivative of

σ can be found and the elastic constants extracted. To include

the effect of temperature, the stresses σ are calculated for a

set of time steps Nt from a molecular dynamics simulation at

the specific temperature and at the equilibrium volume for that

temperature. This procedure generates a set of stresses at each

value of η, the distribution of which can be seen in Fig. 1. To

find the derivative, a second-order polynomial is fitted to the

whole set of points at each temperature using the least-square

method.

Experimentally, polycrystalline materials containing many

randomly oriented grains with different sizes, are often studied.

In AIMD elastic constants are calculated for single crystals,

but using the Reuss and the Voigt approaches one can

obtain expressions for bulk (BR,BV ) and shear (GR,GV )

moduli for polycrystals.37 For cubic systems the following
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FIG. 1. (Color online) Distribution of stresses obtained by AIMD

simulations at each value of distortion η and at two temperatures, 300

and 1200 K. Solid lines are histograms of all the instantaneous σ11

stress values. Dashed lines correspond to C11 strain-stress curves fitted

to the stress data, from which the values of C11(T ) are extracted.
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relations exist:

BR = BV = B, (6)

B = C11 + 2C12

3
, (7)

GV = C11 − C12 + 3C44

5
, (8)

GR = 5(C11 − C12)C44

3(C11 − C12) + 4C44

. (9)

The Young’s modulus E and Poisson ratio ν can be calculated

as

EV,R = 9BGV,R

3B + GV,R

, (10)

νV,R = 3B − GV,R

2(3B + GV,R)
. (11)

For polycrystalline materials it is useful to define a measure of

elastic anisotropy as

AV,R = GV − GR

GV + GR

. (12)

C. Sound velocities

The most general relationship between the speed of acoustic

waves V in solids and its density ρ and adiabatic bulk modulus

B is given by the Newton-Laplace equation

V =
√

B

ρ
. (13)

In isotropic materials, the P - (primary, longitudinal) and S-

(shear, secondary, transverse) wave velocities can be expressed

with the help of thermodynamic variables,

Vs =
√

G

ρ
and Vp =

√

B + 4
3
G

ρ
, (14)

where G is the shear modulus. However, sound velocities can

also be obtained from the elastic stiffness constants Cij . In the

general case the sound velocities in the long-wavelength limit

can be derived from the Green-Christoffel equations:38

ρüα =
∑

βγ δ

Cαβ,γ δ

∂2uγ

∂rδ∂rβ

, (15)

where αβγ δ are Cartesian indices, u is the displacement, and r

is a Cartesian coordinate. It is solved with a plane-wave ansatz

where the frequencies ω and polarization vectors �ǫ are given

by

C̃q �ǫq = ρω2
q �ǫq, (16)

where

C̃αδ
q =

∑

βγ

Cαγ,βδqγ qδ. (17)

The sound velocity in direction q is then given by

Vq = ωq

q
. (18)

In high-symmetry directions, when �ǫ ‖ q or �ǫ ⊥ q, the modes

are called pure longitudinal or transverse, respectively. In

all other directions the wave that has the polarization vector

closest to q is called quasilongitudinal (Vp), while the other

two are classified as quasitransverse waves (Vs1,Vs2).

D. Parallel molecular dynamics

To speed up the calculations and achieve a representative

set of uncorrelated samples we employed a parallel approach

to MD. We note that when averaging stresses, one does not

need consecutive time steps. Following a scheme according to

West and Estreicher39 we prepare the supercells in a thermally

excited state. First we calculate the interatomic force constant

matrix using the temperature dependent effective potential

method of Hellman et al.40 From the secular equation for

the dynamical matrix we obtain the normal mode canoni-

cal transformation that diagonalizes the classical harmonic

Hamiltonian. The 3Na normal modes commensurate with the

supercell are described by the eigenvalues ω2
k and eigenvectors

ǫk (k is the mode index). The inverse of this transformation

provides us with displacement uj and velocity u̇j of atom j ,

uj =
3Na
∑

k=1

ǫjkcke
i(ωk t+δk ), (19)

u̇j =
3Na
∑

k=1

iǫjkckωke
i(ωk t+δk ). (20)

The amplitudes of the modes are defined up to the constant

ck and an unknown phase δk . We know that the velocity

components should be normally distributed with a standard

deviation of σ = √
kbT/m and that each mode k should

contribute, on average, kBT/2 to the internal energy. By

choosing the coefficients in accordance to the Box-Muller

transform41

ck = 1

ωk

√

kBT

mj

√

−2 ln χ1, (21)

δk = 2πχ2 (22)

with χ1 and χ2 uniformly distributed on the interval 0 < χ � 1

these criteria are fulfilled.

Molecular dynamics initiated like this requires little to no

time for equilibration, hence allowing for an embarrassingly42

parallel high-throughput execution of AIMD, efficiently uti-

lizing high-performance computational resources.

E. Computational details

All MD simulations in this work are carried out with

the projector augmented wave method43 as implemented

in the Vienna Ab Initio Simulation Package (VASP).44–46

The electronic exchange-correlation is modeled using the

generalized gradient approximation.47 The simulation cell

consists of 4 × 4 × 4 primitive TiN unit cells in total 64 Ti

and 64 N atoms. 500 eV plane-wave cutoff is used to achieve

accurate stresses. The Brillouin zone is sampled using the

Monkhorst-Pack scheme48 with a grid of 2 × 2 × 2 k points.

All the simulations use a canonical ensemble (NVT) to
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maintain the desired temperature. The Nose thermostat49 is

used with the default mass value as implemented in VASP.

The elastic constants are calculated at six temperatures:

300, 600, 900, 1200, 1500, and 1800 K. For each temperature

five different values of η ∈ {−0.02, − 0.01,0.00,0.01,0.02}
have been used for the deformation matrix ǫ(η) + I . For each

deformation five parallel molecular dynamics simulations are

performed, with a total of about 20 000 time steps.

By calculating the elastic constants independently for each

of the five parallel molecular dynamics simulations, a standard

deviation can be extracted, making it possible to estimate the

statistical errors of the method.

III. RESULTS

A. Single-crystal elastic constants

In Fig. 2 we summarize the obtained temperature variation

of the elastic constants of B1 TiN. One sees that the

elastic constants calculated by means of AIMD at room

temperature are in good agreement with the corresponding

zero-temperature values obtained with conventional static

calculations. Furthermore, these later agree well with earlier

ab initio calculations (see, for example, Ref. 50). Though

we are not aware of any experimental measurements of the

temperature dependence of elastic properties in this material,

it is possible to show the reliability of our simulations. If it is

not shown, the error is less than the symbol in the graph.

In comparing our room-temperature data with experiment,

it is important to underline that TiN is stable in the broad

range of compositions, from TiN0.6 to TiN1.1,50 and that its

elastic properties depend on the degree of off-stoichiometry.29

We observe very good agreement with the experimental

measurements carried out on nearly stoichiometric TiN films

grown on (001) cubic MgO substrates for C11, 611 GPa

(theory) and 625 GPa (experiment), as well as for C44 elastic
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FIG. 2. (Color online) Calculated single-crystal elastic constants

for B1 TiN as a function of temperature. Theoretical results obtained

from AIMD simulations are shown with filled circles connected with

solid lines. Static calculations at T = 0 K are shown with open circles.

The error bars correspond to a standard deviation, calculated from the

variance of five independent molecular dynamics simulations.

constants, 156 GPa and 163 GPa for theory and experiment,

respectively. The difference between theory and experiment

for C12 elastic constant is somewhat larger; 128 GPa and

165 GPa, respectively. The origin of this difference is not clear

immediately. But we would like to point out that our result

is in good agreement with majority of other first-principles

calculations.51 Moreover, the bulk modulus B, 320 GPa,

obtained in Ref. 30 is also somewhat larger than the value

obtained in most first-principles calculations, as well as in an

independent experiment,52 where it is found to be 292 GPa.

The latter is in excellent agreement with our bulk modulus

289 GPa at 300 K. Considering Eq. (7) and the good agreement

between theory and experiment for C11, one may wish to have

an independent measurement of C12 elastic constant in TiN, at

least at room temperature.

Though the difference between calculated and measured

values of C12 is not too big, it has important consequences for

the analysis of the bonding situation and mechanical integrity

in this compound. The angular character of atomic bonding in

materials can be characterized by the Cauchy pressure PC =
(C12 − C44),53 a phenomenological criterion that is often used

for a prediction of brittle vs ductile behavior.54,55 For brittle

materials with strong degree of directional covalent bonds, the

Cauchy pressure is negative. According to our calculations,

TiN should be brittle at room temperature, in agreement with

experiment.56 Note that room-temperature experimental data

from Ref. 30 gives slightly positive values of the Cauchy

pressure.

Thus, we conclude that our AIMD simulations give reliable

results for Cij at room temperature, and we can now analyze

their temperature evolution. For both C11 and C44 we observe

nearly linear decrease with increasing temperature, indicating

normal temperature dependence, caused by anharmonicity.37

For C12 there is no clear trend, and the dependence we observe

is mostly within the the error bars. Indeed for many systems at

temperatures below the melting temperature the dependence of

elastic constants on T can be fitted to the empirical relation57

Cij (T ) = Cij (0)(1 − bT e−T0/T ), (23)

where b is a constant and T0 is of the order of 1/3 of the

Debye temperature θD . Anomalous temperature dependence

is also possible, where violation of Eq. (23) can be caused

by electronic structure effects. For intermediate temperatures

T0 ≪ T the leading terms are

Cij (T ) = Cij (0)[1 − b(T − T0)], (24)

showing linearity with T . Close to the melting temperature,

high-order anharmonic effects should result in strong nonlinear

temperature dependence.37 As θD = 636 K for TiN, the

temperature window for our simulations fulfills the criterion

T0 < T < Tm, making the observed nearly linear dependence

of elastic constants on temperature into another justification of

the reliability of the proposed methodology.

We notice that for elastic constants C11 and C44, a strong de-

pendence on the temperature is predicted. C11 decreases with

28%, from 611 GPa to 438 GPa between room temperature

and 1800 K. In this sense, the effect of temperature on elastic

constants is comparable to the effect of alloying, e.g., with Al

(Ref. 19) or the effect of off-stoichiometry.29 Accordingly, the
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temperature dependence of the elastic constants should not be

neglected in the analysis of elastic behavior of hard materials.

B. Sound velocities and their anisotropies

As discussed in Sec. II C, calculated elastic constants

allow us to analyze the propagation of sound waves in TiN.

In Fig. 3 we show three-dimensional projection of the sphere

of the sound velocities plotted in all directions. One sees

from Figs. 3(a) and 3(d), representing the Vp velocities for

the temperatures 300 K and 1500 K, respectively, a slight

decrease in sound velocity, less than 10%, with increasing

temperature. The directions of the maximum and minimum

velocity remain unchanged, as well as the topology of the

diagram. The same tendency is seen for Vs1 and Vs2 velocities

at the considered temperatures. However, in all cases we

observe a substantial, nearly factor of 2, decrease in sound

wave anisotropy. For Vp the anisotropy decreases from 10.8%

to 5.9%, for Vs2 from 16.8% to 8.8%, and for Vs1 from 24.3%

FIG. 3. (Color online) Single-crystal longitudinal and transverse

sound velocities for B1 TiN at temperatures T = 300 K: (a) Vp ,

(b) Vs1, and (c) Vs2 and T = 1500 K: (d) Vp , (e) Vs1, and (f) Vs2 as a

function of propagation direction. All velocities are given in (km/s).

The deformed spheres show the directional dependency of the sound

velocities. The radius and color are proportional to the sound velocity

in the corresponding direction. The isocontours are drawn at fixed

intervals for each polarization, starting from the minimum velocity

at each temperature and polarization. Fewer contours correspond to a

more isotropic velocity distribution. White and black spheres indicate

the direction of the minimum and maximum velocity, respectively.

to 13.0%. We conclude that TiN becomes substantially more

isotropic at high temperatures.

C. Polycrystalline elastic constants and Possion ratios

Using single-crystal elastic constants obtained in our AIMD

simulations, we calculate polycrystalline elastic constants and

the Poisson ratio for B1 TiN. They are displayed in Fig. 4.

Similar to Cij , B, E, and G show nearly linear decrease with

temperature following Eq. (24). The Poisson ratio shows little

temperature variation. There is good agreement between room-

temperature results calculated by AIMD and zero-temperature

values obtained from conventional static calculations.

Young’s modulus of TiN was measured in several

experiments,23,26–30 but the data are rather scattered, ranging

from 430 GPa (Ref. 29) to 590 GPa.26 Our calculated value

of E is well within this limit. For ceramics the Poisson

ratio is expected to be around 1/4,56 which is close to our

result. All polycrystalline elastic constants depend strongly

on temperature, decreasing by 20%–25% between the room

temperature and 1800 K. For the Young’s modulus the change

is very similar to the one observed by changing the N fraction in

TiN from 1 to 0.66,29 indicating that the effect of temperature

on elastic properties of TiN can be as important as the effect due

to off-stoichiometry. We also notice that the difference between

the Reuss and the Voigt averages of the elastic constants and
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FIG. 4. (Color online) Calculated polycrystalline elastic con-

stants, bulk modulus B (a), Young’s modulus E (b), shear modulus

G (c), as well as Poisson ratio (d) for B1 TiN as a function of

temperature. The results of the averaging using the Reuss and the

Voigt approaches are indicated with circles and squares, respectively.

Theoretical results obtained from AIMD simulations are connected

with solid lines. Static calculations at T = 0 K are shown with open

symbols. The error bars correspond to a standard deviation, calculated

from the standard deviations in Cij assuming the errors are normally

distributed.
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FIG. 5. (Color online) Calculated Voigt-Reuss-Hill anisotropy

AV R and Zenner elastic-shear anisotropy index AZ for B1 TiN as

a function of temperature. Theoretical results obtained from AIMD

simulations are connected with solid lines. Static calculations at

T = 0 K are shown with open symbols. The error bars correspond

to one standard deviation, calculated from the standard deviations in

Cij assuming the errors are normally distributed.

the Poisson ratio decreases with temperature, pointing to a

decrease in the elastic anisotropy. At room temperatures G/B

value is below 0.5, indicating that TiN is a brittle material,

in agreement with experiment56 and an analysis of Cauchy

pressure presented in Sec. III A.

D. Elastic anisotropy

A measure of the elastic anisotropy can be experimentally

determined by the strain ratio and then recalculated into the

ratio between Young’s moduli Ehkl in different directions.19

Ehkl can also be calculated from the single-crystal elastic

constants.30,37 Our AIMD simulations at room temperature

give E100 = 567 GPa, E110 = 429 GPa, and E111 = 397 GPa,

in good agreement with their experimental values 556, 446, and

418 GPa for 〈100〉, 〈110〉, and 〈111〉 directions, respectively.30

Consequently, the calculated elastic moduli ratio at room

temperature E100 : E110 : E111 = 1 : 0.76 : 0.7 is also in good

agreement with experiment.19,30

To further quantify the temperature dependence of elastic

anisotropy, we present in Fig. 5 the calculated anisotropy

values defined according to Voigt-Reuss-Hill, Eq. (12), as well

as according to Zener:37

AZ = 2C44

C11 − C12

. (25)

In isotropic materials the former approaches 0, while the

latter goes to 1. Similar to the observations made from the

calculation of elastic wave velocities we conclude from Fig. 5

that TiN becomes more isotropic at high temperatures. The

elastic isotropy is rarely expected in compounds, but it was

demonstrated in Ref. 19, both theoretically and experimentally,

that Ti1−xAlxN alloy becomes isotropic at x ≈ 0.28. One

can expect that the temperature effects could modify this

composition.

IV. SUMMARY AND CONCLUSIONS

We demonstrate that first-principles simulations based on

AIMD allow for accurate calculations of elastic properties of

materials at elevated temperature. Though the simulations are

substantially more time consuming in comparison to static

calculations of elastic constants, they are necessary for the

proper description of elastic behavior at extreme conditions,

which are likely to be present in many modern technological

processes. We show that computational efficiency of the AIMD

method can be greatly enhanced by a careful preparation of the

initial state of the simulation cell that minimizes or completely

removes the need for equilibration. Therefore it allows for a

parallel implementation of the calculations, and substantially

reducing the execution times for the project.

We study elastic properties of a prototypical transition-

metal nitride TiN between room temperature and 1800 K,

which corresponds to operational conditions for cutting tool

coatings. We calculate principal cubic elastic constants C11,

C12, and C44, as well as the polycrystalline elastic constants

bulk B and shear moduli G, and Young’s modulus E and

Poisson ratio ν. The elastic constants decrease nearly linearly

with increasing temperature, indicating normal temperature

dependence, caused by anharmonicity. We observe particularly

strong dependence on the temperature for C11 that decreases

by 28% between room temperature and 1800 K. Also, B, G,

and E decrease by 20%–to 25% in this temperature interval.

The effect of temperature on elastic behavior of TiN is, thus, as

strong as the effect of alloying with Al or N off-stoichiometry.

We construct sound velocity anisotropy maps and investigate

the temperature dependence of elastic waves and elastic

constants anisotropy of TiN. We predict that the material

becomes substantially more isotropic at high temperatures.

Our results unambiguously demonstrate the importance of

taking into account finite temperature effects in theoretical

calculations of elastic properties of materials intended for

high-temperature applications.
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