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Abstract

Nanostructured materials exhibit low thermal conductivity because of the additional scat-

tering due to phonon-boundary interactions. As these interactions are highly sensitive to the

mean free path (MFP) of a given phonon mode, MFP distributions in nanostructures can be

dramatically distorted relative to bulk. Here we calculate the MFP distribution in periodic

nanoporous Si for different temperatures, using the recently developed MFP-dependent Boltz-

mann Transport Equation. After analyzing the relative contribution of each phonon branch

∗To whom correspondence should be addressed
†MIT, Department of Mechanical Engineering
‡Boston College
¶Rutgers University
§MIT, Department of Materials Science and Engineering

1

ar
X

iv
:1

50
5.

06
12

2v
2 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  2
7 

M
ay

 2
01

5



to thermal transport in nanoporous Si, we find that at room temperature optical phonons con-

tribute 18% to heat transport, compared to 5% in bulk Si. Interestingly, we observe a steady

thermal conductivity in the nanoporous materials over a temperature range 200 K < T < 300 K,

which we attribute to the ballistic transport of acoustic phonons with long intrinsic MFP. These

results, which are also consistent with a recent experimental study, shed light on the origin

of the reduction of thermal conductivity in nanostructured materials, and could contribute to

multiscale heat transport engineering, in which the bulk material and geometry are optimized

concurrently.

Introduction

The quest for high-efficiency thermoelectric materials may be advanced by using the ability of

nanostructures to suppress heat transport by several orders of magnitude with respect to bulk with-

out degrading electrical transport significantly.1 This phenomenon is based on the fact that phonon

mean free paths (MFPs) are generally larger than electron MFPs; consequently, heat transport ex-

hibits stronger size effects. The extent of the suppression of phonon transport depends on the ratio

between the intrinsic phonon MFP and the characteristic length of the nanostructure, Lc. This

ratio is known as the Knudsen number (Kn). When Lc is much smaller than MFP, i.e. for small

Kn, phonon interactions with boundaries are negligible. In this regime, heat transport reduction is

only due to geometrical effects, such as material removal in nanoporous materials, while phonon-

boundary scattering is minimal. Therefore, heat transport is dominated by intrinsic scattering. On

the other hand, for high Kn scattering is dominated by phonon-boundary interactions. Within this

regime, the phonon MFPs in the nanostructure approach Lc and the phonons are considered to

travel ballistically. The intermediate regime (i.e. Kn ≈ 1) is often refered to as the quasi-ballistic

regime.

This analysis implicitly assumes single-phonon mode materials, but in most materials, there is

a wide distribution of phonon MFPs, which in some cases span several orders of magnitude. For

example, first-principles calculations for Si show that about half of the heat is carried by phonons
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with MFPs larger than 1 µm.2 Recent experimental measurements showing a reduction in thermal

conductivity of Si membranes with microscale pores3 provide support for these computational

results. Together, they suggest that an accurate analysis of thermal transport in nanostructures

should include the actual bulk MFP distribution.

In bulk Si, the optical and acoustic phonons have very different MFP distributions. Optical

phonons have relatively low MFPs because their dispersion curves are flatter than those of acoustic

phonons, which by contrast have large MFPs. This effect has important consequences on thermal

conductivity. First-principles calculations show that optical phonons contribute only 5% to the

total thermal conductivity of Si, while the 95% is dominated by acoustic phonons.2 As a result,

optical phonons are often neglected when calculating nanoscale heat transport in Si. However, in

nanostructures, heat carried by optical phonons is slightly lowered while acoustic phonons can be

strongly suppressed, making the two contributions comparable.

A simple model for phonon-boundary scattering that neglects intrinsic scattering and assumes

that phonons travel ballistically was devised by Casimir in 1938.4 Within the Casimir approach,

the MFPs are considered to be the same as the characteristic length. By using the Casimir model,

Tian et al5 concluded that optical phonons in Si nanowires contribute over 20% to the total thermal

conductivity at room temperature. When dealing with complex boundaries, the Casimir approach

fails for two reasons.6 First, it assumes that the characteristic length is known a priori, while in

most materials with complex geometry this quantity is unknown. Secondly, a portion of the MFP

distribution may lie in the diffusive or quasi-ballistic regime.

In this work, we use the MFP-dependent Boltzmann Transport Equation (MFP-BTE)7 to cal-

culate heat transport in nanoporous materials and provide the relative contribution of each phonon

branch to the thermal thermal conductivity as a function of temperature. The use of the BTE

enables treatment of complex geometries with a good level of predictive power. We focus on

nanoporous Si (np-Si) with aligned pores with square cross section and a periodicity of 10 nm, and

we consider the temperature range 100 K−300 K. We show that at room temperature the thermal

conductivity in np-Si is suppressed by more than one order of magnitude with respect to bulk Si,
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with longitudinal optical (LO) phonons contributing nearly 20% to the total heat transport. This

result is in agreement with the previous qualitative discussion. Further, we find that the thermal

conductivity of np-Si exhibits a plateau over the temperature range 200 K− 300 K. We demon-

strate that this arises from two effects: first, as most of the acoustic phonons travel ballistically

because of their large Kn, their MFPs in np-Si are constrained by the characteristic length of the

material. Second, in this temperature range, the heat carried by optical phonons changes weakly

with temperature in bulk Si itself, inducing similar behavior to np-Si. By revealing the microscopic

mechanisms leading to the reduction in heat conduction, our findings may enable new approaches

for engineering high-efficiency thermoelectric devices.

Results and discussion

To compute the reduction of heat transport in nanostructures, we employ the concept of the “sup-

pression function,” S(Λ), which defines the departure from diffusive transport in terms of the MFP

distribution function,7

S(Λ) =
Knano

p (Λ)

Kbulk
p (Λ)

, (1)

where Kbulk
p (Λ) and Knano

p (Λ) are the bulk MFP distributions for branch p in bulk Si and np-Si,

respectively. Within the relaxation time approximation, the effective thermal conductivity for each

phonon branch can be written as

κ
nano
p =

∫
∞

0
Knano

p (Λ)dΛ =
∫

∞

0
Kbulk

p (Λ)S(Λ)dΛ. (2)

The total thermal conductivity is then given by κnano = ∑p κnano
p . In the case of purely diffusive

transport, the suppression function is MFP-independent and Eq. (2) leads to the diffusive thermal

conductivity κnano = κbulkg, where g is a function that depends only on the material geometry and

κbulk is the bulk thermal conductivity. The bulk MFP distribution at different temperatures can

be obtained either experimentally through MFP reconstruction techniques8 or computationally. In
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this work we adopt a first-principles approach based on Density Functional Theory (DFT) and

the linearized BTE.2,9 The bulk MFP distribution is computed via Kbulk
p (Λ) =

∂αbulk
p (Λ)

∂Λ
, where

αbulk
p (Λ) is cumulative thermal conductivity. We recall that the cumulative thermal conductivity is

the thermal conductivity of phonons whose MFPs are below a given Λ.10,11 The intrinsic MFP for

a given phonon mode is defined as Λ = |v|τbulk. We note that αbulk
p (Λ) does not include boundary

scattering. For this reason, in rest of this study, we will refer to such a result as bulk-BTE.

The suppression function can be obtained in different ways, depending on the system and the

required accuracy. In some cases, such in nanowires and thin films, S(Λ) can be obtained analyti-

cally within a reasonable level of accuracy.12 However, most of the analytical derivations are based

on the “gray” approximation, which assumes phonon dispersions described by a single group ve-

locity. Furthermore, formulae for the suppression function are limited to simple geometries. In

this work we therefore employ a recently developed formulation of the BTE that requires only

the bulk MFP distribution Kbulk
p (Λ).7 This method, MFP-BTE, has the same accuracy as the the

commonly used frequency dependent approach (FD-BTE), provided that we consider small ap-

plied temperature gradients, ∆T/L, where ∆T is the applied difference of temperature and L is

the distance between the hot and cold contact. The key equation of the MFP-BTE consists of the

integro-differential equation

Λs ·∇T̃ (Λ)+ T̃ (Λ) = γ ∑
p

∫
∞

0

Kbulk
p (Λ′)

Λ′2
< T̃ (Λ′)> dΛ

′, (3)

where T̃ (Λ) represents the normalized temperature associated with phonons having MFP Λ, given

by T̃ (r,Λ)= T (r,ω,p)−T0
∆T . In Eq. (3), s is the phonon propagation direction and γ a material property

given by γ =

[
∑p
∫

∞

0
Kbulk

p
Λ2 dΛ

]−1

= 2.2739 x 10−17 KW−1m−3 for Si. The notation < x > stands

for an angular average. The right-hand-side of Eq. (3) is equal to TL(r)−T0
∆T , where TL is the effective

lattice temperature,7 which does not depends on Λ explicitly, and provides an average of the local
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energy of phonons. Once Eq. (3) is solved, the suppression function can be computed via

S(Λ) =
3L
ΛA

∫
Γ

< T̃ s ·ns > dx2, (4)

where Γ is the surface of the hot contact having normal ns and area A.

Our simulation domain consists of a square unit cell, which we choose to have a size of

L = 10 nm. The unit cell, which contains one square pore, is subjected to a difference of temper-

ature ∆T = 1 K about T0. Periodic boundary conditions are applied to both the longitudinal and

transverse direction of heat flux, nf, which is enforced by applying a difference of temperature ∆T

along nf, i. e.

T̃ (Λ,s,r)− T̃ (Λ,s,r+P) = (n ·nf)∆T, (5)

where r runs along the faces of the unit cell, n is the normal to the boundary pointing outside

the domain and P is the periodicity vector. It is straightforward to show that along the direction

perpendicular to the heat flux, no difference of temperature is imposed. We assume that we have

an infinite material along the directions orthogonal to the pore plane. Moreover, we assume that

phonons are scattered diffusively when interacting with the pores, i.e., the distribution of phonons

moving away from a pore’s surface is uniformly distributed in angular space. We note that this

assumption must be used with caution, especially at very low temperatures, as some phonons can

be reflected specularly depending on the roughness of the boundary. However, in this work we

assume the surfaces have significant roughness such that specularity effects can be neglected in the

considered temperature range. Details on the surface specularity effects on thermal transport can

be found in Ref.13

We first validate the code with the case of zero porosity, i.e., bulk Si. Figure Figure 1 illustrates

the good agreement between experimental data,14 bulk BTE predictions, and MFP-BTE calcula-

tions of the thermal conductivity of bulk Si. The bulk case recovers purely diffusive transport, as

there are no boundaries suppressing phonons.

Figure Figure 1 also shows the thermal conductivity for np-Si with porosities φ = 0.05 and
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φ = 0.25. At T = 300 K, we observe a reduction of more than one order of magnitude with

respect to the bulk, in accordance with our previous studies.7,15 We now analyze the relative con-

Figure 1: The thermal conductivity for different temperatures of bulk Si and np-Si. For bulk Si, the
experimental data,14 bulk-BTE and MFP-BTE calculations are shown and agree with each other.
For np-Si, we show the cases of porosity φ = 0.05 and φ = 0.25, computed by the MFP-BTE. In
the inset, we show the normalized temperature map of the np-Si with porosity φ = 0.25.

tribution of each phonon branch to the total thermal conductivity. In Fig. Figure 2-a, the normalized

cumulative thermal conductivity for bulk Si at T = 300 K, computed by the the bulk BTE, is shown.

As expected, acoustic phonons contribute most to the thermal conductivity, while optical phonon

contributions are small. In particular, the two transverse acoustic (TA) branches and longitudinal

acoustic (LA) branch contribute approximately one third each to the total thermal conductivity.

The figure also shows that the longitudinal optical (LO) phonons contribute 5% to thermal trans-

port, while the transverse optical (TO) phonons have a negligible contribution. However, the LO

phonons start to contribute significantly in np-Si, reaching 16% of the total thermal conductivity

in the case of φ = 0.05 (Fig. Figure 2-b). The TO contribution remains negligible.

The roughly four-fold increase in the relative contribution of LO phonons can be better under-

stood by analyzing the MFP distributions in relation to Lc. According to Ref.,15 in porous materials

Lc can be defined as the pore-pore distance in the direction orthogonal to thermal flux. The pore-

pore distance in an array of square aligned pores is related to the porosity via Lc = L(1−
√

φ),
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which leads to the values 5 nm and 7.76 nm for φ = 0.25 and φ = 0.05, respectively. The charac-

teristic length dictates the transport regime of phonons with a given MFP. Figure Figure 2-a shows

that the maximum MFP of LO phonons contributing to the thermal conductivity is around 20 nm,

while acoustic phonons have MFPs up to 10 µm. As a result, optical phonons, which generally

have MFPs similar to Lc, are less suppressed than acoustic phonons. For φ = 0.25, the characteris-

tic length is even smaller and, consequently, the relative LO phonon contribution increases (up to

18%, as shown in Fig. Figure 2-c).

When Lc is larger (e.g., 100 nm), the effect of the nanostructure on optical phonons becomes

negligible, but most acoustic phonons are still suppressed. In this case, it is possible to have a

“reversal effect,” in which optical phonons are the main contribution to the thermal conductivity.

For macroscopic samples, e.g. Lc > 100 µm, the thermal conductivity approaches the value

predicted by the Fourier model and the MFP distributions are restored to the bulk ones times the

geometric factor, g, that depends only on the geometry. For aligned porous materials, the geometry

factor can be well approximated by g = 1−φ

1+φ
.16 This approximation was validated against finite-

element modeling of diffusive heat conduction.13

This finding has important consequences on the guidelines for optimizing nanostructured ther-

moelectric materials. Typically, the geometry of the nanostructure and the bulk thermoelectric

materials are optimized separately. Here we suggest that both macro and nanoscale have to be

considered concurrently. The following example helps clarify this point. Let us assume that we

have two “gray” materials, A and B, with average MFPs ΛA and ΛB, respectively. We further as-

sume that the thermal conductivity of material B is larger than that of material A. We consider a

nanostructure with ΛA << Lc <<ΛB. Material B will undergo strong phonon suppression whereas

heat transport in material A will still be in the diffusive regime. It is clear therefore that, with a suf-

ficiently large ΛB, material B exhibits lower thermal conductivity than that of material A, resulting

more appealing for thermoelectrics. Similar conclusions can be drawn for non-gray materials.

We now investigate the temperature dependence of thermal conductivity in the range 200 K < T < 300 K.

All the results shown below refer to the case with φ = 0.25. Similar conclusions can be drawn for
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Figure 2: Cumulative thermal conductivity at T = 300K for a) bulk Si, b) np-Si with porosity
φ = 0.25 and c) np-Si with porosity φ = 0.05. All the values are normalized to the total thermal
conductivity. The largest MFP contributing to heat transport for a given branch can been seen from
the point where the relative cumulative thermal conductivity becomes flat.

the case with φ = 0.05. As shown in Fig. Figure 1, the thermal conductivity of np-Si exhibits

little change in this temperature range, whereas it decreases as 1/T due to Umklapp scattering in

bulk Si.2,9 This behavior arises from the very large Kn of acoustic phonons, which therefore travel

ballistically. Within this regime, the phonon suppression function goes as S(Λ)≈ Lc/Λ,17 and the

contribution of acoustic phonons in np-Si becomes independent of the bulk MFP. According to

Fig. Figure 3, for temperatures as low as 200 K, the contribution to the total thermal conductivity

from large MFP acoustic phonons becomes even greater. Optical phonons, on the other hand, have

MFPs close to Lc, and, in principle, their temperature dependence in bulk Si would affect their

MFPs in np-Si. However, according to Fig. Figure 3-a, for temperatures 200 K < T < 300 K,

heat carried by LO phonons in bulk Si does not change significantly with temperature because the

increase in heat capacity is compensated by the decrease in scattering time.2 Consequently, heat

carried by LO phonons in np-Si does not change with temperature. Heat carried by TO phonons

is negligible in both bulk Si and np-Si. These combined effects lead to the observed insensitivity

of thermal conductivity to temperature in np-Si. Finally, as the temperature decreases in the range
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Figure 3: MFP distributions of bulk Si at a) T = 200 K and b) T = 300 K. In both panels, the
shaded area shows the region of MFPs that are close to the characteristic size of the nanostructure,
Lc = 5 nm. At low temperatures, the contribution to the thermal conductivity from long-MFP
acoustic phonons rises. However, the ballistic regime constrains these MFPs to be equal to Lc.

100 K < T < 200 K because of the decrease of the heat capacity, heat carried by LO phonons in

bulk Si starts to decrease, as shown in Fig. Figure 4-a. As a consequence, their relative contribu-

tions to the thermal conductivity in np-Si decreases, as well.

Our prediction of the temperature-dependence of thermal conductivity has been confirmed ex-

perimentally in a recent study, where heat transport has been measured in holey Si with periodicity

of about 20 nm.18 We point out that our model, being based on BTE, calculates phonon dynam-

ics within the particle picture, while the wave picture is only retained in the calculations of the

bulk dispersion curves. As a consequence, our study suggests that in such systems incoherent

scattering dominates thermal transport. The importance of coherence effects has been assessed in

another recent study, where Monte Carlo simulations were used to compute thermal transport in

np-Si membranes.19 Their conclusion was, however, that incoherent effects can fully explain the

remarkably low thermal conductivity in silicon nanomeshes.20
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Figure 4: Contribution of each phonon branch to the total thermal conductivity for a) bulk Si and
b) np-Si. In the range 200 K < T < 300 K, the contributions to the thermal conductivity from each
phonon branch in np-Si do not change significantly with temperature.

Conclusions

Using the MFP-BTE, we calculate the temperature dependence of thermal conductivity in np-Si.

We quantify the contribution of optical phonons to thermal conductivity in np-Si with periodicity

10 nm, which at room temperature amounts to 18%. We also predict constant thermal conductivity

over the range 200 K < T < 300 K, which has been recently observed experimentally. Our findings

help further the understanding and manipulation of heat transport at the nanoscale for low thermal-

conductivity applications such as thermoelectrics. We have also showed that the effectiveness

of nanostructuring in reducing thermal transport does not depend on the bulk thermal conductivity

but rather on the bulk MFP distributions of phonon branches. Consequently, our approach suggests

that the search for better nanostructured thermoelectric materials has to involve the shape of the

bulk cumulative thermal conductivity in relation with the material’s geometry. In other words, the

material optimization has to be done at both macro and nanoscale concurrently.
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Methods

We define the cumulative thermal conductivity in the bulk material as

α
p
bulk(Λ) =

1
(2π)3

∫
B.Z.

Cp(q)v2
p,x(q)τ

bulk
p (q)Θ(Λ− τ

bulk
p (q)|vp,x(q)|)d3q (6)

where Cp(q) is the heat capacity, vp,x(q) is the group velocity along the x-direction, τbulk
p (q) is

the three-phonon scattering time, and Θ is the Heaviside function. We recall that the cumulative

thermal conductivity is the thermal conductivity of phonons whose MFPs are below a given Λ.10

All the quantities appearing in Eq. (6) are taken from Ref.2 and are not reported here for the

sake of simplicity. The phonon dispersion curves and scattering times are obtained by means of

harmonic and anharmonic force constants, which are extracted from DFT. The system’s relaxation

times are computed by using a uniform reciprocal space grid of 24× 24× 24 points, harmonic

force constants up to 5th neighbors and cubic force constants up to first neighbors. We use the

Local Density Approximation (LDA) from Perdew and Zunger21 with a energy cutoff of 40 Ryd.

The MFP-BTE is solved for a set of 30 MFPs, uniformly spaced on logarithmic scale from about

0.1 nm to 100 µm. The MFP-BTE is discretized both in angle and space. The spatial discretization

is achieved by means of the finite volume (FV) approach whereas the solid angle is discretized by

means of the discrete ordinate method.22
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