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In this work we investigate the dynamics of vortices in a square mesoscopic superconductor. As time evolves
we show how the vortices are nucleated into the sample to form a multivortex, single vortex, and giant vortex
states. We illustrate how the vortices move around at the transition fields before they accommodate into an
equilibrium configuration. We also calculate the magnetization and the free energy as functions of the applied
magnetic field for several values of temperature. In addition, we evaluate the upper critical field.
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I. INTRODUCTION

The study of superconducting samples in mesoscopic
scale presented a remarkable improvement during the last
years. Certainly, such interest is based on the fact that when
the size of the samples is close to the order of the coherence
length � and/or the size of the penetration depth �, there are
some significant modifications on the physical properties of
the superconducting state. Among such differences, the oc-
currence and dynamics of vortices have been extensively re-
ported in the literature.1,2 Besides size effects, the geometri-
cal configuration of the samples also plays a significant role.1

Taking into account vortex-vortex interaction and boundary
effects, two different types of vortex configurations can be
achieved in mesoscopic samples. One of them is the multi-
vortex state �MVS� characterized by the existence of several
single quantized vortices. The other possibility is the so-
called giant vortex state �GVS� where more than one quan-
tum of flux can be measured.

In terms of the theoretical prediction of GVS and the col-
lapse of MVS into GVS, several studies reported not just the
occurrence of GVS, but also a multiple form of a combina-
tion of these states.1,3 However, the direct experimental ob-
servation of GVS and MVS-GVS �coexistence of both
states� is still controversial.4–6

One of the most used approaches to study mesoscopic
superconductors is the time dependent Ginzburg-Landau
equations �TDGL�. This theory has been successfully applied
for thin square mesoscopic superconductors. For instance,
Mel’nikov et al.7 have used the TDGL equations to study the
vortex configurations close to the upper critical field in such
systems. Otherwise, Hernandez et al.8 focused on the effects
of thermal fluctuations in the magnetization and free energy
as function of the external applied magnetic field.

In the present contribution, we study the time evolution of
the superconducting state of a long cylinder of square cross
section by slowly increasing the applied external field. De-
spite our results show some subtle differences compared with
recent work on thin mesoscopic squares1 concerning the
formation of GVS, MVS, and MVS-GVS, most of them

strengthen the conclusions of the existence of such vortex
configurations. We must stress that the emphasis of our work
held on the description of the vortex dynamics for different
temperatures in a condition of infinitesimal growing applied
external field.

The paper is outlined as follows. In Sec. II we present the
theoretical approach which will be used. Our description of
the superconducting state is based on the time dependent
Ginzburg-Landau equations. We also present the main steps
of the �-U method used to solve the TDGL equations nu-
merically. In Sec. III, the upper critical field, the magnetiza-
tion, and energy curves are shown and discussed. In addition,
we shall discuss the output of the TDGL equations concern-
ing the GVS, MVS, and MVS-GVS.

II. THE THEORETICAL MODEL AND THE NUMERICAL
SETUP

We investigate the dynamics of the vortices for a long and
thin superconducting cylinder of square cross section. For
the sake of brevity, from now on we will refer to this geom-
etry as a square superconductor. Thus, we are allowed to take
the order parameter and the local magnetic field invariant
along the z direction. The vortex configurations at the equi-
librium can be obtained from the Ginzburg-Landau �GL�
equations of superconductivity. Schmid9 generalized the GL
equations which account for the time evolution of the vorti-
ces until the most stable configuration is accomplished. The
time evolution was incorporated to the GL equations in such
a manner that their gauge invariance is preserved. The TDGL
equations for the complex order parameter �, the vector po-
tential A, and the scalar electrical potential � are given by
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where the supercurrent density is
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where R indicates the real part and the overbar the complex
conjugation. Here, D is the diffusion coefficient, � is the
electrical conductivity, and a and b are two positive phenom-
enological constants; we use the temperature dependence a
=a�T�=a0�Tc−T�, for all temperatures T
Tc, where Tc is
the critical temperature. The quantity ���2 represents the local
density of Cooper pairs and the local magnetic field is given
by h=�	A. We consider the zero-electrical potential gauge
at all times, �=0.

We solve the TDGL subject to the following boundary
conditions: ��−i�−A��n=0 normal to the sample surfaces,
and hz=H parallel to the sample surfaces, where H is the
external field uniformly applied along the z direction.

It is convenient to write the above equations in dimen-
sionless units. We use the following units for the order pa-
rameter, length, time, and magnetic field, respectively:
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and T in units of Tc.
Then, the nondimensional TDGL equations can be rewrit-

ten as
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are the London penetration length and the coherence length,
respectively.

In order to discretize the TDGL equations we use the
�-U method.10 This method has the important characteristic
of preserving the gauge invariance of the TDGL equations.

This is accomplished by introducing the auxiliary fields
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where �x0 ,y0� is an arbitrary point.
Thus, the first of the TDGL equations and the supercur-

rent density can be written in the following form:
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where �= �x ,y�, and I indicates the imaginary part.
The full discretization of the TDGL equations can be

found in more detail in Refs. 10 and 11 Here, we only show
the results. The discretizations are carried out in a rectangu-
lar mesh consisting of Nx	Ny cell points. We denote by �t
the incremental time, by �ax ,ay� the lattice spacing between
adjacent cell points, and by �xi ,yj� an arbitrary vertex point
in the mesh. Let us define

tn = n�t, n = 0,1,2,3, . . . ,

xi = �i − 1�ax, i = 1,2,3, . . . ,Nx + 1,

yj = �j − 1�ay, j = 1,2,3, . . . ,Ny + 1,
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According to these definitions, it can be easily seen that � is
a vertex variable, hz is a cell variable, and U is a link vari-
able.

Then, the discretized version of the TDGL equations are
given by
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where
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The discretized boundary conditions are
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n = Ūy,i,Ny

n �i,Ny

n . �11�

The auxiliary fields U and L are updated at any �i , j�
surface cell point by using the boundary condition Li,j

n

=exp�−iaxayH�, whatever the instant n.
Starting from some initial conditions for � and the auxil-

iary fields U, and upon using the TDGL Eqs. �9� and the
boundary conditions �11�, the new order parameter and the
local magnetic field are determined. This process is repeated
until a stationary state is achieved. Our procedure consists of
starting from a certain value of H and then we ramp up the
applied external field in small intervals of �H=10−3. The
stationary state found for a fixed value of H is then used as
the initial condition for H+�H. For the first value of H, the
system is initialized at the Meissner state where �i,j

0 =1,
Ux,i,j

0 =1, Uy,i,j
0 =1. We must emphasize that no a priori vortex

configuration is assumed to determine �� ,A ,h�. In other
words, the applied magnetic field is increased slowly from
zero up to the upper critical field where the superconductiv-
ity is completely destroyed. At each fixed applied field we
follow the time evolution of the local magnetic field and the
superconducting order parameter until we obtain a steady
state solution. Then, this stationary solution is used as the
initial condition for the next applied field. Thus, as the ap-
plied magnetic field increases and the time changes, we pre-
serve the magnetic history of the system. That is, we study
the time evolution of the system at each fixed applied mag-
netic field by assuming that there is already some penetrated
magnetic flux inside the sample.

The Gibbs free energy and the magnetization are very
sensitive to changes in the vortex configurations. So, any

physical relevant phenomenon should manifest into these
quantities. The TDGL equations describe the gradient flow
for the Gibbs free energy. Thus, in principle, the output of
the TDGL should correspond to the global minimum of the
energy of the system. The energy, in units of G0=a0

2Tc
2 /b, is

given by
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The discrete version of this equations is
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The magnetization 4�M =B−H, where B is the induction
�the spatial average of the local magnetic field�, is

− 4�Mn =
1

NxNy
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We calculate the energy and the magnetization at each
instant n, although we are most interested in their values at
the stationary state. The stationary state is accepted when the
absolute value of the order parameter does not change within

FIG. 1. The upper critical field for two superconducting square:
S1 �open circles�; S2 �filled circles�, and bulk �solid straight line�.
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a certain precision. The highest difference ���i,j
n+1�− ��i,j

n �� we
allowed was 10−5 over a few thousand time steps.

For each fixed value of field and instant n, the output data
of Eqs. �9�–�11� were stored in matrices and visualized in
order to observe the dynamics of the vortices. The visualiza-
tion process allows us to see how many vortices are nucle-
ating inside the sample as the applied magnetic field in-
creases. However, a more reliable manner of counting the
number of vortices can be found by integrating Eq. �4� along
a rectangle containing the superconducting square. This leads
us to

� 1

���2
R��̄�− i � − A��	 · dr = �2�N − �� , �15�

where N is the number of vortices �vorticity� and � is the
total penetrated flux. The discrete counterpart of this equa-
tion is

Nn =
�n

2�
+

1

2�


i=1

Nx � 1

��i,1
n �2

I��̄i,1
n Ux,i,1

n �i+1,1
n 	

−
1

��i,Ny+1
n �2

I��̄i,Ny+1
n Ux,i,Ny+1

n �i+1,Ny+1
n 	�

+
1

2�


j=1

Ny � 1

��Nx+1,j
n �2

I��̄Nx+1,j
n Uy,Nx+1,j

n �Nx+1,j+1
n 	

−
1

��1,j
n �2

I��̄1,j
n Uy,1,j

n �1,j+1
n 	� , �16�

where, for instance,
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n �2 =

1

2
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n �2� . �17�

Notice that �16� has not been derived in Refs . 10 and 11.

III. RESULTS AND DISCUSSION

In order to carry out the numerical simulations we have
chosen two superconducting squares of surface areas S1=8
	8 and S2=32	32. The Ginzburg-Landau parameter used
for both samples was �=5, and 
=1. Since the core size of
the vortices diminishes as the temperature is lowered we
have used two different meshes. For T�0.25, a mesh with
32	32 cell points was sufficient to describe the detailed
configuration of the vortices. Nevertheless, for lower tem-
peratures we had to increase the number of cell points to
64	64.

FIG. 2. �Color online� The magnetization �upper graphics� and
the energy �lower graphics� as functions of the applied external
applied field for several values of temperature for the S1

superconductor.

FIG. 3. �Color online� The applied magnetic field as a function
of the number of vortices for three different temperatures. Inset: the
values of applied magnetic field sufficient to change the vorticity
from N to N+2, with N even.
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A. The upper critical field

First of all, we calculated the upper critical field for the S1
and S2 superconductors. This result was useful in guiding us
in which field window we had to work with in order to
determine the other physical quantities. The criterion we
have used for the total destruction of superconductivity is
that at any �i , j� vertex point and instant n the magnitude of
the order parameter ��i,j

n ��10−4. We slowly increased the
applied magnetic field and kept track of the converged solu-
tion of the TDGL equations. Once the above criterion was
fulfilled the corresponding values of the applied magnetic
field was the upper critical field. The results are shown in
Fig. 1. Notice that within the mesoscopic regime, the Hc2�T�
curves do not change significantly with the surface area and
they are both linear with respect to the temperature. To con-
firm that finite size effects are small we also have determined
the upper critical field for S3=128	128 and T=0.875 and
found no significant difference from S2. Considering the lin-
ear dependence seen in Fig. 1, it is safe to affirm that the

same is true for all temperatures. Figure 1 also shows the
bulk values of Hc2�T�, which is roughly half of its typical
values for the systems we have studied. This tell us that,
even though the mesoscopic behavior has been well charac-
terized, it is still very distant from the thermodynamic limit.
Since computational limitations preclude us from arbitrarily
increasing system size, we were not able to determine the
frontier between the two regimes.

B. The energy and the magnetization

On using Eqs. �13� and �14� we have evaluated the energy
and the magnetization respectively, for several values of tem-
perature ranging from T=0 to T=0.875. From now on we
will restrict ourselves to the S1 superconductor. The results
for the magnetization and energy curves as functions of the
applied external field are depicted in Fig. 2. As can be seen,
the energy exhibits a series of discontinuities. Each of these
discontinuities signals a vortex entrance. We attribute these
abrupt reductions in the energy to flux expulsion. This point

FIG. 4. �Color online� Sequence of pictures for the first phase
transition in the S1 superconductor at T=0; the sequence should be
followed from the top to the bottom and from the left to the right.
The colorbar indicates the magnitude of the order parameter.

FIG. 5. �Color online� Sequence of pictures for the second phase
transition in the S1 superconductor at T=0; the sequence should be
followed from the top to the bottom and from the left to the right.
The magnitude of the order parameter is given by the colorbar of
Fig. 4.
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will be better justified later on when we describe how the
vortex motion occurs inside the sample.

We observed that for T
0.625 the first vortex entrance
always corresponds to a phase transition from N=0 to N=2
vortex state, and, similarly to the energy, the magnetization
also decreases abruptly at the transition field. For T�0.75
the energy also shows discontinuities as the applied field
increases. Nevertheless, at the transitions the magnetization
is continuous. In addition, only one vortex enters the sample
at the first phase transition. This seems to be consistent with
the fact that the dimension of the vortex tends to increase as
we approach the critical temperature. So, there is less space
available for the vortices to populate the sample. Notice that
the field windows in which the magnetization is nonvanish-
ing, vary with the temperature. At the zero temperature the
system has the longest mixed state phase which is consistent
with the phase diagram of Fig. 1. Furthermore, the magneti-
zation does not scale with the temperature, that is, the behav-
ior of this quantity is distinct for different temperatures.

For a fixed temperature, both the magnetization and the
energy curves are composed of several field windows. Each
window corresponds to a certain vorticity N. In Fig. 3 we
illustrate the N�H� curves calculated from Eq. �16� for lower
temperatures; the inset of this figure shows the field window
�H as a function of the vorticity N; here �H represents the
amount of applied magnetic field required to take the system
from N to N+2 vortex state. As can be seen from these
figures, the field window decreases as more vortices nucleate
into the sample. However, �H has a weak dependence on the
temperature.

The sequence of phase transitions does not follow the
same pattern for different values of temperatures. In general,
we have transitions either from N to N+2, or from N to N
+1 vortex state. This may vary for different temperatures or
even within a fixed temperature. To describe an N vortex

state we use the following nomenclature. We denote by NsS,
a multiple vortex configuration formed by Ns single vortices.
A single giant vortex of vorticity Ng is denoted by 1GNg

; the
constraint N=Ns+Ng must be obeyed. For example, the
4S1G2 state is formed by four single vortices and a double
quantized giant vortex. All vortex configurations are summa-
rized in Table I. Although our magnetization curves are very
similar to others presented in the literature,1 it is necessary to
emphasize that the simulations were performed considering
the applied external field always increasing, and starting
from the previous stationary state as the initial condition for
the next value of H �see Sec. II for a detailed explanation�.
Some differences can be noticed. It can be immediately seen
that the 4S state occurs for all temperatures T
0.625. For T
not too close to the critical temperature, the 1G2 state always
exists. However, for lower temperatures �T
0.125�, once
two vortices penetrate the sample, first they form a 2S state.
Next, there is a smooth transition to a 1G2 state. This tran-
sition is not manifested in the magnetization since there is no
change in the vorticity, but only in the vortex arrangement.
Notice that this particular scenario is highlighted in Table I.
Also, the 1S and 5S states seem to occur less frequently. It
can also be noticed that, different from other works,1 the N
=2 state is always observed as 1G2. Another important result
obtained in our simulations is that the 4S state is observed to
temperatures up to T
0.625, without the evolution from
MVS to GVS.

C. The vortex configurations

For all values of the applied magnetic field and between
regular intervals of n, the magnitude of the order parameter
and the local magnetic field were stored in matrices which
were used to generate the time evolution of the vortex con-
figurations. It must be stated that the sequence of figures

TABLE I. The vortex configurations we have observed for each fixed temperature for the S1 superconductor; the minus sign indicates that
no configuration was observed with the respective vorticity. The nomenclature used is explained in the text.

Vorticity

Temperature

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

1 — — — — — — 1S 1S

2 2S→1G2 2S→1G2 1G2 1G2 1G2 1G2 1G2 —

3 — — — — — 1G3 — —

4 4S 4S 4S 4S 4S 4S — —

5 — — 5S — 5S — — —

6 4S1G2 4S1G2 4S1G2 4S1G2 4S1G2 — — —

7 — — 4S1G3 4S1G3 — — — —

8 4S1G4 4S1G4 4S1G4 4S1G4 — — — —

9 4S1G5 — 4S1G5 — — — — —

10 4S1G6 4S1G6 4S1G6 — — — — —

11 4S1G7 — — — — — — —

12 4S1G8 4S1G8 — — — — — —

13 4S1G9 — — — — — — —

14 4S1G10 — — — — — — —

15 4S1G11 — — — — — — —
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shown hereafter do not necessarily represent a collection of
stationary states. To illustrate how the vortices evolve in
time, first we chose the T=0 case. In Fig. 4, the phase tran-
sition from the Meissner to the N=2 state is presented. First,
there are four vortices trying to nucleate at the surfaces, but
only two will succeed to enter the sample, and the other two
are driven out. This explains the reduction in the value of the
free energy as we have stressed previously. Once the two
vortices have completely penetrated the sample, they form a
2S state aligned as shown in Fig. 4. Next, they will try to
align along the square diagonal. Since this configuration is
double degenerated, they stay in a significant range of ap-
plied magnetic field aligned perpendicular to the vertical
sides of the square, before they go to the square diagonal. As
the applied external field increases, the vortices will slowly
rotate until they are along the square diagonal. Such a result
was also found by Mel’nikov et al.7 In their work, the vor-
tices also accomodate in the diagonal configuration. How-
ever, since we follow the time evolution, we were able to
notice that the 2S configuration collapses into a 1G2 state.
This also occurs for T=0.125, although in a smaller field
window. Otherwise, for the values of 0.25
T
0.625, the
1G2 state is formed straightway, that is, no additional applied
field is required to collapse into this state after the phase
transition occurs.

In opposition to the situation described above, all the
phase transitions we sketch below occurs at a fixed applied
magnetic field.

Now we discuss the phase transition 1G2→4S, which oc-
curs for a wide range of temperature �see Fig. 5�. Initially,
there are four vortices trying to nucleate at the surface. As in
the previous case described above, only two vortices can

enter the sample. While these two vortices are moving to-
ward the center, the giant vortex in the center is breaking off.
Just after the two new vortices have completed penetrating
the sample, the 4S state is created forming a square. Then,
they will rotate in order to fit into the sample. We have found
that this rotation occurs very rapidly until the 4S state stabi-
lizes. Notice that while the 4S square is rotating, the vortices
keep moving forward and then backward.

Let us show how the phase transition 4S→4S1G2 takes
place �see Fig. 6�. Similar to the previous situations, among
four vortices, two move back and the other two enter the
sample. The two new vortices will pass through the 4S
square and collapse at the center of the superconducting
square and, consequently, a 1G2 state is formed.

As can be seen from Table I, the state 3S was not ob-
served. This in agreement with the work of Mel’nikov et al.
In fact, they constructed the state N=3, either considering a
4S state plus an antivortex at the center of the square or a
single 3S state with a broken symmetry caused by a defect.

FIG. 6. �Color online� Sequence of pictures for the third phase
transition in the S1 superconductor at T=0; the sequence should be
followed from the top to the bottom and from the left to the right.
The magnitude of the order parameter is given by the colorbar of
Fig. 4.

FIG. 7. �Color online� Sequence of pictures for the second phase
transition in the S1 square superconductor at T=0.625; the sequence
should be followed from the top to the bottom and from the left to
the right. The colorbar indicates the magnitude of the order
parameter.
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Finally, it is interesting to describe a quite unique phase
transition 1G3→4S, which happens only at T=0.625 �see
Fig. 7�. In this case, only one vortex is able to enter the
sample. Once it is inside the superconductor, the 1G3 state
will break off into a trianglelike 3S state. The inner vortex of
the 3S state collides with the penetrated vortex, coming from
the left-hand side of the square superconductor. Just after the
collision, they move to the vertices of a square �4S� which
fits into the sample.

In Ref. 12 we have provided animations which describe
the vortex motions from the beginning of the Meissner phase
until the superconductivity is completely suppressed for all
temperatures.

IV. SUMMARY

We have solved numerically the TDGL equations for a
square mesoscopic superconductor by using the �-U method.

Our implementation of the algorithm provides all possible
configurations of the vortices for a wide range of tempera-
tures. Furthermore, our approach makes it possible to ob-
serve the time evolution of the vortex configurations, that is,
we have been able to see how GV and MV states are formed
and how the transitions from GV into MV states �and vice
versa� may occur. We also have demonstrated that the tem-
perature has a crucial role in the formation of these states. In
spite of some slight differences, our results agree well with
previous works.1,6 Perhaps these differences may be attrib-
uted to the different geometry and the parameters used.
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