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Abstract. – A model of magnetic interactions in the ordered ferromagnetic FePt is proposed
on the basis of first-principles calculations of non-collinear magnetic configurations and shown
to be capable of explaining recent measurements of magnetic-anisotropy energy (MAE). The
site (Fe,Pt) resolved contributions to the MAE have been distinguished with small Fe easy-
plane and large Pt easy-axis terms. This model has been tested against available experimental
data on the temperature dependence of MAE showing scaling of uniaxial MAE (K1(T )) with
magnetization (M(T )) K1(T ) ∼ M(T )γ characterized by the unusual exponent of γ = 2.1. It
is shown that this unusual behavior of the FePt can be quantitatively explained within the
proposed model and originates from an effective anisotropic exchange mediated by the induced
Pt moment. The latter is expected to be a common feature of 3d-5d(4d) alloys having 5d/4d
elements with large spin-orbit coupling and exchange-enhanced Stoner susceptibility.

Introduction. – Since the phenomenon of super-paramagnetism has been identified as one
of the major limits for the conventional magnetic recording [1], significant research effort has
been invested in the development of materials with large magnetic-anisotropy energy (MAE).
Recent progress in the fabrication and characterization of granular and nano-particulate FePt
films [2] puts even more emphasis on the understanding of the giant MAE of FePt and its
temperature dependence. The latter property appears to be of critical importance for the
development of future high-density magnetic-recording systems in particular for heat-assisted
magnetic recording [1].

A systematic understanding of the temperature dependence of the MAE in itinerant mag-
nets remains a challenge and one of the long-standing problems in the theory of magnetism.
The proposed model deals with mixed localized and itinerant magnetic moments and thus
bears general importance as large anisotropy is achieved by combining strongly magnetic
elements with non-magnetic ones, where the latter have large spin-orbit coupling.

The chemically ordered L10 phase of FePt has large uniaxial MAE with the first-order
anisotropy constantK1 ≈ 108 erg/cc [1] based on the simple angular variation of MAE Eanis ∼
K1 sin2 θ. In the L10 phase the cubic symmetry is broken due to the stacking of alternate
planes of the 3d element (Fe) and the 5d element (Pt) along the [001] direction. It is well
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established that in this naturally layered ferromagnet the large MAE is mainly due to the
contribution from the 5d element having large spin-orbit (s-o) coupling while the 3d element
provides the exchange splitting of the 5d sub-lattice [3–5].

The theoretical framework for the temperature dependence of the MAE was mainly de-
veloped in the ’50-’60s. These efforts led to the formulation of a general quantum statistical
perturbation theory (QSPT) summarized by Callen and Callen [6]. This theory provides a
general approach for calculating the magnetic-anisotropy free energy for the effective spin
Hamiltonian H = H iso +Hanis with a large isotropic H iso and a relatively small anisotropic
part Hanis. The anisotropic part is taken in the form Hanis =

∑
i k2L2(Si), where L2(Si)

is a normalized polynomial of 2nd order in the case of uniaxial symmetry with Si denoting
a unit vector (in the classical case) at the atomic site i [6]. This form implicitly assumes
well-localized magnetic moments leading to a universal parametric relation between MAE
(K1(T )) and the magnetization M(T ) [6]. The two-sublattice modification of the QSPT pro-
posed by Kuz’min [7] has been successfully applied to describe MAE of the localized 3d-4f
magnets. Note that all these theories predict that in the low-temperature region MAE scales
as K1(T ) ∼ M3(T ) except the very recent work by Skomski et al., where a mean-field two–
sub-lattice Hamiltonian for L10 CoPt led to a K1(T ) ∼M2(T )-dependence [8].

Recent experimental results demonstrate that the uniaxial MAE of epitaxial FePt films
can be very accurately fitted to a K1(T ) ∼ M2.1(T )-dependence in the low-temperature
range [9, 10]. This observation clearly demonstrates that the contribution of the single-ion
anisotropy (leading to the M3-dependence) is practically missing. Thus, the Hamiltonian
used in the QSPT theory does not necessarily reflect all the essential features of the magnetic
interactions in L10 FePt and possibly also of the other 3d-4d/5d ordered alloys.

In the following we present a model of magnetic interactions in FePt which is constructed
and parameterized on the basis of first-principles calculations and is shown to be capable of
explaining on the quantitative level recent measurements of the K1 ∼ Mγ(T )-dependence
with non-integer exponent γ = 2.1 [9,10]. Thus we propose a microscopic explanation of this
unusual behavior and test our microscopic model of magnetic interactions.

The leading contribution to the anisotropic part of the spin Hamiltonian is described as
anisotropic exchange mediated by the induced Pt atomic spin moments. The thermodynamic
behavior of this Hamiltonian is investigated within the mean-field approximation (MFA) and
in the classical limit using both Langevin dynamics and Monte Carlo simulations. We find
that proper treatment of the magnetic interactions mediated by the induced Pt moment
yields K1(M(T )) and M(T ) dependences in a good quantitative agreement with experiment,
including the value of Tc. Thus the proposed atomic-scale model describes correctly the most
important static magnetic properties and thus opens the way for modeling even more complex
dynamic switching properties [11].

Effective spin Hamiltonian model based on first-principles calculations. – Our analy-
sis begins with an investigation of the isotropic part of the spin Hamiltonian. We start
with the constrained local-spin-density-approximation (CLSDA) calculations [12] for a non-
collinear arrangement of Fe and Pt atomic spin moments, as summarized in fig. 1. The
CLSDA method [13] allows to reduce the many-electron problem to a minimization of the
Hohenberg-Kohn energy functional EHK(ρ(�r), �σ(�r)) of charge, ρ(�r), and spin density, �σ(�r),
with an additional constraint term which in the case of a non-collinear magnetic configuration
leads to a CLSDA functional ECLSDA(ρ(�r), �σ(�r),�h⊥i ) with an additional Lagrange multiplier
�h⊥i having the meaning of an internal magnetic field [12]. This magnetic field is determined
self-consistently according to the condition of the desired orientation of the atomic moment
�mi at the site i. The effect of thermal fluctuations on the electronic and spin sub-systems
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Fig. 1 – Results of the constrained self-consistent LSDA calculations for ordered L10 FePt: a) Fe
(circles) and Pt (squares) spin moments normalized by their values in the FM state as a function of
normalized exchange field h; b) isotropic (squares) and anisotropic (circles) part of the total energy
as a function [mν ]

2. Dashed lines are used for the linear fit.

can be conveniently modeled with the spin-spiral (SS) configurations representing various de-
grees of short-range order which is found in 3d magnets for temperatures well above Tc [14].
The values of the Fe and Pt moments for these SS configurations are calculated in the local
coordinate system, associated with the orientation of the local quantization axis at site i as
Mi =

∫ eF

−∞[nup
i (ε)−ndn

i (ε)]dε, where the local density of electronic states is a diagonal matrix
over the spin indices nσ,σ

i [15, 16]. To summarize the most important results obtained for
various SS configurations, we introduce the convenient variable hν = Hν/H

0
ν , where Hν is the

exchange field at site ν of the Pt sublattice normalized by its value in the FM state H0
ν .

In fig. 1 we present the spin moments and total energies of the non-collinear magnetic
configurations calculated self-consistently within the CLSDA, using a generalization of the
electronic-structure method to treat non-collinear magnetic order [12]. In fig. 1a we present
normalized values of the Fe and Pt spin moments calculated as a function of h. The dependence
shown in fig. 1a clearly demonstrates a dramatic difference in the degree of localization for
Fe and Pt spin moments, respectively. The Fe spin moment remains almost constant as a
function of h (or angle θ) indicating its relatively localized nature in terms of the response
to the thermal fluctuations. On the other hand, the Pt moment varies linearly with h. This
result raises the important question how to develop an adequate model to describe a system
with mixed localized and de-localized magnetic degrees of freedom.

The theory of magnetic interactions due to localized magnetic moments is well established.
Hence an effective spin Hamiltonian associated with the localized (Fe moments) degrees of
freedom can be constructed in the form

Hloc = −
∑
i�=j

JijSi · Sj −
∑

i

k
(0)
Fe [Sz

i ]
2, (1)

which relies on configuration-independent effective exchange interaction parameters Jij and
an effective single-ion anisotropy k(0)

Fe . The Si are used to denote Fe sublattice spin moments
which can be treated as unit vector in the classical limit. The form of the spin Hamiltonian
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eq. (1) is well justified by our CLSDA results which clearly indicate that the Stoner excitations
associated with Fe moments have much higher energy than those of the Pt.

On the other hand, the value of the induced Pt magnetic moment varies between 0 and a
maximum value for the FM state. The CLSDA total energy calculations without s-o coupling
(isotropic energy) presented in fig. 1b allow to clarify how to deal with Pt magnetic degrees
of freedom. Indeed, as the scalar-relativistic calculations show, the total energy associated
with these delocalized degrees of freedom Eiso

deloc follows very closely the relation which can be
derived from the Stoner-model expression for the total energy [17]:

Eiso
deloc =

∫ eF

−∞
dε

[
nup(ε) + ndn(ε)

]
ε− 1

2
IM2

pt ≈ Ĩ[mν ]2, (2)

where I is the intra-atomic exchange interaction parameter, M0
ν is the Pt magnetic moment

in the FM state and nup, ndn are spin-resolved densities of states forming delocalized Pt
moments denoted as Mν with Ĩν = 1/2Iν [M0

ν ]2 and mν =Mν/M
0
ν . The dependence shown in

fig. 1a also demonstrates that both the value and orientation of the Pt moment are entirely
due to the exchange field of the surrounding Fe moments, following very closely the relation
Mν = χνHν , where χν is the local Pt susceptibility constant. As follows from the linear
dependence in fig. 1(a,b), mν can be very accurately described by the relation

mν =
χν

M0
ν

∑
i

JiνSi , (3)

where the Pt sublattice χν is found to have a weak magnetic configuration dependence;
the Jiν are the effective exchange parameters defined as the CLSDA total energy variation
δECLSDA/δSiδmν in the FM state, where Si is the Fe and mν the Pt sub-lattice moment.
The temperature dependence of χν arising from the Fermi distribution smearing is weak and
will be neglected in the following statistical simulations.

The anisotropic part of the effective spin Hamiltonian is calculated within the CLSDA,
with s-o interactions included self-consistently, and is presented in fig. 1b. We find that it can
be very accurately approximated by a quadratic dependence on the mν parameter. We should
emphasize that owing to the delocalized nature of 5d/4d elements, in the general case this
dependence cannot be guessed prior to the rigorous calculations. However, our result for FePt
allows us to identify the form of the spin Hamiltonian associated with delocalized magnetic
degrees of freedom, Hdeloc = H iso

deloc +Hanis
deloc,

Hdeloc = −
∑

ν

Ĩm2
ν −

∑
ν

k
(0)
Pt (mz

ν)
2. (4)

The magnetic energy is partitioned into localized and delocalized contributions using the
CLSDA approach allowing for a unified description of the electronic degrees of freedom within
the one-electron approximation. In particular, the Fe k(0)

Fe and the Pt single-ion k(0)
Pt contribu-

tions can be distinguished. In agreement with a previous study [4], we find that the Fe contri-
bution is an easy-plane while Pt gives rise to a large easy-axis contribution. The Fe and Pt con-
tributions to MAE have been calculated within the LSDA and then corrected according to the
previous LSDA+U calculations [5]. We find k(0)

Pt = 1.427meV and k(0)
Fe = −0.097meV which

corresponds to the macroscopic uniaxial anisotropy constant K1(T = 0) = 7.7 · 107 erg/cc.
Finally, with eqs. (1), (3), (4) we can introduce an effective spin Hamiltonian reflecting

all the above features revealed by our first-principles calculations. It is constructed as H =
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Hloc +Hdeloc and can be reduced to the convenient form

H = −
∑
i�=j

J̃ijSi · Sj −
∑

i

d
(0)
i (Sz

i )
2 −

∑
i�=j

d
(2)
ij Sz

i Sz
j . (5)

We note that the spin Hamiltonian is now expressed in terms of the Fe degrees of freedom,
with effective exchange interaction parameters J̃ij = Jij + Ĩ( χν

M0
ν
)2

∑
ν JiνJjν and an effective

single-ion,

d
(0)
i = k

(0)
Fe + k(0)

Pt

(
χν

M0
ν

)2 ∑
ν

J2
iν , (6)

and a two-ion anisotropy contribution,

d
(2)
ij = k

(0)
Pt

(
χν

M0
ν

)2 ∑
ν

JiνJjν . (7)

As can be seen from these expressions, the Pt-induced spin moments result in additional
isotropic and anisotropic contributions, both depending on the effective exchange interaction
parameters Jiν defined in the ferromagnetic ground state. We find that Jiν are relatively
strong and positive, resulting in isotropic and anisotropic exchange interactions both stabi-
lizing ferromagnetic order in the [001] direction [18]. Unlike the Jiν , the effective exchange
interaction parameters between Fe moments Jij appear to be sensitive to the chemical order
and might be leading to the FM order instability [19].

In order to assess the relative magnitudes of the single- and two-ion terms (eq. (5)), consider
for clarity the nearest-neighbor (NN) interaction only with N being the number of NNs. Then
the magnetic-anisotropy free energy (Fanis(T )) within the first-order thermodynamic theory [6]
(justified by 〈Hanis〉/〈Hiso〉 ≈ 0.1, see fig. 1b) has an effective single- and two-ion contributions
with the latter involving a sum over nearest neighbors:

Fanis(T ) ≈ 〈Hanis〉T = d
(0)
i f1(T ) + (N − 1)d(2)ij f

2(T ), (8)

where f1(T ) = 〈SiSi〉T and f2(T ) = 〈SiSj〉T are the single-site and pair correlation functions,
d
(0)
i ≈ k(0)

Fe +k(0)
Pt /N and d(2)i ≈ k(0)

Pt /N within the NN approximation. Given the small magni-
tude of k(0)

Fe , the ratio between the single- and two-ion contributions (N−1)d(2)/d(0) ≈ (N−1).
Then, given the dominance of the two-ion contribution, and since within the MFA-type ap-
proximation f2(T ) ∼M2(T ), one can arrive at a qualitative explanation of the observed MAE
temperature dependence. Clearly, for more accurate evaluation of the ratio between two- and
single-ion contributions the distance dependence of the Jiν has to be taken into account.
In the following we present calculations beyond MFA and NN approximations to provide a
quantitative analysis of the proposed model in terms of its ability to explain the non-integer
exponent of the K1 ∼M2.1-dependence.

Thermodynamic properties. – In the following, we use Langevin dynamics simulations [20]
to investigate properties of the effective spin Hamiltonian eq. (5) within the classical approx-
imation. The exchange interactions are long-ranged and are taken into account for a distance
of up to 5 atomic unit cells via fast-Fourier-transformation as well as dipolar interactions.
We simulate spherical nano-particles with open boundary conditions and sizes up to 14464
moments, corresponding to diameters up to 9.2 nm. The anisotropy constant is defined as
the free-energy difference between magnetization oriented parallel or perpendicular to the
easy axis which, according to the first-order perturbation theory [6], is given by the internal
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(a)

(b)

(d)(c)

Fig. 2 – (a) K1(T )-dependence using LD simulations with the effective spin Hamiltonian and its
single- and two-ion contributions; (b-d) log-log plots for K1(T )/K1(0) vs. reduced magnetization
M(T ): (b) using LD simulation within the classical approximation; c) calculated within the MFA
QSPT for quantum j = 3/2 and classical j = ∞, M2(T )- and M3(T )-dependence are presented for
comparison; (d) comparison of K1(T ) calculated with LD and experimental data of Thiele et al. [9]
and Okamoto et al. [10]. The solid lines give a power law with exponent 2.1.

anisotropic energy difference K1(T ) = Ea(T, �B = B�e⊥) − Ea(T, �B = B�e||) for the external
field �B. Then, according to eq. (5), single-ion and two-ion contributions can be distinguished
as summarized in fig. 2a. One can see that the two-ion term is the dominant contribution
which is nearly nine times larger. Furthermore, the data indicate a Curie temperature close to
the experimental value of 750K [9,10]. In fig. 2b we present the calculated K(M)-dependence
along with its single- and two-ion contributions. Within these calculations, which we stress
go beyond MF classical approximation, the two-ion term scales as M2(T ) in a wide T range,
while the single-ion term follows M3(T ) scaling only at low temperatures. Since K1(T ) has
both contributions, the expression for the low-T expansion

K1(T )/K1(0) ≈ αM2 + (1− α)M3 ∼M3−α, (9)

contains the α coefficient originating from the normalized two-ion contribution and the second
term originating from the single-ion contribution. The parameters d(0)i and d(2)ij following from
our first-principles calculations allow us to evaluate finally the exponent of 3− α = 2.09.

Before proceeding to a comparison with experiments, we examine the range of validity
of our classical statistical approximation. In fig. 2c we present results of the MFA QSPT
calculations of the K1(M)-dependence and corresponding two- and single-ion contributions.
Both the classical and the quantum K1(M)-dependence are identical for the two-ion term in
the whole range of temperatures and for the single-ion term in the low-temperature range.
Considering that the single-ion contribution is dominant, we can compare our Langevin dy-
namics calculations with available experiment as shown in fig. 2d. As one can see, our spin
Hamiltonian with ab initio parameterization agrees very well in a wide range of temperatures,
especially given that the low-temperature measurements by Okamoto et al. also yielded an
exponent of 2.1 [10].
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Summary and conclusions. – To summarize, we propose an atomic-scale model of mag-
netic interactions in ordered L10 FePt with an effective spin Hamiltonian constructed and
parameterized on the basis of first-principles calculations. This model is investigated analyti-
cally and using statistical simulations. We find that the model describes on the quantitative
level the experimentally observed anomaly in the temperature dependence of the magnetic
anisotropy energy. We demonstrate that this observed, anomalous temperature dependence
(K1 ∼ M2.1(T )) is due to the delocalized induced Pt moments, leading to an exchange-
mediated two-ion anisotropy which dominates the usually expected M3 contribution of the
single-ion anisotropy. We believe that this mechanism is common for various 3d-5d/4d ordered
alloys having 5d/4d nominally non-magnetic elements with large s-o coupling and Stoner en-
hanced susceptibility.
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