Temperature-dependent absorption cross-sections of HCFC-142b

Karine Le Bris*,a, Kimberly Strong^b

- ^aDepartment of Physics, Saint Francis Xavier University, P.O. Box 5000, Antigonish, NS, B2G 2W5, Canada
- ^bDepartment of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario,
 M5S 1A7, Canada

8 Abstract

- ⁹ Following the recent detection of HCFC-142b (1-chloro-1,1-difluoroethane)
- 10 from space, laboratory infrared absorption cross-section spectra of this molecule
- in a pure vapour phase have been recorded in the 650-3500 cm⁻¹ spectral re-
- gion using Fourier transform spectroscopy. The spectra have been recorded
- at a resolution of $0.02~\mathrm{cm^{-1}}$ and a range of temperatures from 223 to 283
- 14 K. The resulting data show good agreement with the harmonic frequencies
- and intensities calculated using density functional theory as well as with the
- integrated absorption intensities of the spectral bands available in the litera-
- 17 ture. The new cross-sections will allow more accurate retrieval of atmospheric
- 18 HCFC-142b concentrations using infrared spectroscopic techniques.
- 19 Key words:
- 20 Hydrochlorofluorocarbons, R-142b, cross-sections, mid-infrared, FTIR,
- 21 gas phase, density functional theory, vibrational wavenumber, band
- 22 strength

^{*}Corresponding author Tel: +1 902-867-3631 Fax: +1 902-867-2414 Email address: klebris@stfx.ca (Karine Le Bris)

1. Introduction

Hydrochlorofluorocarbons (HCFCs) are temporary substitutes for chlorofluorocarbons (CFCs). They were introduced after the phase-out of the latter by the Montreal Protocol and its subsequent amendments. Unlike CFCs, which are mainly destroyed by solar ultraviolet radiation in the stratosphere, the HCFCs, which contain one or more hydrogen atoms, can react with OH radicals in the troposphere to create HF and CO₂. Therefore, as less chlorine and fluorine are transported to the stratosphere, the ozone depletion potentials of HCFCs are substantially weaker than those of CFCs. However, because of their C-Cl and C-F bonds, these molecules still have large absorption cross-sections in the atmospheric window region (8-12 μ m), which give them strong global warming potentials. HCFC-142b (1-chloro-1,1-diffuoroethane) is a colorless gas at ambient 35 pressure. It is mainly used as a chemical intermediate to produce fluoropolymers, as a blowing agent for expanded polystyrene and as a component of refrigerant fluids. Because of its high vapour pressure and low vapour solubility, HCFC-142b partitions mostly in the atmosphere. Today, this is the third most abundant hydrochlorofluorocarbon after HCFC-22 and HCFC141b. The atmospheric lifetime of HCFC-142b is 17.9 years $\pm 24\%$ [1]. Its ozone depletion potential has been estimated at 0.07 while its global warming potential is evaluated to be 2310 \pm 810 for a horizon of 100 years [1]. The volume mixing ratio of HCFC-142b has been rising steadily in the 44 atmosphere since the beginning of the 1990's, exceeding 20 ppt in 2008 at

13-16 km with an average positive trend of more than 5% per year [2]. The

atmospheric concentration of HCFC-142b is now high enough to allow its

detection from space [2, 3]. However, the accuracy of the retrieval is limited by the lack of spectroscopic knowledge of this molecule. Only three crosssection spectra corresponding to the temperatures 253 K, 270 K and 287 K are currently available in the HITRAN 2008 database [4]. Measurements of temperature-dependent infrared cross-sections of HCFC-142b vapour at low temperature were reported in the 1990's [5, 6, 7] but discrepancies exist between these studies. No new laboratory data at low temperature have been published on this molecule since 1995.

As a result, uncertainties on the spectroscopic parameters of HCFC-142b are seen as one of the main sources of error for atmospheric retrievals [3]. New laboratory measurements are therefore crucial to enable accurate observations of the spatial and temporal variation of this hydrochlorofluorocarbon in the atmosphere.

The purpose of this study is to provide new infrared (IR) cross-sections of HCFC-142b at relatively high resolution (0.02 cm⁻¹) and at a range of relevant atmospheric temperatures (from 223 to 283 K). The resulting experimental data are compared to theoretical calculations performed using density functional theory and to previously published values.

66 2. Experimental setup

Experimental data are obtained using Fourier transform infrared (FTIR) absorption spectroscopy. The Fourier transform spectrometer (FTS) is a Bomem DA8.002 equipped with a KBr beamsplitter and operating with a Globar source.

The gas sample (SynQuest Labs, purity > 98%) is contained in a stainless

steel cell positioned between the FTS and a liquid nitrogen-cooled mercury cadmium telluride (MCT) detector. A vacuum system equipped with a Varian Turbo-V V250 turbo molecular pump allows the cell to be evacuated to about 1.10⁻⁶ torr. The cell pressure is measured using 10 Torr and 1000 Torr MKS baratron pressure gauges simultaneously.

HCFC-142b presents very intense lines in the atmospheric window region.
In order to avoid saturation effects while working at relevant pressures, a
stainless steel cell with an optical path of 3.17 cm was constructed. ZnSe
windows were sealed to the cell with indium O-rings to prevent leakage at
low temperature. The windows are maintained in place by stainless steel
flanges supporting teflon rings.

The cooling is achieved by a Neslab ULT-80 chiller sending the coolant (Syltherm XLT) to a copper tube surrounding the cell. The copper tube is soldered to the cell and covered by thermally conductive epoxy to provide temperature homogeneity. The cell temperature is measured by a thermocouple directly inserted inside the cell. The temperature readout accuracy during experiments is typically $\pm 0.1^{\circ}$ C.

Many sources of errors and artefacts can affect an FTIR spectrum, such as spectral aliasing, dynamic alignment error, blackbody emission from the source aperture, non-linearity of the MCT detector in the mid-infrared, etc. The spectral aliasing is reduced by the acquisition of a recursive interferogram signal produced by a monochromatic reference source (He-Ne laser) and a digitization resolution of 16 binary bits. The dynamic alignment is corrected in the Bomem DA8 spectrometer by a patented electronic tilt correction. The r.m.s. angular deviation from optimum alignment is less than 10⁻⁶ radians

in normal laboratory conditions (data provided by the manufacturer).

The blackbody emission from the source aperture comes from the warming of the iris by the light source. The warm annulus around the aperture
acts as a second infrared source emitting off-axis thermal radiation. This
leads to distortion of the signal shape and intensities as the aperture size
decreases. To reduce this warm aperture artefact, a second iris is inserted
between the DA8 spectrometer and the MCT detector at the focal point of
the beam [8]. After this installation, no variation of the cross-section signal
with the aperture size has been observed.

The non-linearity of the MCT detector, corresponding to the non-linearity between the measured signal and the photon flux, essentially affects the central fringe of the interferogram, which leads to a zero-level offset in the absorption spectrum. Correction of non-linearity is applied on the raw interferograms before the phase correction and the Fourier transformation. We adjusted the response of the detector to the light intensity by a curve whose only unknown parameter is an empirically chosen DC output value [9]. This parameter is adjusted by a minimization of the transmission in the spectral region below the cut-off wavenumber. The residual baseline offset is subtracted from the spectra after phase correction and Fourier transformation.

16 3. Data analysis

For each temperature, a series of spectra were recorded at a minimum of six different pressures between 2 and 12 torr. Each Pressure-Temperature (P-T) spectrum is composed of at least 200 unapodised scans. The resulting spectrum, for each temperature, is a composite spectrum from the P-T spec-

trum sets extrapolated to the zero-torr limit. A 200-scan primary baseline spectrum with an empty cell was recorded at each temperature. Secondary control baselines of at least 20 scans were also taken before and after each sample measurement to account for the small intensity variations that can occur during the long periods (typically several hours) of acquisitions. If necessary, the primary baseline is adjusted to the secondary baselines by a polynomial regression prior to the division of each sample spectrum by the adjusted baseline spectrum.

The cross-section, $\sigma(\nu)$, in cm²/molecule is calculated for each P-T set using the well-known Beer-Lambert law:

$$I(\nu) = I_0(\nu)e^{-\chi(\nu)} \tag{1}$$

with optical depth:

$$\chi(\nu) = \sigma(\nu) \frac{PT_0}{TP_0} N_L L \tag{2}$$

where ν is the wavenumber (cm⁻¹); $I_0(\nu)$, the light intensity passing through the empty cell (baseline); $I(\nu)$, the light intensity passing through the sample gas cell; N_L is the Loschmidt's constant (2.6868x10¹⁹ molecules/cm³); L, the length of the cell (cm); and P_0 and T_0 , the standard conditions for pressure and temperature.

To prevent saturation effects in an optically thick medium while keeping a good signal-to-noise ratio at every wavenumber, the points corresponding to optically thick $(\chi(\nu) > 1.1)$ or optically thin $(\chi(\nu) < 0.1)$ conditions are eliminated. This way, a linear behaviour is obtained for strong absorption bands from the low-pressure measurements while the weak absorption tures are represented by the high-pressure measurements.

The shapes of the ro-vibrational transition lines, as well as the peaks of the Q-branches, are pressure-dependent due to collisional broadening. The cross-section for each wavenumber is obtained at the zero-torr limit by the linear least-square fit of the experimental apparent cross-section of the remaining values $(0.1 < \chi(\nu) < 1.1)$ versus the pressure.

The errors on optical path length, temperature readout, pressure, baseline drift, and sample purity have been evaluated to account for less than $\pm 3\%$. The other sources of error in spectral measurements come from the residual MCT non-linearity, a possible residual baseline drift and the errors induced by the data reduction. For each wavenumber, we calculated the standard deviation Δ between the linear fit and the apparent cross-section values as a function of pressure. The error for each wavenumber is chosen at the 95% confidence limit (2Δ) .

156 4. Results

HCFC-142b is a near-prolate asymmetric top molecule belonging to the
Cs symmetry group (Figure 1). As a consequence, it has 18 fundamental
vibration modes (11 with A' symmetry and 7 with A" symmetry). Twelve
of those fundamental modes have active absorption bands in the spectral
window region between 650 and 3500 cm⁻¹.

All the bands present a sharp *Q*-branch surrounded by less intense *P*and *R*-branch structures (Figure 2). No significant variation of the integrated
band strength with temperature has been observed from 223 to 283 K for any
of the bands (Figure 3). Therefore, we can confirm that the superimposed
hot bands and combination bands of HCFC-142b do not play a significant

role in our range of temperatures.

The shape of the bands is strongly dependent on the temperature. The Q-branches become sharper as the temperature decreases due to the change of relative populations of the rotational states of the vibrational bands. This leads to a significant increase in the cross-sections at the band centers with decreasing temperature (Figure 4).

The uncertainty on the integrated band strength is stable with temperature for all bands with the exception of the ν_8 band. The increased uncertainty on the integrated strength of the ν_8 band as the temperature decreases is likely due to the intense sharpening of the ν_8 Q-branch which worsens the data reduction error on the main peak.

Weak features of magnitude lower than 10^{-20} cm²/molecule, which can be attributed either to overtones and combination band or sample impurity, are present at all temperatures in the spectral region between 1500-2800 cm⁻¹.

5. Data Validation

5.1. Comparison with theoretical calculation of vibrational modes and intensities

The unconstrained geometric optimizations and harmonic vibrational frequencies of HCFC-142b are calculated using density functional theory (DFT) with Gaussian 03 [10].

Previous ab-initio calculations for HCFC-142b have been carried out at the RHF/6-31* [11] and MP2/6-31G** [12] levels. The present DFT calculations are performed using the Becke's three-parameter functionals for the exchange and the Lee-Yang-Parr and Perdew-Wang non-local functionals for correlation (respectively B3LYP and B3PW91). For each functional set, two basis sets are used: the Pople's type valence triple-zeta basis supplemented by multiple polarization and diffuse functions (6-311++(3df,3pd)) and the augmented correlation-consistent polarized quadruple-zeta (aug-cc-pVQZ) basis.

192

193

194

We observe a very good agreement between the geometries from the four 195 levels of theory. The choice of the correlation functionals and the size of 196 the basis sets have only a weak influence on the geometry. The harmonic 197 wavenumber positions present little sensitivity to basis sets, with an average 198 difference below 0.2%, and to the correlation functionals, with an average 199 difference around 0.7%. The variations of intensity with basis sets are also 200 weak in both cases, with the exception of the ν_{10} band, corresponding to 201 C-Cl stretching. It may be noted that the inclusion of diffuse functions 202 on hydrogen atoms has almost no influence on the geometry and harmonic frequencies of HCFC-142b. However, the choice of correlation functionals 204 does have a strong influence on the intensities, with an average difference 205 between LYP and PW91 above 12% and a maximum difference between 206 25-30% for the ν_4 and ν_{15} bands. Comparison with experimental data is 207 therefore essential to test the validity of the methods.

Table 1 presents the assignment, the calculated harmonic wavenumber and the integrated strength of the fundamentals modes. The strongest bands correspond to C-C, C-Cl and C-F stretching vibrations. All of them fall in the 800-1250 cm⁻¹ atmospheric window region, which explains the high global warming potential of this molecule.

The weak fundamental C-H stretching vibrations fall in the 3000 cm^{-1} spectral region. The superimposed CH₃ deformation vibrations lie in the

 $_{216}$ 1400 cm⁻¹ region. Only the ν_4 mode presents a medium intensity in this $_{217}$ window.

The theoretical values of the harmonic frequencies have been compared 218 to the experimental data (Figure 5). The experimental line center is chosen at the barycentre of the Q-band. All four levels of theory give excellent results after an average linear scaling: $\nu_{exp} = (1.06 \pm 0.01)\nu_{theo} - (59.3 \pm 7.7)$, 221 with ν_{exp} and ν_{theo} , the respective experimental and theoretical harmonic 222 wavenumber values in cm^{-1} . The theoretical values for line intensity in the mid-IR spectral windows also fit relatively well the data after linear scaling with the experimental integrated absorption strength. We obtained an average $I_{exp} = (1.01 \pm 0.05)I_{theo} + (0.22 \pm 0.14) \times 10^{-17}$ for B3LYP and $I_{exp} = (1.10 \pm 0.02)I_{theo} + (0.08 \pm 0.05) \times 10^{-17}$ for B3PW91, with I_{exp} and I_{theo} the respective experimental and theoretical integrated band strengths in cm/molecule. However, B3PW91 gives the best correlation with an \mathbb{R}^2 of 0.999 for both basic sets.

231 5.2. Comparison with published values

The integrated band intensities of the HCFC-142b cross-section spectra are compared with data available in the literature (Table 2). The integrated intensities of the four absorption bands ν_8 , (ν_7, ν_{15}) , (ν_6, ν_5, ν_{14}) , and (ν_4, ν_3, ν_{13}) between 650 and 1500 cm⁻¹ are reported. No previous values for the ν_1, ν_2, ν_{12} bands around 3000 cm⁻¹ have been found in literature. At most temperatures, our integrated absorption band strengths show good agreement with earlier measurements for a pure vapour [5, 6], as well as for N₂-broadened vapour [7, 13]. No constant relative difference is observed with any of the data sets, which indicates that there were no significant systematic

errors in the measurements.

The largest discrepancies between authors appears at 233 K. A disparity close to 20% for the ν_6 , ν_5 , ν_{14} absorption bands exists between Newnham and Ballard [5] and Cappellani and Restelli [7]. As previously mentioned, our integrated band strengths do not exhibit trends and our values at 233 K, midway between the values of these two studies, remain consistent with our results at other temperatures.

248 6. Conclusions

Absorption cross-sections of HCFC-142b at a spectral resolution of 0.02 249 cm⁻¹ have been recorded in the mid-infrared between 650 and 3500 cm⁻¹ at seven different temperatures (223, 233, 243, 253, 263, 273, and 283 K). 251 The main sources of errors in the measurements have been investigated and accounted for in the final results. The integrated intensities of the harmonic wavenumber bands show good agreement with the data available in the liter-254 ature and with theoretical calculations using DTF. The availability of cross-255 section spectra at 10-K steps between 223 and 283 K should, therefore, allow 256 the reduction of uncertainties on HCFC-142b volume mixing ratio retrieval from space missions. The cross-sections are provided online in supplementary data files and are also available from the corresponding author.

7. Acknowledgments

This work was supported by the Canadian Space Agency (CSA) and the Natural Sciences and Engineering Research Council of Canada (NSERC).
We thank Paul Chen for technical support, and Prof. James R. Drummond

- 264 and the NSERC Industrial Research Chair in Atmospheric Remote Sounding
- 265 from Space (sponsored by COMDEV, Bomem, Environment Canada, CSA,
- 266 and NSERC) for the use of the Bomem DA8 Fourier transform spectrometer.
- ²⁶⁷ We also thank Dr. Stella M.L. Melo from the CSA for helpful discussions.

References

- [1] WMO (World Meteorological Organization). Scientific Assessment of
 Ozone Depletion: 2006, Global Ozone Research and Monitoring Project Report, No. 50, Geneva, Switzerland, 2007.
- [2] Rinsland CP, Chiou L, Boone C, Bernath P, Mahieu E. First measurements of the HCFC-142b trend from atmospheric chemistry experiment (ACE) solar occultation spectra. JQSRT 2009;doi:10.1016/j.jqsrt.2009.05.011
- [3] Dufour G, Boone CD, Bernath F. First measurements of CFC-113 and
 HCFC-142b from space using ACE-FTS infrared spectra. Geophys. Res.
 Lett. 2005;32:L15S09.
- [4] Rothman LS, Gordon IE. *et al.* The HITRAN 2008 molecular spectroscopic database. JQSRT 2009;110:533572.
- [5] Newnham D, Ballard J. Fourier transform infrared spectroscopy of HCFC-142b vapour. JQSRT 1995;53:471-479.
- [6] Clerbaux C, Colin R, Simon PC, Granier C. Infrared cross sections and global warming potentials of 10 alternative hydrohalocarbons. J. of Geophys. Res. 1993;98:10491-10497.

- ²⁸⁶ [7] Capellani F, Restelli G. Infrared band strengths and the temperaturedependence of the hydrohalocarbons HFC-134a, HFC152a, HCFC-22, HCFC-123, and HCFC-142b. Spectrochim. Acta Part A 1992;48:1127-1131.
- [8] Johnson TJ, Sams RL, Blake TA, Sharpe SW, Chu PM. Removing
 aperture-induced artifacts from Fourier transform infrared intensity values. Appl. Opt. 2002;41:2831-2839.
- [9] Abrams C, Toon GC, Schindler R A. Practical example of the correction of Fourier-transform spectra for detector nonlinearity. Appl. Opt.
 1994;33:6307-6314.
- ²⁹⁶ [10] Frisch, M. J. et al., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.
- ²⁹⁸ [11] Paddison SJ, Chen Y, Tschuikow-Roux E. An ab initio study of the structures, barriers for internal rotation, vibrational frequencies, and thermodynamic functions of the hydrochlorofluorocarbon CH₃CF₂Cl and the corresponding radical CH₂CF₂Cl. Can. J. Chem. 1994;72:561-567.
- papasavva S, Illinger K, Kenny J. Molecular properties of CFC substitutes from ab initio calculations: CFCl₂CH₃, CF₂ClCH₃, CHCl₂CF₃ and CHFClCF₃. J. Mol. Structure: Theochem 1997;393:,73-83.
- PNNL (Pacific Northwest National Laboratory) Quantitative Infrared
 Database, available online at http://nwir.pnl.gov/

Figure 1: Geometrical structure of HCFC-142b.

Figure 2: Survey spectrum of HCFC-142b in the mid-infrared at 263 K.

Figure 3: Variation of the integrated strength of the five main absorption bands of HCFC-142b in the mid-infrared.

Figure 4: Cross-section of the P- and Q-branches of the ν_{15} band of HCFC-142b at seven different temperatures.

Figure 5: Comparison between experimental and theoretical harmonic frequencies of HCFC-142b for the four levels of theory.

Figure 6: Comparison between experimental and theoretical band strengths of HCFC-142b for the four levels of theory.

Table 1: Theoretical harmonic wavenumbers and intensities of the fundamental modes of HCFC-142b. Wavenumbers are in ${\rm cm}^{-1}$, bands strengths are in 10^{-17} cm/molecule. (a):6-311++, (b):Aug-cc-pvqz. st:stretch, def: deformation.

Label	Assignment		Waven	Wavenumber		П	Band strength	trengt	
		B3LYP	YP	B3PW91	W91	B3I	B3LYP	B3PW91	W91
		(a)	(p)	(a)	(q)	(a)	(a) (b)	(a)	(q)
Α,									
$ u_1 $	CH_3 sym st.	3141.36	3136.41	3157.78	3152.34	90.0	90.0	0.05	0.05
ν_2	$ m CH_3 \ sym \ st.$	3063.13	3059.54	3071.15	3066.82	0.03	0.03	0.03	0.03
ν_3	CH_3 sym def.	1483.52	1483.83	1474.41	1474.57	0.01	0.01	0.01	0.01
ν_4	CH_3 sym def.	1421.65	1422.37	1412.26	1412.58	0.46	0.47	0.62	0.63
$ u_5 $	CF_2 sym st.,	1217.65	1216.27	1231.51	1229.66	2.00	1.99	1.93	1.94
	C-C st.								
$ u_6 $	C-Cl st.,	1129.57	1129.39	1128.24	1127.67	2.72	2.67	3.01	2.95
	CF_2 sym. def.								
77	CF_2 sym. st.	892.16	889.67	903.03	900.49	2.10	2.14	1.83	1.88
ν_8	C-C-Cl def.	669.26	668.25	678.87	677.57	0.98	0.98	0.94	0.94

Table 1-continued from previous page

Label	Assignment		Waven	Wavenumber			3and st	Band strength	
		B3LYP	1	B3PW91	W91	B3I	B3LYP	B3P	B3PW91
		(a)	(p)	(a)	(q)	(a)	(q)	(a)	(p)
V_9	CF_2 scissor	538.74	538.32	543.53	543.01	0.22	0.22	0.21	0.21
$ u_{10} $	C-Cl st.	424.24	421.51	431.71	428.52	0.05	0.05	0.04	0.04
ν_{11}	$\mathrm{CClF}_2\text{-}\mathrm{CH}_3$ rock	301.07	299.86	301.40	299.99	0.02	0.03	0.03	0.03
A"									
ν_{12}	CH_2 asym. st.	3157.99	3153.42	3173.96	3169.17	0.03	0.03	0.03	0.03
ν_{13}	CH_3 asym. def	1480.50	1480.27	1471.51	1470.95	90.0	90.0	0.06	0.00
ν_{14}	CF_2 asym. st.	1185.37	1183.27	1194.77	1192.94	2.36	2.33	2.64	2.61
ν_{15}	CF_2 asym. st.	963.01	961.31	968.74	78.796	1.20	1.2	0.93	0.97
ν_{16}	CF_2 rock	430.36	429.96	431.12	430.89	0.00	0.00	0.00	0.00
ν_{17}	$\mathrm{CCIF}_2\text{-}\mathrm{CH}_3$ twist	330.49	329.79	332.15	331.29	0.01	0.01	0.01	0.01
ν_{18}	torsion	236.96	235.49	239.07	238.32	0.00	0.00	0.00	0.00

Table 2: Comparison of the experimental infrared integrated band strengths ($x10^{-17}$ cm/molecule) with published values when available. (a) The first two temperature sets for Ref. [13] are at 297 and 277 K. (b) The first temperature set for Ref. [5] is at 296 K. (c) The first two temperature sets for Ref. [6] are at 287 and 270 K.

	T 1 1		Integra	ated band str	ength	
Temperature	Label	This work	Ref. $[13]^a$	Ref. [5]	Ref. $[6]^b$	Ref. [7]
	ν_8		0.74	0.71 ± 0.01		0.74
293 K	ν_7, ν_{15}		2.53	2.49 ± 0.07		2.38
293 K	ν_6, ν_5, ν_{14}		7.06	7.34 ± 0.10		6.94
	ν_4, ν_3, ν_{13}		0.64	0.58 ± 0.04		0.60
	ν_8	0.69 ± 0.02			0.75 ± 0.05	
283 K	ν_7, ν_{15}	2.41 ± 0.07			2.58 ± 0.14	
200 IX	ν_6, ν_5, ν_{14}	6.99 ± 0.19			7.19 ± 0.20	
	ν_4, ν_3, ν_{13}	0.57 ± 0.02			0.61 ± 0.09	
	ν_2, ν_1, ν_{12}	0.13 ± 0.01				
273 K	ν_8	0.70 ± 0.03	0.74	0.70 ± 0.04	0.69 ± 0.05	0.75
	ν_7, ν_{15}	2.42 ± 0.07	2.50	2.56 ± 0.07	2.51 ± 0.14	2.45
	ν_6, ν_5, ν_{14}	6.91 ± 0.19	7.05	7.06 ± 0.13	7.11 ± 0.20	7.12
	ν_4, ν_3, ν_{13}	0.64 ± 0.02	0.63	0.61 ± 0.03	0.64 ± 0.09	0.62
	ν_2, ν_1, ν_{12}	0.15 ± 0.01				
	ν_8	0.68 ± 0.06				
969 IZ	ν_7, ν_{15}	2.35 ± 0.06				
263 K	ν_6, ν_5, ν_{14}	6.74 ± 0.18				

Table 2 – continued from previous page

	т 1 1		Integra	ated band str	ength	
Temperature	Label	This work	Ref. $[13]^a$	Ref. $[5]^{b}$	Ref. $[6]^c$	Ref. $[7]^c$
	ν_4, ν_3, ν_{13}	0.59 ± 0.02				
	ν_2, ν_1, ν_{12}	0.14 ± 0.01				
	ν_8	0.68 ± 0.07		0.69 ± 0.03	0.68 ± 0.05	
$253~\mathrm{K}$	ν_7, ν_{15}	2.36 ± 0.07		2.41 ± 0.08	2.40 ± 0.14	
299 K	ν_6, ν_5, ν_{14}	6.76 ± 0.19		6.16 ± 0.43	6.96 ± 0.20	
	ν_4, ν_3, ν_{13}	0.65 ± 0.02		0.65 ± 0.05	0.78 ± 0.09	
	ν_2, ν_1, ν_{12}	0.13 ± 0.02				
	$ u_8$	0.67 ± 0.11				
243 K	ν_7, ν_{15}	2.29 ± 0.07				
240 IX	ν_6, ν_5, ν_{14}	6.58 ± 0.18				
	ν_4, ν_3, ν_{13}	0.64 ± 0.02				
	ν_2, ν_1, ν_{12}	0.13 ± 0.02				
	$ u_8$	0.67 ± 0.15		0.71 ± 0.01		0.75
999 I/	ν_7, ν_{15}	2.35 ± 0.07		2.30 ± 0.04		2.51
233 K	ν_6, ν_5, ν_{14}	6.92 ± 0.21		6.19 ± 0.02		7.38
	ν_4, ν_3, ν_{13}	0.61 ± 0.02		0.62 ± 0.05		0.64
	ν_2, ν_1, ν_{12}	0.13 ± 0.01				
	$ u_8$	0.64 ± 0.15				
202 77	ν_7, ν_{15}	2.30 ± 0.08				
223 K	ν_6, ν_5, ν_{14}	6.67 ± 0.19				
	ν_4, ν_3, ν_{13}	0.58 ± 0.02				
	ν_2, ν_1, ν_{12}	0.12 ± 0.01				

Table 2 – continued from previous page

Town one tune	Labal	Integrated band strength						
Temperature	Label	This work	Ref. $[13]^a$	Ref. $[5]^b$	Ref. $[6]^c$	Ref. $[7]^c$		
	$ u_8$			0.70 ± 0.07				
213 K	$ u_7, u_{15}$			2.46 ± 0.05				
	ν_6, ν_5, ν_{14}			6.80 ± 0.28				
	ν_4, ν_3, ν_{13}			$0.60 {\pm} 0.04$				
203 K	ν_8			0.79 ± 0.09				
	ν_7, ν_{15}			2.34 ± 0.26				
	ν_6, ν_5, ν_{14}			6.90 ± 0.10				
	ν_4, ν_3, ν_{13}			0.58 ± 0.03				