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We present implementation of the alloy analogy model within fully relativistic density functional
theory with the coherent potential approximation for a treatment of nonzero temperatures. We cal-
culate contributions of phonons and magnetic and chemical disorder to the temperature dependent
resistivity, anomalous Hall conductivity (AHC), and spin-resolved conductivity in ferromagnetic
half-Heusler NiMnSb. Our electrical transport calculations with combined scattering effects agree
well with experimental literature for Ni-rich NiMnSb with 1 to 2 % Ni-impurities on Mn-sublattice.
The calculated AHC is dominated by the Fermi surface term in the Kubo-Bastin formula. Moreover,
the AHC as a function of longitudinal conductivity consists of two linear parts in the Ni-rich alloy,
while it is non-monotonic for Mn impurities. We obtain the spin polarization of the electrical cur-
rent P > 90% at room temperature and we show that P may be tuned by a chemical composition.
The presented results demonstrate the applicability of efficient first principle scheme to calculate
temperature dependence of linear transport coefficient in multisublattice bulk magnetic alloys.

I. INTRODUCTION

Microscopic description of finite temperature effects in
magnetic materials represents a longstanding challenge
for ab initio theory despite tremendous progress over
past 20 years in numerically demanding calculation of
small quantities such as magnetocrystalline anisotropies
or anisotropic magnetoresistance1–4. A simulation of
electrical transport coefficients at room temperature,
that are important for spintronics, requires coupling of
electrons to phonons or magnons.

One possibility of ab initio description of electronic
coupling to magnons and phonons is based on the alloy
analogy model (AAM) which was recently employed to
calculate electrical conductivity and the anomalous Hall
conductivity (AHC) in elemental ferromagnets and bi-
nary alloys5,6. The AAM simulates the effect of phonons
by transforming atomic displacement from the equilib-
rium positions to the multicomponent alloy. Also spin
fluctuations or the magnetic orientational disorder can be
treated analogically in a similar way. The limiting case of
full spin disorder is called the disordered local moment
(DLM) state7–10 and describes the paramagnetic state
above the Curie temperature.

The AAM employing the coherent potential approx-
imation (CPA) and Kubo-Bastin transport theory was
implemented in the framework of the Korringa-Kohn-
Rostoker (KKR) method5,6 while the supercell AAM
within the Landauer-Büttiker scattering formalism was
employed in the tight-binding linear muffin-tin orbital

method (TB-LMTO)11,12. Both, the AAM-CPA and su-
percell AAM approaches, allow one to include on the
same footing also the substitutional or chemical disor-
der which is temperature independent. While the AAM-
CPA is more efficient computationally, in particular in
the presence of several types of defects with different con-
centrations, the supercell AAM can, at least in principle,
e.g., describe correlated spin-fluctuations near the Curie
temperature (the magnetic short-range order).

Recent zero-temperature calculations (with only static
structural disorder) of electron transport within the TB-
LMTO-CPA theory give a good agreement with ex-
perimental data , e.g., for residual resistivity of par-
tially ordered L10 FePt alloys13, stoichiometric Heusler
alloys14, Mn-doped Bi2Te3

15, antiferromagnetic (AFM)
CuMnAs16, for the sign of the anisotropic magne-
toresistance in NiMnSb4, and the magnitude of the
anisotropic magnetoresistance in AFM Mn2Au alloys17.
Several of us have employed the relativistic variant
of the TB-LMTO CPA-AAM to investigate an influ-
ence of high-temperature magnetic disorder on electri-
cal resistivity in NiMnSb18, the temperature-dependent
electrical resistivity and the AHC in Ni a Ni-alloys19,
and the spin-resolved (SR) conductivities of the Cu-
Ni alloys20 at nonzero temperature; also justification
of using the scalar-relativistic approximation for de-
scribing temperature-dependent electrical resistivity was
demonstrated21.

NiMnSb is half-Heusler ferromagnet known for the
presence of states only for one spin at the Fermi level22,23
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and its Curie temperature is as high as 730 K24. The
measured value of the spin polarization of the electri-
cal current is from 45 to 58 %25–28 at low temperatures
and about 50 % at room temperature29; spin polarized
photoemission experiments show the spin polarization of
the emitted electrons about 50 % at 300 K30. The po-
larization of the ballistic transport for correlated elec-
trons about 50 % was calculated for Au–NiMnSb–Au
heterostructures by the SMEAGOL DFT code31.

The TB-LMTO method (both LSDA and LSDA+U)
was previously used to estimate the Curie temperature,
exchange interactions, magnon spectra, and magnetic
moments in Ni2−xMnSb alloys32,33. A saturation mag-
netization of NiMnSb is changing only slightly (by 5 to
10 %) from zero to room temperature26,34,35 and the
magnetic moments were investigated by a polarized neu-
tron diffraction36. Treating NiMnSb within LDA+U (for
temperature T = 0) results only in a small correction to
magnetic moments33,37.
Here we apply our CPA-AAM for simulating the tem-

perature dependence of conductivity, AHC and spin po-
larized conductivity of the prototypical half-Heusler half-
metal NiMnSb. In contrast to the so far investigated
materials using the AAM, NiMnSb is more complex and
with a richer phenomenology due to two magnetic sublat-
tices, a wide range of possible structure defects with sim-
ilar formation energies38 making it difficult to compare
calculations and experiment, and Dresselhaus symmetry
of its Wyckoff positions allowing for novel spintronics ef-
fects such as the observed room-temperature spin-orbit
torque in strained NiMnSb4. The material has been in-
tensively studied for over a 25 years including AHC and
electric resistance24,25,36,39 which makes it a favorbale
system for testing of novel ab initio methods.

II. FORMALISM

A. Structure model and electronic structure

calculations

We employ ab initio relativistic TB-LMTO method
in combination with the multicomponent CPA and the
atomic sphere approximation (ASA)40. The effect of
temperature on the electronic structure is neglected in
the DFT self-consistent electronic structure calculations
which turned out to be a good approximation for the tem-
perature range from zero to room temperature. We simu-
late the effect of disorder via CPA-AAM in the transport
calculations in conjuction with using the electronic struc-
ture determined at T = 0 K. Because of the displacement
transformation of the TB-LMTO potential functions re-
quired by the AAM, the spdf−basis is used. We note
that (standard) calculations without the displacements
employ usually only the spd−basis, especially because
of numerical expenses. The transformed potential func-
tions must be expressed in a larger basis; therefore, also
functions for f−electrons are included in our basis set.

NiMnSb has the cubic crystal structure C1b and the
experimental lattice constant24 alatt. = 5.927 Å is used.
Without chemical disorder, NiMnSb consists of four FCC
sublattices Ni-Mn-empty-Sb equidistantly shifted along
[111] direction. The empty sublattice denotes intersti-
tial sites, i.e., empty positions in the half-Heusler lattice
which would be occupied in the full-Heusler structure.
We investigate Mn- and Ni-rich alloys with substitutional
disorder, i.e., systems with sublattices (Ni1−yMny)-Mn-
empty-Sb and Ni-(Mn1−yNiy)-empty-Sb, respectively,
with y ∈ [0, 0.2]. Notation NixMn2−xSb with x from
0.8 (Mn-rich) to 1.2 (Ni-rich) is used for brevity.
These defects are consistent with literature4 and they

have low formation energies38: 0.49 and 0.92 eV per for-
mula unit for Mn- and Ni-rich case, respectively. Lower
formation energies were obtained for Ni- and Mn-atoms
occupying the interstitial crystallographic positions (0.20
eV and 0.73 eV per formula unit, respectively) but our
calculated resistivity as a function of temperature sig-
nificantly underestimates experimental values for these
systems.

B. Lattice vibrations

The AAM of finite temperature effects was recently im-
plemented within the TB-LMTO approach and applied
to transition metals and simple alloys19–21. The model
treats the vibrational effects by introducing for each sin-
gle lattice site a mean-field CPA medium constructed
from the chemically equivalent atoms but shifted in dif-
ferent spatial directions from their equilibrium position5.
The displacements are chosen along high symmetry di-

rections of the studied crystal. The shifts of atoms are
realized via a linear transformation of the LMTO poten-
tial functions (with energy arguments omitted)

P 0 = D(u)P̃ 0DT (u) (1)

where P̃ 0 is the LMTO potential function of an atom at
equilibrium position and the potential function P 0 cor-
responds to the atom displaced by the vector u. The
displacement vectors can be conveniently expressed in
terms of displacement matrix DL′s′,Ls(u)

DL′s′,Ls(u) = 8πδs′s
(2ℓ− 1)!!

(2ℓ′ − 1)!!
·

·
∑

L′′

(−1)ℓ
′′

CLL′L′′

(2ℓ′′ − 1)!!
JL′′(u) . (2)

In Eq. (2), CLL′L′′ =
∫

YL(r̂)YL′(r̂)YL′′(r̂) dΩ are the
Gaunt coefficients with real spherical harmonics YL, JL
are regular solutions of the Laplace equation in the
ASA40, and the quantum number L = (ℓ,m) combining
the orbital quantum number ℓ and the magnetic quantum
number m is used40, and s and s′ are spin indices (s, s′ ∈
{↑, ↓}). The energy arguments and lattice-site indices are
omitted for the sake of brevity. For the summation index
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in Eq. (2), a restriction ℓ = ℓ′ + ℓ′′ holds; DL′s′,Ls(u) = 0
for ℓ′ > ℓ and DL′s′,Ls(u) = δL′s′,Ls for ℓ′ = ℓ. After the
transformation given by (1), the screened TB-LMTO po-
tential functions Pα are obtained by using the matrix of
screening constants α: Pα = P 0(1− αP 0)−1.

The increasing magnitudes of the displacements u cor-
respond to the rising temperature according to the Debye
formula. For N displaced atoms, the mean square dis-

placement reads
〈

u2
〉

= 1/N
∑N

i=1 |ui|
2
and it is related

to temperature T via the Debye approximation41,42

〈

u2
〉

=
9~2

mkBΘD

(

D1 (ΘD/T )

ΘD/T
+

1

4

)

(3)

for atoms with identical masses m and the material-
specific Debye temperature ΘD. For simplicity, we omit
the zero temperature fluctuations (the second term in Eq.
(3)) that are negligible at ambient temperatures. The
Debye function is Dn(x) = n/xn

∫ x

0
tn/(et − 1)dt. A

standard notation for the reduced Planck constant ~ and
the Boltzmann constant kB is used.

C. Magnetic disorder

We investigate the influence of magnetic disorder on
the electrical transport within a model of tilted local mo-
ments. The mean-field alloy was constructed by substi-
tuting a given site occupied by a single local moment ori-
ented along the z-direction by 4 different local moments
tilted by the Euler angle θ from the z-axis symmetrically
in the four directions x,y,−x, and −y and parametrized
by the second Euler angle φ ∈ {0.0π, 0.5π, 1.0π, 1.5π}.
Four directions are sufficient for our case.

This approach interpolates between fully-ordered spin
ferromagnetic (FM) state (T = 0 K) and fully disordered
spin state (DLM, T above the Curie temperature). At-
tempts to make descriptions of magnetic disorder more
realistic were published5,12,43. However, a fully ab ini-

tio theoretical estimate of temperature-dependence of
total magnetization Mtot(T ) can be also rather inaccu-
rate because it employs the classical Boltzmann statistics
(Monte Carlo) method (see the discussion in quaternary
Heusler alloys44).

We aim to estimate only the strength of the magnetic
disorder contribution relative to the contribution from
phonons and chemical disorder. The order of magni-
tude is determined from the energy difference between
the disordered DLM state and the FM ground state
which amounts to ∆E ≈ 12 mRy (0.16 eV) per formula
unit. In such approximation, room temperature disor-
der roughly corresponds to φ = 0.10π. A comparison
to an experimentally observed change of the saturation
magnetization26,34,35 would give φ = 0.15π. The use of
experimentalMtot(T ), if available, may be a better choice
but in general, an accurate relation of the tilting angle
as a function of the temperature is missing.

D. Transport properties

The full conductivity tensor σµν (µ and ν are Cartesian
coordinates) is calculated by employing the Kubo-Bastin

formula. It consists of σ
(1)
µν and σ

(2)
µν which are in Ref. 45

called the Fermi surface and the Fermi sea terms, respec-
tively. The first one can be separated into the coherent

part σ
(1,coh)
µν and vertex corrections σ

(1,v.c.)
µν , see Ref. 46.

We note that the Fermi sea term contributes only to the
antisymmetric part of the tensor σµν ; the physical mean-

ing is then related to the sum of σ
(1,coh)
µν and σ

(2)
µν , see

later Fig. 5.
The TB-LMTO method neglects electron motion in-

side the Wigner-Seitz cells, the velocity operators de-
scribe only inter-site hopings47, and the resulting ef-
fective velocity operators in a random alloy are spin-
independent and non-random. The polarization of the
spin-resolved currents

Pµµ =
σ
(1,coh),↑
µµ − σ

(1,coh),↓
µµ

σtot.
µµ

. (4)

describes a quality of the spin-dependent transport for
the spin index s =↑ and s =↓20,48. In the relativistic
treatment of the transport, strictly speaking, one cannot
define precisely the spin-resolved conductivities because
of nonzero spin-flip contribution to the total conductivity
(spin-nonconserving term)

σcoh,flip
µν = σ(1,coh)

µν −
∑

s=↑,↓

σ(1,coh),s
µν . (5)

The spin-flip contribution was found to be small com-
pared to the total conductivity, e.g., for the Cu-Ni alloy in
a wide range of alloy compositions20. On the other hand,
the spin-flip contribution is essential, e.g., for the Ni-
rich NiFe alloys49. Calculating the coherent part of the
conductivity tensor projected onto the spin-up and spin-
down term is a sufficient approximation for half-metals.
The projected conductivity in Eq. (4) is then

σ(1,coh),s
µν = σ0

∫ ∞

−∞

dE f ′(EF ) Tr
{

vµḡ
s
+(EF )vν

[

ḡs+(EF )

−ḡs−(EF )
]

− vµ
[

ḡs+(EF )− ḡs−(EF )
]

vν ḡ
s
−(EF )

}

, (6)

where ḡs±(E), and vµ is averaged Green function and ve-
locity operator, respectively, expressed in auxiliary form
suitable for the numerical implementation within the rel-
ativistic TB-LMTO formalism after performing the con-
figurational averaging. A real-energy variable is denoted
E and f ′(E) is the energy derivative of the Fermi-Dirac
distribution. To simplify the notation, g±(E) = g(E±i0)
is used. In Eq. (6), σ0 = e2/(4πV0N0) depends on the
charge of the electron e, on the volume of the primitive
cell V0, and on the number of cells N0 in a large finite
crystal with periodic boundary conditions. If there was
no spin-orbit interaction, in the two-current model50, the

sum σ
(1,coh),↑
µν + σ

(1,coh),↓
µν would correspond to the total

coherent conductivity.
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For an ideal half-metal (with exactly one of the spin-
channels insulating), this projection is valid and P → 1
(equals one without the spin-orbit interaction). If both
channels are identical, e.g., for nonmagnetic materials,
P = 0.
The effect of finite temperature is treated within the

AAM. Thus the configurationally averaged quantities
ḡs±(E) are calculated not only by averaging over the dif-
ferent alloy configurations, but also over distinctly dis-
placed (or magnetization tilted) configurations. The con-
tribution from the Fermi-Dirac distribution can be usu-
ally neglected as we checked for several transition metals
(Pt, Pd, Fe, Ni). Thus we will use the zero-temperature
limits of the conductivity formulas CPA configurationally
averaged over the alloy and displacement configurations.

E. Computational details

The mesh of 150× 150× 150 k-points in the Brillouin
zone was used for transport calculations if not specified
otherwise. Smaller numbers of k-points as for, e.g., pure
metals, are required because of a large self-energy term
originating from chemical or temperature disorder. In-
creasing the mesh to 2003 k-points leads to a correction
of 0.05 % for the isotropic resistivity.
In previous reports, the Debye temperature was theo-

retically estimated to be between 250 and 300 K39, mea-
sured (312± 5)K51 or 322K52 and calculated 327K53

and 270K54. We used ΘD = 320K (see later Fig. 4);
the above scatter in Debye temperature values leads to
approx. 10 % error in the root-mean-square displace-
ment

√

〈u2〉. The best agreement between experimen-
tal data25,39,55 as concerns the slope of the calculated
temperature dependence of the resistivity is obtained for
ΘD = 350K and 2 % Ni-rich NiMnSb.
The Debye theory was derived for systems with identi-

cal atomic masses; however, it has also been successfully
used for alloys, e.g., Cu-Ni [m(Cu) : m(Ni) ≈ 1 : 0.92]19.
NiMnSb has [m(Ni) : m(Mn) : m(Sb) ≈ 1 : 0.93 : 2.07];
therefore, a proper choice of atomic displacements was
investigated for two cases: (a) the magnitudes identical
for each atom or (b) scaled according to atomic masses.
The TB-LMTO approach assumes empty spheres at the
empty positions in the half-Heusler lattice which would
be occupied in the full-Heusler lattice. The potential
functions of the empty sphere may be (i) formally dis-
placed like other nuclei or (ii) independent on atomic
shifts.
We have tested all four possibilities, i.e., combinations

of models (a) and (b), and (i) and (ii) above. We have
found deviations in the isotropic resistivities of the order
of 5% by assuming

√

〈u2〉 = 0.20 aB and 0.25 aB, where
aB is the Bohr radius. This value should be considered
as a systematic error of the AAM (later shown by error
bars in Fig. 4). In the following sections, identical mag-
nitudes of the displacements are assumed for all atoms.
Each atom was assumed to have eight different directions

of displacements (within the CPA) uniformly distributed
around its equilibrium position.

III. RESULTS

A. Calculated magnetic moments and density of

states

The magnetic moment of the stoichiometric NiMnSb
is m = 4.0µB per formula unit, which agrees well with
the half-metallic character (the Fermi level in the minor-
ity gap), with its integer number of electrons per for-
mula unit and it is in good agreement with experimental
data36 and previous calculations4,37. In Fig. 1 we show
the average moment, local magnetic moments, as well as
local Mn- and Ni-impurity magnetic moments on Ni- and
Mn-sublattices, respectively. Local moments for the sto-
ichiometric system are mNi = 0.26µB , mMn = 3.75µB ,
mSb = −0.05µB , and mempty = 0.08µB ; for 10 % Ni-
rich mNi = 0.20µB , mMn = 3.69µB , mSb = −0.07µB ,
mempty = 0.06µB , and mimpurity = −0.64µB ; and for
10 % Mn-rich mNi = 0.24µB , mMn = 3.68µB , mSb =
−0.05µB , mempty = 0.08µB , and mimpurity = −1.88µB

(the mempty denotes moment induced on empty spheres
at the interstitial positions). Both the Mn and Ni im-
purities tend to couple antiferromagnetically and thus
decrease the net moment with increasing disorder; how-
ever, the main reason is slightly different for the Mn- and
Ni-rich systems: In the former one, Mn atoms on the Ni
sublattice have opposite directions of the magnetic mo-
ments with respect to Mn atoms on their own sublattice
and the sum of all the moments decreases with increas-
ing concentration of antiparallel Mn moments. For the
Ni-rich case, the concentration of Mn atoms having large
moment decreases and they are replaced by Ni having
moments much smaller (five to thirty times, see Fig. 1);
moreover, with the antiparallel orientation.
The spin-resolved densities of states (DOS) of the stud-

ied system are displayed in Fig. 2. The stoichiometric
NiMnSb is the half-metal as it is indicated by the DOS in
Fig. 2 (b). Our results are in agreement with literature37.
The influence of atomic displacements slightly broadens
peaks in the DOS (see Fig. 2 for 540 K) but the DOS
around the Fermi level is almost the same. The half-
metallic character is thus preserved even at nonzero tem-
peratures.
The behavior of Ni-rich and Mn-rich samples differs

significantly. Mn atoms on Ni sublattice preserve the
half-metallic character of the alloy, see Fig. 2 (a), while
Ni atoms on the Mn sublattice give a nonzero DOS at
the Fermi level (Fig. 2 (d) and later Fig. 3). This leads
to an increase of the conductivity. Later presented elec-
trical transport calculations are in agreement with these
changes. The inset (Fig. 2 (c)) shows a minor influence of
the magnetic disorder (tilting of moments with θ = 0.1π)
on the DOS of stoichiometric NiMnSb at both zero and
finite temperature (T ≈ 220 K).
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FIG. 1. Total averaged magnetic moment (per formula unit)
of Ni- and Mn-rich NiMnSb and spin magnetic moments of
individual atoms for zero temperature. The Ni/Mn-impurity
dataset presents the local magnetic moments of Ni and Mn
atom placed on the crystallographic position of the second
atom.

Fig. 3 presents the DOS at the Fermi level for the Ni-
rich NiMnSb. The negligible DOS in the minority chan-
nel is preserved for small amount (up to 2 %) of Ni impu-
rities. With increasing Ni concentration, the difference
between spin-up and spin-down DOS is getting smaller.
They become equal at approx. 11 % of impurities and
the spin-down states are dominant after this value.
For further investigation of the electronic structure in

the terms of the Bloch spectral function see Appendix C
that shows smeared bands for the Ni-rich NiMnSb.

B. Temperature dependent resistivity and

anomalous Hall effect calculation

NiMnSb has almost linear dependence of the resistivity
on temperature (from 100 to 300 K), which indicates that
phonons are the most important scattering mechanism24.
Calculated temperature dependence of the resistivity and
the anomalous Hall effect (resistivity ρxy) are shown in
Fig. 4. The results are in agreement with experimen-
tal data; measured resistivities are taken from Refs. 39
and 55, and experimental ρxy was obtained by combin-
ing Refs. 24 and 55. The quadratic (nonlinear) behavior
of electrical resistivities as a function of temperature is
important especially for low temperatures (T . 100K)
and experimental resistivities exhibit only a small devi-
ation from the quadratic form34. The residual resistiv-
ity and the weak influence of magnons are in agreement
with other studies4,39,55. It is consistent with the high
Curie temperature, resulting in a weak influence of mag-
netic disorder and it also agrees with the DOS showing a

negligible influence of the magnetic disorder on the num-
ber of carriers at the Fermi level (Fig. 2 (c)). Our re-
sults also agree with the observed sign of the anisotropic
magnetoresistance4 and its qualitatively good description
is also given by the finite-relaxation time approximation,
see Appendix B.

The comparison of calculated and measured ρ and ρxy
indicates that the presence of the Mn-rich phase in real
samples is unlikely because an increasing presence of ad-
ditional Mn atoms dramatically increases both the resis-
tivity and ρxy at the zero temperature and, moreover,
slopes of these quantities as a function of temperature
are much higher than the measured counterparts24,36, see
Fig. 4. The calculated transport properties as a function
of Ni impurity are non-monotonic, both the resistivity
and ρxy have maxima around a 10 % Ni-rich sample.
The measured residual resistivity could correspond to a
presence of additional Ni atoms on the empty atomic
sites (unoccupied positions of the half-Heusler structure);
however, the calculated results contradict the experimen-
tal data that exhibit much steeper temperature depen-
dence of both the resistivity and the ρxy for these defects.

Comparing our theoretical results with data from liter-
ature (especially Ref. 24 and 55), the best mutual agree-
ment is obtained for Ni-rich sample with 1 to 2 % of Mn
atoms replaced by Ni; we note that the exact composi-
tion and chemical disorder in the experimental samples
is unknown. In real samples, a wide range of different
defects may occur but a systematic investigation of the
huge number of different combinations of such defects
goes beyond the scope of this study.

In calculations including the magnetic disorder that
corresponds to room temperature, transport properties
differ less than by 1 % when only Mn moments are tilted
or when moments of all atoms are tilted. It is caused by
a dominant contribution to the total moment from Mn
atoms. The influence of magnetic disorder on the electri-
cal resistivity for the stoichiometric NiMnSb is negligible
up to room temperature as can be seen in Tab. I. Exper-
imentally documented decrease of the saturation mag-
netization is from 4.0µB at zero temperature to 3.6µB

at room temperature26,34,35. When we assume magnetic
disorder corresponding to the same change of magnetiza-
tion, θ = 0.14π, we obtain electrical resistivity between
ρ = 17 µΩcm and ρ = 25 µΩcm (see the caption of Tab.
I). It is in perfect agreement with experimental values of
ρ = 23 µΩcm. The small influence of magnetic disorder
on electrical transport properties agrees with literature55

and it is supported by negligible influence on the DOS at
the Fermi level, see the inset in Fig. 2 for θ = 0.1π.

The calculated weak dependence of the resistivity on
magnetic disorder justifies neglecting magnetic disorder
in further discussion for T . 300K. However, the larger
magnetic disorder (for larger temperatures) dramatically
decreases the total magnetic moment and increases the
resistivity value, see Tab. I.

Chemical impurities decrease the total magnetic mo-
ment similarly to the pure magnetic disorder. If the scat-
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FIG. 2. Temperature and alloying disorder dependence of the half-metallicity in NiMnSb. Atomic concentrations are used as
weights of the local DOS and data for impurities (Mn and Ni). (a) The 10 % Mn-rich NiMnSb preserves the half-metallic
character for all of the considered atomic displacements. Mn-impurity virtual bound state forms in the majority spin-channel.
(b) Stoichiometric NiMnSb exhibits the half-metallic band-gap also at room temperature. Inset (c) shows that magnetic disorder
(tilted magnetic moments with θ = 0.1π) has almost no influence on DOS, especially in the minority channel. (d) The 10 %
Ni-rich NiMnSb is no longer half-metal and the states around EF are almost independent on temperature.

FIG. 3. Total DOS at the Fermi level (solid lines) as well as
the local DOS for Ni impurities (dashed lines) are increasing
with higher substitution of Mn atoms by Ni. The spin-up
states (red lines, squares) are dominant for less than 10 %
of Ni impurities, after 12 % the spin-down states (blue lines,
circles) prevail. The total DOS (sum of the spin channels, not
shown here) increases monotonically.

tering properties are considered as a function of the alloy
magnetization, results obtained by the different scatter-
ing mechanisms (magnetic disorder and chemical impu-
rities) quantitatively agree with each other.

In the present study we focus on the temperature
regime T < TD ≈ 320 K. We note that at the elevated
temperatures, T & TD, the decomposition of the Hall
conductivities into skew and side jump scattering mecha-

TABLE I. Pure NiMnSb: Isotropic resistivity (in µΩcm, six
rows and three columns in the right bottom block of the Ta-
ble) for different magnitudes of displacements (

√

〈u2〉) and
tilting angles (θ) are almost identical to the aligned moments
(θ = 0). Empty values in the Table were smaller than the
numerical accuracy. room temperature roughly corresponds
to

√

〈u2〉 ≈ 0.21 aB for ΘD = 300K (between the two bold
values) and the experimental decrease of saturation magneti-
zation is up to 10 %26,34,35.

Tilting angle, Total mag. Displacement,
√

〈u2〉

θ moment 0.00 aB 0.20 aB 0.25 aB

0.00π 4.04 µB - 15.0 23.4

0.10π 3.82 µB 0.47 15.6 24.0

0.14π 3.58 µB 1.38 16.7 25.2

0.20π 3.16µB 6.47 22.4 31.8

0.30π 2.25µB 42.5 59.3 68.3

0.40π 1.17µB 120 133 140

0.50π 0.00µB 173 180 184

nism complicates the phonon skew scattering56,57, which
we do not consider here.

C. Anomalous Hall effect mechanism in NiMnSb

We calculated the σ
(1)
xy and σ

(2)
xy contributions to the

anomalous Hall effect at zero temperature. In Fig. 5

we show the separation of the AHC into σ
(1)
xy and σ

(2)
xy

contributions; for a detailed analysis of the contribu-



7

FIG. 4. (a) The isotropic resistivity and (b) anomalous Hall effect (ρxy) of Ni- and Mn- rich NiMnSb monotonously increase
with increasing temperature. Experimental results24,39,55 agree with our theoretical data obtained for Ni-rich case with low con-
centration of impurities. (c) The model of finite relaxation time (stoichiometric NiMnSb) for an unknown disorder qualitatively
agrees with calculated data at nonzero temperature.

tions see Appendix A. We observe a strong depen-
dence of the AHC magnitude on the type of disorder.
In general, the AHC is much larger for the Ni-rich sys-
tem (σxy ∼ 103 S/cm) than for the Mn-rich NiMnSb
(σxy ∼ 101 S/cm). Both the Mn and Ni rich cases show
the same positive sign of the AHC in agreement with ex-
perimental literature4,39,55; an exception of a small neg-
ative AHC is found for the 2 % Mn-rich material due to
large negative vertex corrections. The vertex part of the
AHC diverges in the dilute limit, approaching zero disor-
der, of both Ni- and Mn-rich branches. Similar behavior
is obtained in binary transition-metal alloys due to the
skew-scattering mechanism58. The small magnitude of
the Fermi sea term allows us to neglect the σ(2) term in
the temperature study of the AHC by the AAM which
substantially speeds up our calculations.

Simulating up to 20 % of Mn or Ni-rich swapping disor-
der allows us to vary in our calculations the residual resis-
tivities over a broad range from ρ ≈ 0 for stoichiometric
NiMnSb to 150 µΩcm for 20 % of Mn-rich and 11 µΩcm
for 10 % Ni-rich materials. In Fig. 6 (a) we show the
dependence of the longitudinal resistivity on the disor-
der. While the resistivity monotonically increases for the
Mn-rich system, consistent with the appearance of the
virtual bound state (Fig. 2 (a)), for the Ni-rich case we
observe a maximum around 10 % of Ni.

In Fig. 6 (b, d) we present the anomalous Hall versus
longitudinal conductivity dependence for both the Mn-
rich and Ni-rich calculations. A linear fit of the depen-
dences is shown in Fig. 6 (b, d). In the insets (Fig. 6 (c,e))
we show also the experimentally relevant anomalous Hall
angle ρxy/ρxx obtained by the full inversion of the con-
ductivity tensors (instead of the usually used approxi-

FIG. 5. Negative sign of the calculated (T = 0) total AHC σxy

(black solid line) was observed only for Ni0.98Mn1.02Sb, which
is caused by a small contribution of the intrinsic term (red
dashed line with squares) but dominant vertex corrections
(blue dashed line with circles).

mation ρxy ∼ σxy/σ
2
xx). A part of the Ni-rich branch

belongs to a rather high conductivity regime (105 S/cm)
and follows linear dependence σxy ∼ σxx signaling the
dominating extrinsic, skew-scattering mechanism of the
AHC59,60. In contrast, the behavior of Mn-rich system
with higher conductivities is non-monotonic but differ-
ent from a power dependence reported in literature60. It
is rather linear for larger conductivities (small Mn dis-
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FIG. 6. Total resistivity (a) for zero and finite (540 K) temperature is monotonic in the Mn-rich region but it has a maximum
in the Ni-rich case at 10 % and 8 % of Ni impurities for T = 0 and 540 K, respectively. Zero temperature AHC plotted as a
function of the total conductivity has (b) two piecewise linear parts for the Ni-rich NiMnSb, one having a negative slope (fitted
from 1, 2, 4, 6, 8, and 10 % of Ni) and the second with a positive slope (10, 12, 14, 16, 18, and 20 % of Ni). The parts are
distinguishable when the resistivity for the same data is plotted (c). The same dependence in the Mn-rich region (d) exhibits
a linear (2, 4, and 6 % of Mn impurities) and a non-monotonic (8, 10, 12, 14, 16, 18, and 20 % of Mn) behavior; a ratio of
resistivities (e) show a smooth transition between both parts.

order below 6 %), where the AHC is influenced by the
disorder59, see Fig.6 (d).
Interestingly for Ni-rich branch around ∼10 %, the

slope of the AHC as a function of σxx changes sign. It
signals multiband character of the transport (Fig.6 (b)),
see also Appendix C. As long as the Friedel sum rule60,61

can be applied, the change of the AHC sign can be at-
tributed to the change of the dominating spin channel at
the concentration of ∼10 % Ni-rich (Fig. 3).
We note that the half-metal and multi-band character

of the transport in NiMnSb can be responsible for notably
different behavior than that generally reported in metals.
For metals, only one slope exists (variations of disorder
are typical on the level of a few percents) and it is difficult
to achieve more than one conductivity regime59,60.

D. Spin-resolved electrical conductivities

To obtain maximal efficiency of the spin-polarized cur-
rents, their polarization P should approach unity and
both the spin-flip part (of the coherent conductivity) and
the vertex part (of the total conductivity) should be neg-
ligible. Ni-rich NiMnSb has ten or more times larger
conductivity of the majority channel than similar concen-
tration of the Mn-rich material and, unlike the minority
channel, it strongly depends on temperature (especially
Ni-rich), see Appendix D.
The Mn impurities do not destroy the half-metallic

character of the system while the Ni impurities lead to
nonzero density of minority carriers at the Fermi level
(Fig. 2). It leads to the spin polarization that is al-
most unity for the Mn-rich case (for all temperatures)
and in the Ni-rich region it decreases with increasing im-
purity concentration or increasing temperature, see Fig.
7. However, even at room temperature and in the Ni-

FIG. 7. The spin-polarization of the electrical current for the
in-plane direction is almost unity for the Mn-rich NiMnSb
(small total conductivity) and it is predicted to be larger than
90 % also in the Ni-rich system at room temperature.

rich case, P > 0.9, which ensures highly polarized elec-
trical current. The influence of the spin-flip term and
vertex contributions on the polarization P is small, see
Appendix D, which justifies employing Eq. (4).

Combined effects of magnetic and atomic displace-
ments was investigated for stoichiometric NiMnSb. The
change between T = 0 and room temperature (

√

〈u2〉 =
0.21 aB, θ = 0.1π) is 0.8 % in the polarization value P .

We focused on systems similar to samples from litera-
ture (about 1 to 2 % Ni-rich, see Sec. III B) but exper-
imental P (T ) was measured with a wide range of sam-
ples: 44 % for a free surface of a bulk material with
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MS = 3.6µB
28, 45 % for a thin film with MS = 4.0µB

25,
45 % for bulk NiMnSb with MS = 3.6µB

26, 58 % for thin
films27, and from 20 to 50 % depending on temperature
in polycrystalline samples30. Saturation magnetization
MS < 4.0µB indicated disordered samples but the disor-
der is unknown, which makes it hard to reproduce. The
discrepancy is not caused by the magnetic disorder18. It
is dominant close to the Curie temperature, where spin
fluctuations lead to P = 0; the zero polarization cannot
be achieved by phonons themselves. For room tempera-
ture, the decrease of the polarization caused by the mag-
netic disorder is negligible, i.e., P > 0.98 for θ ≈ 0.14π.
We also investigated the polarization anisotropy. Sim-

ilarly as the small anisotropic magnetoresistance (differ-
ence between σzz and σxx = σyy is around 0.25%), the
polarization Pzz is almost the same as Pxx = Pyy.
The polarization for Mn- and Ni-rich cases with impu-

rities occupying the empty crystallographic position of
the Heusler structure was also calculated. The Ni atoms
on interstitial positions behave similarly to the Ni-rich
system with Mn atoms substituted by Ni impurities; on
the other hand, for the 20 % Mn-rich case with access
Mn in the interstitial positions, P (0 K) ≈ 91 % and
P (400 K) ≈ 87 %. This demonstrates a strong depen-
dence of the polarization on the kind of chemical disor-
der.

IV. CONCLUSIONS

We have formulated the CPA-AAM approach in the
framework of the fully relativistic TB-LMTOmethod and
Kubo-Bastin formula for the calculation of the longitu-
dinal and anomalous Hall conductivities and applied it
to the half Heulser ferromagnetic NiMnSb with alloy and
temperature induced disorder. The main conclusions are:
(i) The calculated temperature dependence of the longi-
tudinal conductivity is dominated by the phonon con-
tribution and it is in agreement with experimental lit-
erature. Specifically, the Ni-rich alloys (from 1 to 2 %
of Ni atoms on the Mn sublattice) fit the experimental
data24,55. (ii) The Ni-rich samples are also consistent
with the sign of the anisotropic magnetoresistance found
in literature. (iii) The effect of the Fermi-sea contribu-
tion to the AHC is generally weak although it is stronger
for the Mn-rich case. The anomalous Hall effect in Ni-
rich NiMnSb is dominated by the σ(1) part (”integration
over the Fermi sheets”) of the conductivity, while for the
Mn-rich case, the σ(2) (”complex integration over the va-
lence spectrum”) term represents a sizable contribution
of the order of 20 %. Moreover, qualitatively different be-
havior of the AHC was observed for the Mn- and Ni-rich
systems. (iv) The calculated spin-current polarization is
typically greater than 0.9 for studied concentrations of
the impurities and its behavior correlates with the half-
metallic-like character (small amount of states in the mi-
nority channel). Its values overestimate available experi-
mental data. (v) The calculations indicate the possibility

to influence current spin polarization by tuning chemical
composition.
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Appendix A: Contributions to the anomalous Hall

conductivity

We study an influence of different contributions to the
AHC, see Sec. IID. Its total value (Fig. 5 for T = 0) is

given by the σ
(1)
xy and σ

(2)
xy terms. The major contribution

comes from the former one which is about two orders
of magnitude larger than σ

(2)
xy , see Fig. 8. This justifies

omitting σ
(2)
xy in the temperature-dependent calculations.

While the concentration dependence of σ
(1,coh)
xy consists of

two linear parts (one in the Mn-rich region, the second

one for the Ni-rich system), σ
(1,v.c.)
xy diverges for small

concentrations of impurities.

Appendix B: Finite-relaxation time model and the

anisotropic magnetoresistance

The finite-relaxation time (FRT) model corresponds
to the spin- and orbital independent scatterings, which
is technically realized by adding a finite imaginary con-
stant (Im z) to the Fermi energy in corresponding
Green functions in the Kubo-Bastin equation. The
FRT model assumes zero vertex corrections and does
not allow to separate out the phonon and spin-disorder
contributions to the conductivity tensor. The cal-
culated negative anisotropic magnetoresistance (AMR)
sign for Hall bars oriented along the [110] directions
within the FRT is consistent with previous estimates
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FIG. 8. σ
(2)
µν (left axes, red lines with triangles) and σ

(2)
µν (right axes, blue lines with squares) contribution to the anomalous

Hall effect in NiMnSb: (a) Total conductivity, (b) its coherent part, and (c) the vertex contribution to σ
(1)
xy .

of AMR in NiMnSb4, i.e., ρ(m ‖ j) < ρ(m⊥j), where
ρ is the longitudinal resistivity and j the electric cur-
rent. Remarkably the AMR value is well described
within the FRT applied in combination of the 10%
Ni-rich disorder. Our calculated value changes from
(

ρm‖E[110] − ρm⊥E[110]

)

/
(

ρm‖E[110] + ρm⊥E[110]

)

=

−1.6% (for Im z = 10−5 Ry corresponding to low temper-
atures) to −0.3 % (roughly to room temperature residual
resistivity values, Im z = 3 · 10−3 Ry). The sign of the
AMR is the same as in Mn-doped GaAs and opposite to
the typical transition metal ferromagnets Ni, Co, and Fe.

Appendix C: Bloch spectral functions

In this Appendix, the electronic structure is visual-
ized by using the spin-resolved Bloch spectral functions
As(k, E)40, where s ∈ {↑, ↓} is the spin index, k is a
reciprocal-space vector and E is the electron energy. For
6, 10, and 14 % of Ni-rich NiMnSb, we plot in Fig. 9 the
Bloch spectral function for E = EF and in Fig. 10 the
energy-dependent spin-resolved Bloch spectral function
along the L− Γ−X path in the reciprocal space.

We observe that at 10 % of Ni impurities in the Ni-rich
system new minority-spin bands smeared due to disorder
emerge at the Fermi surface (region marked by the violet
circle in Fig.10 (b)), also visible for 14 %, but absent for
6 %. These bands may be responsible for the AHC slope
change, Fig. 6, where we observe smearing out of the
spin-down band at the Γ point and emergence of more
spectral weights at around the X point for the critical Ni
disorder. See also Fig. 9 for kz = 0 and total DOS at the
Fermi level in Fig. 3.

Appendix D: Spin-resolved transport quantities

The spin-resolved conductivity is crucial for spintronic
applications but its measurement is difficult. The total
conductivity is the largest (infinitely high) for stoichio-
metric NiMnSb with resistivity going to zero.
For most of the impurities and temperatures, the con-

ductivity of the majority spin channel is at least two or-
ders of magnitude larger than the vertex contribution and
about four orders of magnitude larger than the spin-flip
term (Fig. 11). The spin-flip term (Fig. 11 (c)) and the
vertex contributions (Fig. 11 (d)) are at least three or-
ders of magnitude smaller than the conductivity of the
majority channel. These features justify the simple defi-
nition of the spin polarization of the current in terms of
the coherent majority and minority conductivities in Eq.
(4).
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FIG. 9. Bloch spectral functions displayed for the Fermi level and kz = 0 for the majority spin (a), (b), and (c) and the minority
one (d), (e), and (f); (a) and (d) for Ni1.06Mn0.94Sb, (b) and (e) for Ni1.10Mn0.90Sb, and (c) and (f) for Ni1.14Mn0.86Sb.

FIG. 10. Bloch spectral functions of (a) Ni1.06Mn0.94Sb, (b) Ni1.10Mn0.90Sb, and (c) Ni1.14Mn0.86Sb for spin-up (upper panels)
and spin-down (lower panels) channels.

∗ Corresponding author: david@wagenknecht.email 1 R. O. Jones, Rev. Mod. Phys. 87, 897 (2015).
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FIG. 11. The spin-resolved in-plane (perpendicular to the magnetization) coherent conductivity for the majority channel (a)
differs by several orders of magnitude for the Mn- and Ni-rich cases. On the other hand, the conductivity for the minority
channel (b) is almost independent of the temperature, except of extreme displacements in the Mn-rich case. Both the spin-flip
term (c) and vertex part of the conductivity (d) are larger for the Ni-rich system than in the Mn-rich region.
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ical Review B 73, 144421 (2006).
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