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is study investigated electrical treeing and its associated phase-resolved partial discharge (PD) activities in room-temperature,
vulcanized silicone rubber/organomontmorillonite nanocomposite samplematerials over a range of temperatures in order to assess
the e�ect of temperature on di�erent �ller concentrations under AC voltage. 
e samples were prepared with three levels of
nano�ller content: 0% by weight (wt), 1% by wt, and 3% by wt. 
e electrical treeing and PD activities of these samples were
investigated at temperatures of 20∘C, 40∘C, and 60∘C. 
e results show that the characteristics of the electrical tree changed
with increasing temperature. 
e tree inception times decreased at 20∘C due to space charge dynamics, and the tree growth time
increased at 40∘C due to the increase in the number of cross-link network structures caused by the vulcanization process. At 60∘C,
more enhanced and reinforced properties of the silicone rubber-based nanocomposite samples occurred.
is led to an increase in
electrical tree inception time and electrical tree growth time. However, the PD characteristics, particularly the mean phase angle
of occurrence of the positive and negative discharge distributions, were insensitive to variations in temperature. 
is re�ects an
enhanced stability in the nanocomposite electrical properties compared with the base polymer.

1. Introduction

Polymeric materials are gaining prominence among utili-
ties as their preferred insulating materials for underground
power cables largely due to their high dielectric strength (in
MV/cm), very low dielectric losses, high tensile strength,
and resistance to electrical degradation [1]. Power cables
are subjected to high and continuous voltage as well as
mechanical and thermal stresses that induce and accelerate
the cable ageing and insulation breakdown. Electrical treeing
is one such breakdown phenomenon that occurs in insulation
cables, and many researchers have presented studies done
on electrical treeing phenomena in insulation cables [2–7].
Treeing occurs inside the dielectric when partial discharges
are initiated and progresses under electrical stress through

paths that are tree-like. To curb the growth of the electrical
tree, many researchers have used microcomposite materials
as �llers to enhance the electrical and mechanical strength of
the polymer. However, the increasing demand for power and
further research has led to the discovery and use of nanocom-
posite polymers with the addition of nano�llers due to their
excellent performance [8–10]. One such nanocomposite that
is currently receiving attention as a nano�ller in HV cable
insulation is organomontmorillonite (oMMT). Results from
the use of oMMT as a nano�ller in ethylene-vinyl acetate,
low-density polyethylene, polyethylene (PE), and epoxy resin
have shown improvement in the electrical performance of
these insulating materials, such as increases in tree inception
voltage, tree initiation time, and time to breakdown and
slower tree propagation [11–14].
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In power cables, silicone rubber (SiR) is one of the most
widely used insulating materials for cable stress cones, joint-
ing, and insulation materials [15–18]. Recently, some electri-
cal treeing studies that investigated the electrical performance
of SiR �lled with oMMT nano�ller as an insulating material
have reported promising results [19–23]. Furthermore, most
of the power cables in service operate at temperatures in the
range of 50∘C to 60∘C [24, 25]. However, studies carried out
on SiR/oMMT nanocomposites were limited to those on the
e�ect of �ller content on the performance of the insulation at
ambient temperature. And thus electrical treeing associated
with partial discharge studies on the e�ect of temperature
on SiR/oMMT nanocomposites are lacking. In view of the
foregoing, this work presents an investigation on the e�ect
of temperature on electrical treeing and partial discharge
characteristics of silicone rubber-based nanocomposite insu-
lation. Findings from this study indicated that temperature
and �ller concentrations have e�ect on electrical treeing and
partial discharge characteristics of polymeric insulation.

2. Nanoclay

Nanoclay belongs to the family of phyllosilicates, which
are also known as layered silicates. Nanoclay is classi�ed
into four typical groups: smectite, kaolin, chlorite, and illite.
Montmorillonite belongs to the smectite group. 
e layered
silicate crystal lattice consists of a two-dimensional, sheet-
like structure, where the central octahedral of the alumina
sheet or magnesia is placed between two silica tetrahedron
sheets. 
e oxygen ions of the octahedral sheet are shared
by both the octahedral sheet and the tetrahedral sheet, while
the gallery or interlayer region is formed by Van der Waals
forces that hold the layers together. Isomorphic substitution
within the layers will generate negative charges, which will
be counterbalanced by alkali and alkaline earth cations inside
the galleries [27].
e thickness of the layers is of the order of
1 nm.
us, the clay layers are truly nanoparticulate. Based on
information in the literature [27], the original layer silicates
can only be dispersed in hydrophilic polymers, such as
polyvinyl alcohol and polyethylene oxide.
us, the normally
or naturally hydrophilic layer silicates should be modi�ed to
become organophilic so that they can be more compatible
with other polymer matrices. As a result, the exfoliation and
intercalation of various polymers can be achieved.

Various modi�cation methods are being used in the
production of organically modi�ed nanoclay. Early methods
used amino acids [28]; however, primary, secondary, tertiary,
or quaternary alkyl-ammonium cations were subsequently
and widely used because they can be changed easily with the
ions located between the layers. Alkyl-ammonium cations
can provide su�cient functional groups that can react with
the polymer matrix, thereby starting monomer polymerisa-
tion and enhancing the strength of the interface. 
e alkyl-
ammonium cations also expand the clay galleries (interlayer
spacing) due to reduced surface energy, and consequently the
polymer chains can penetrate the clay gallery space or be
intercalated into the galleries [29].


ere are three possible structures of polymer/layered
silicate, and this depends on the types of the layered silicate,

organic modi�er, polymer matrix, and method of polymer
nanocomposites preparation. 
e nanocomposite is said to
be agglomerated when the polymer matrix is not able to
expand and unable to cover the distances between the
interlayer galleries and also unable to expel tactoids from
the polymer to form microcomposites. 
e exfoliated or
delaminated polymer nanocomposite is achieved when the
individual silicate layers are uniformly dispersed in a contin-
uous polymer matrix by an average distance.
e intercalated
structure is achieved when a single extended polymer chain
is intercalated between the silicate layers, which results in a
well-ordered multilayer [29].

Amodi�ed version of the montmorillonite nanoclay type
is oMMT or organoclay. 
e modi�cation of the mont-
morillonite nanoclay to an organoclay alters it, organically
making the oMMT more organophilic and compatible with
hydrophobic materials, such as silicone rubber, epoxy resin,
and PE. Organoclays are reported to have charge carrier
trapping properties (electronegative), provide an improved
balance of sti�ness and toughness, possess �ame retardant
properties that o�er a reduction in relative heat release, and
reduce dripping by forming char. 
ey are also cheaper
than other nanomaterials because they are produced in
existing full-scale production facilities and because their
basic materials come from readily available natural sources
[13, 30].

3. Experimental Technique

3.1. Sample Preparation. 
e silicone rubber (SiR) used in
this study was Sylgard 184 silicone elastomer which comes
together with dimethyl, methylhydrogen siloxane as a hard-
ener. Meanwhile, the oMMT used in this study was Nanomer
1.30P supplied by Nanocor Inc., USA. A detailed description
on the materials, method used to prepare the organomont-
morillonite by adding octadecylamine and concentrated
hydrochloric acid, and also leaf-like sample preparation can
be found in [17, 28] and [29], respectively.

3.2. Dispersion and Characterization Study. Dispersion of the
nanoparticles inside the investigated materials was observed
under a Carl Zeiss Supra 35 Field Emission Scanning Elec-
tron Microscope (FESEM), which is an ultrahigh-resolution
microscope. Prior to FESEM observation, each fractured
surface of nanocomposite sample was sputter-coated with a
thin layer of platinum using a Bio-Rad sputter coater under
vacuum pressure for one minute at 20mA and 1.6 kV to
provide electrical conductivity. 
e nanocomposite samples
were then examined at 10 kV of acceleration voltage. In
addition, the dispersion of nano�ller inside the silicone
rubber material was also observed by 200 kV high-resolution
transmission electronmicroscope (HRTEM).
e samplewas
sliced into excellent quality ultrathin 200 nm thick slices by
using a Leica EM FC7 cryoultramicrotome.

A Fourier transform infrared spectrometer (FTIR) was
used to identify the functional groups on the surface and
in the bulk of the used �ller and in the polymer-based
nanocomposite samples. 
ese functional groups help to
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Figure 1: FESEM images of fractured surfaces for silicone rubber-based nanocomposites: (a) 1 wt% and (b) 3wt%.

(a) (b)

Figure 2: TEMmicrographs of silicone rubber-based nanocomposites: (a) 1 wt% and (b) 3wt%.

clarify the interaction between the nano�ller and the polymer
(silicone rubber) at the interface of the nanocomposites. A
Perkin Elmer FTIR spectrometer was used to obtain the
IR spectra. 
e polymer specimens were analysed at 1 cm−1

resolution, and 16 scans were averaged in the transmittance

mode at wavelengths in the range of 370–4000 cm−1. 
e
nano�llers were pressed with potassium bromide (KBr) at
a pressure of 6 bars to form a thin �lm disc for FTIR
measurements. 
e thin �lm disc was then placed in a
sample cap of di�use re�ectance �tment. Before the FTIR
preparation, the oMMT nano�ller and the sample of silicone
rubber-based nanocomposites were dried at 105∘C for more
than 48 hours to ensure removal of all moisture for the FTIR
analysis. 
e spectra were analysed via the so�ware provided
with the instrument.

3.3. Experimental Procedure. 
e electrical treeing-PD test
rig consists of a step-up transformer, �bre optic transmitter
and receiver, high voltage supply, Peltier cooled Charged
Couple Device (CCD) camera with back illumination, light
emitting diode (LED), digital storage oscilloscope, tempera-
ture controller with cartridge heater, specimen holder, glass
test cell, RLC load circuit, and personal computer. A detailed
description of the test rig and experimental procedure using
the test rig can be found in [29–31].

4. Results and Discussion

4.1. Nano	ller Dispersion via FESEM. 
e FESEM and TEM
images are depicted in Figures 1 and 2, respectively. 
ese
visual analyses were able to characterize and clarify the
dispersion, degree, and homogeneity of agglomeration of the
nanoparticles into the nanocompounds. Under a magni�ca-
tion of 500 times, several tactoids were visible and can be seen
in Figure 1(a) where the agglomerated nanoparticle sizes are
larger than 100 nm; the nanoparticle sizes in Figure 1(b) are
smaller and less than 100 nm.

4.2. Electrical Treeing, PD, and E
ect of Temperature. All the
electrical trees were noted to have grown below an estimated
electrical tree inception voltage of 10 kVrms at 50Hz. Images
of the light emitted from PD within the tree channels that
were recorded before voltage was removed at the end of each
experiment are shown in Figures 3 and 4. 
ese composite
images of light emission are due to the partial discharge
activity (grey scale) superimposed on the back-illuminated
images (red/black) of the tree structure. 
ese images show
the spatial extent of the PDs within the tree channel that
formed. All trees formed were found to have a branched
structure.

In the case of neat resin samples (0wt% oMMT), the tree
inception time was found to have decreased with increase in



4 Journal of Nanomaterials

D
is

ch
ar

ge
 m

ag
n

it
u

d
e 

(p
C

)

Phase (deg.)

502.5

0

−502.5
0 180 360

(a)

D
is

ch
ar

ge
 m

ag
n

it
u

d
e 

(p
C

)

Phase (deg.)

0 180 360

1153.5

0

−1153.5

(b)

D
is

ch
ar

ge
 m

ag
n

it
u

d
e 

(p
C

)

Phase (deg.)

0 180 360

1174.5

0

−1174.5

(c)

Figure 3: Electrical treeing associated with the PD phase-resolved patterns of neat silicone rubber: (a) at 20∘C, (b) at 40∘C, and (c) at 60∘C.

temperature from 19 seconds at 20∘C to 5 seconds at 60∘C. In
contrast, the tree growth time required for the tree to grow
approximately 95% of the pin-edge distance increased from
80 seconds at 20∘C to approximately 29 minutes at 60∘C.
e
tree initiation process starts from injection and extraction of
space charges in which the charge carrier dynamics depend
signi�cantly on temperature as these processes are mostly
thermally activated mechanisms [32]. 
us, the increase in

temperature enhances the dynamics of the space charge,
reducing the tree initiation time. In addition, the increase
in temperature gives rise to an increase in the number of
cross-link network structures caused by the vulcanization
process.
is results in more trapping sites for charge carriers
where the charge carriers get trapped around the boundary
of the polymer chains, reducing the charge carrier mobility.

is slows down the growth of the electrical tree due to
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Figure 4: Electrical treeing associated with the PD phase-resolved patterns of silicone rubber-based nanocomposite (1 wt%): (a) at 20∘C, (b)
at 40∘C, and (c) at 60∘C.

more time and energy required to detrap the charge carriers
for conduction. In addition, the increase in the number of
cross-link networks also creates a more rigid polymer with
an immobilized polymer chain. Consequently, more energy
and time are required to break the bond to create a void or
cavity, which eventually generates PD and causes the growth
of electrical treeing.

In the case of the 1 wt% oMMT nanocomposites, the
inception time �rst increased and then decreased with
increasing temperature. 
e registered tree inception times
were 20 seconds, 100 seconds, and 83 seconds at 20∘C,
40∘C, and 60∘C, respectively. Nevertheless, the addition of
nano�ller enhanced the tree initiation time even though
the temperatures increased. As mentioned before, the space
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charge dynamics were enhanced by increasing the temper-
ature. However, the e�ect of temperature on space charges
in silicone rubber-based nanocomposites was not obvious
since the addition of nanoparticles trapped the charge carriers
around or inside the particles. 
us, these trapped charge
carriers require high energy tomove fromone trap to another
trap or to get extracted from the polymer. 
is results in a
slower degradation rate and more time for tree initiation.


e tree growth times were signi�cantly higher for the
1 wt% oMMT nanocomposite samples than for the neat
silicone rubber samples. 
e tree growth times were found
to increase from 10 minutes at 20∘C to 46 minutes at 60∘C
due to the promotion ofmore cross-link networks as trapping
sites. Moreover, the trapping sites were also enhanced due
to the inclusion of nanoparticles. 
us, the injected and
accumulated space charges were unable to dri� or detrap
since most of the space charges were trapped at the polymer
chains and around or inside the nanoparticle.
is resulted in
more energy and time being needed for space charges to cause
electrical tree propagation, thus prolonging the electrical
growth time.


e initiation of a tree is a sign of initial conduction
in the dielectric. Since conductivity is proportional to the
elementary charge, carrier density, and carrier mobility [33],
reduction of conductivity is presumably due to the capture
of mobile carriers at polymer/�ller interfaces. In silicone
rubber-based nanocomposites material (3 wt%), the large
total interfacial areas contribute to increasing the trapping
probability of charge carriers. 
e increase of charge trap
areas/sites leads to a reduction in charge mobility, which in
turn reduces conduction. 
e trapping probability was also
enhanced due to the vulcanization process, which made the
nanocomposites more rigid; consequently, more energy and
time were required for polymer decomposition. However,
due to insu�cient �eld energy, the trapped charge carriers
(electrons and holes) combine at the recombination centre
and emit the photon that is responsible for light emission.

erefore, in the case of the 3wt% oMMT nanocomposites,
no tree inception was observed; even a�er 4 hours of voltage
application, only weak light emission and sporadic PDs were
recorded.

By comparing the e�ect of the nano�ller at individual
temperatures, we can note and justify the advantages or ben-
e�ts and reinforcement properties of adding the nano�ller.
At a low temperature of 20∘C, the tree inception time of
silicone rubber nanocomposite (1 wt%) was almost similar to
the corresponding neat silicone rubber.
is insensitive char-
acteristic was due to the agglomeration in the nanocomposite
sample (1 wt%) as seen in the FESEM image in Figure 1(a).
In addition, the TEM micrograph in Figure 2(a) shows that
the clay silicate layers do not maintain their original parallel
layers with a scattered layered structure.
us, agglomeration
nulli�es the capability of electrical tree initiation resistance of
nanoparticles, resulting in insensitive parameters. However,
the increase in �ller loading increased the growth time of
electrical treeing due to the trapping of charge carriers.

When the temperature was increased to 40∘C, tree incep-
tion time and tree growth time increased with increases in
�ller loading from 0wt% to 3wt%. 
ese enhancements in

electrical tree resistance result from the increase in the charge
carrier trapping density and also from the increase in cross-
link network structures. 
ese changes result in di�culty in
initiating an electrical tree since more �eld energy is needed
to enhance growth.

More enhanced and reinforced properties of silicone
rubber-based nanocomposites are noticed at a temperature
of 60∘C.
is postcure temperature promotedmore cross-link
network structures, thereby contributing to the formation of a
more rigid polymer.
is enhancement leads to an increase in
electrical tree inception time and electrical tree growth time
since nano�llers act as trapping sites and potential physical
barriers to the growth of an electrical tree in the direction of
the electric �eld.


e composite CCD images shown in Figures 3, 4, and 5
demonstrate that, for all samples in which trees grew, the PDs
occur throughout the main body of the tree structure. 
is
indicates that the tree channels were e�ectively electrically
nonconducting, such that a su�cient potential di�erence
could exist along the tree channels to initiate PDs within
them. In addition to the composite images captured, the
phase-resolved PD patterns were also recorded. Generally,
the PDpulsesmainly occurred in the �rst and third quadrants
of the voltage waveform.


e results of the phase-resolved PD data are shown in
Table 1. In the case of neat SiR, the average PD magnitude
was found to increase with increase in temperature while the
average number of PDs per second was found to decrease
with increase in temperature. A signi�cant shi� in the average
phase of PD occurrence of both the positive and negative dis-
charge distributions took place simultaneously. 
e average
phase of occurrence of the positive PDs increased from 37∘ at
20∘C to 55∘ at 60∘C. Similar dependence on temperature of the
PD phases was found for electrical tree growth in the �exible
epoxy resin. 
is phase shi� is attributed to an increase in
the electrical conductivity of the epoxy resin with increasing
temperature, leading to decreased accumulation of the space
charge surrounding the tree structure.

However, the reverse situation has been reported for
an epoxy resin sample; that study showed PD numbers
increasing and PD magnitudes decreasing with increasing
temperature from 20∘C to 70∘C [34]. 
is dissimilarity
between epoxy resin and silicone rubber is probably due to
the increase in vulcanization/cross-link numbers in silicone
rubber matrices with increasing temperature; this has been
discussed thoroughly by Du et al. [15, 35].

In the case of the 1 wt% oMMT nanocomposite, the
average PDmagnitude was found to decrease with increasing
temperature from450 pC at 20∘C to 257 pC at 60∘C.However,
the other three PD physical parameters remained relatively
insensitive to the changes in temperature. 
e decrease in
PD magnitude when the temperature increased in silicone
rubber-basednanocomposites (1 wt%) is because the addition
of nanoparticles contributes to the trapping of space charges;
in this process, the electrons injected from the electrode
move towards the opposite electrode and are trapped at the
nanoparticle surfaces and inside the nanoparticles.When the
applied �eld is su�ciently high, it can cause ionization of the
nanoparticle within the polymer. 
us, an internal �eld will
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Table 1: Summary of partial discharge statistical parameters.

Type of sample PD characteristics
20∘C 40∘C 60∘C

Min Max Ave. Min Max Ave. Min Max Ave.

Neat SiR

Discharge magnitude (pC) 83 218 160 57 387 280 70 610 332

Number of PDs (s−1) 687 1244 952 117 7571 199 65 649 197

Phase of occurrence of positive PDs (∘) 34 41 37 36 60 44 44 93 55

Phase of occurrence of negative PDs (∘) 215 220 218 218 244 226 223 247 239

Dissipated power (mW) 0.87 1.40 1.24 0.35 3.4 0.54 0.05 0.997 0.668

SiR/1 wt % oMMT

Discharge magnitude (pC) 31 641 450 5 492 294 137 478 257

Number of PDs (s−1) 249 1831 495 1 581 338 416 831 580

Phase of occurrence of positive PDs (∘) 33 86 44 36 61 47 34 44 38

Phase of occurrence of negative PDs (∘) 209 275 223 209 274 217 212 225 217

Dissipated power (mW) 0.22 3.50 1.91 0.061 1.5 0.94 0.75 2.00 1.395

SiR/3 wt % oMMT

Discharge magnitude (pC) 2 45 22 2 6 4 2 11 4

Number of PDs (s−1) 1 643 181 1 64 27 1 25 4

Phase of occurrence of positive PDs (∘) 17 142 80 5 94 46 52 133 75

Phase of occurrence of negative PDs (∘) 154 306 280 177 272 226 164 265 222

Dissipated power (�W) 0.34 163 35.7 0.002 3.7 1.13 0.03 0.98 0.15

be created to oppose the direction of the applied �eld, making
the net �eld inside the nanoparticle greater than the discharge
inception �eld and thereby extinguishing the discharge. 
is
reduces the PDmagnitude. If the applied �eld is high enough
and exceeds the internal �eld, the discharge will occur again.
However, the particles tend to agglomerate, resulting in the
less interfacial area and leading to lesser charge carriers
getting trapped around the particle surfaces (localized states).
Due to repetition and a su�ciently high electric �eld, the
trap sites provided bymicroparticles for electron localizations
are not su�cient and so lead to electron dri� (detrapping).

is causes charge movements (mobility) that give a higher
PD repetition rate. As a result, agglomeration nulli�es the
capability of PD resistance of the nanoparticles.


e addition of 3 wt% oMMT nanoparticles in silicone
rubber caused electrical tree inhibition; no electrical trees
were observed during the time span of the experiment (4
hours at 10 kVrms, 50Hz). Only localized light emission,
recognized as electroluminescence, was detected at the needle
tip when using the CCD camera. It appears that the SiR
matrices were reinforced by the addition of 3 wt% oMMT
nano�llers to an extent that prevented the formation of
an initial void with a su�cient dimension required for PD
generation and subsequent electrical tree initiation. 
e PD
magnitudes and PD numbers decreased with the increase
in temperature from 20∘C to 60∘C; the PD magnitudes
decreased from 22 pC to 4 pC. However, the phase of positive
PDs was found to be insensitive to temperature changes,
whereas the phase of negative PDs shi�ed to the lower values
with the increase in temperature.

Based on FESEM images in Figure 1(b), the nano�llers
were distributed uniformly with sizes less than 100 nm. 
e
micrograph in Figure 2(b) shows that the oMMT was in
the form of incompletely exfoliated mixed intercalation,
indicating that the silicate layers were uniformly separated
as the particles were quite long in length. 
e TEM image

in Figure 2(b) shows that the nanocomposite material con-
taining oMMT particles di�ered from the form shown in the
FESEM image of Figure 1(b). However, the oMMT particles
still maintained the parallel layered structures even though
the gap increased.


us, oMMT possesses the advantages of nanoparticles,
such as a large interfacial area (surface area) that allows large
charge carrier trapping, charge dissipation due to recom-
bination, electron scattering, large interaction zones, and a
proximity e�ect [36]. 
ese properties reduce the charge
mobility and energy needed for conduction, thereby reducing
PD magnitudes, PD numbers, and other PD parameters. 
e
charge carriers are unable to move (dri�) due to insu�cient
kinetic energy and remain at the electrode tip; most are
dissipated by electron-hole recombination, which releases
energy (photon) in the form of light.

Moreover, the small discharges detected in the nanocom-
posites material were probably swarming partial microdis-
charges (SPMD); this is related to the existence of microvoids
at the polymer/electrode interface due to imperfect bonding
between the tungsten needle and the silicone rubber. Tanaka
[37] reported that small PDs of less than 1 pC were detected
in a void prior to tree initiation. SPMD phenomena can be
found in [38–40]. 
us, the detection of PD prior to tree
initiation may have been caused by the microvoids at the
needle tip due to charge carrier recombination.
e holes and
electrons were injected into the polymer during the positive
and negative half-cycle of the AC voltage and were trapped
in the recombination centres. Light is emitted when the
electron-hole recombination occurs at the luminescent centre
[41]. However, the electric �eld intensity was insu�cient to
initiate electrical treeing due to low energy.

In polymer nanocomposites, the nanoparticles act as
charge carrier trapwith high barrier potentials.
ese trapped
carriers need more energy to get extracted from one trap to
another trap. 
is would slow down the growth of electrical
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Figure 5: Electrical treeing associated with the PD phase-resolved patterns of silicone rubber-based nanocomposite (3 wt%): (a) at 20∘C, (b)
at 40∘C, and (c) at 60∘C; arrows indicate weak light emissions.

treeing [42]. With the addition of 1 wt% oMMT nano�llers,
tree inception time and propagation time were distinctly
enhanced. However, PD magnitudes and PD numbers of
silicone rubber-based nanocomposite (1 wt%) became insen-
sitive with the increase in temperature as evidenced by the PD
magnitudes being higher than neat silicone rubber at 20∘C

and 40∘C whereas the PD numbers of silicone rubber-based
nanocomposite (1 wt%) were greater than neat silicone rub-
ber at 40∘C and 60∘C.We attribute the reason for the increase
in PD magnitudes and PD numbers to agglomeration of the
nano�ller in the silicone rubber matrix. 
e tactoids repre-
sent the weak points that could enhance PD repetition inside



Journal of Nanomaterials 9

40080012001600200024002800320036004000
0

10

20

30

40

50

60

70

80
T

ra
n

sm
it

ta
n

ce
 (

%
)

oMMT nano�ller

Wavenumber (cm−1
)

(a)

40080012001600200024002800320036004000
0

10

20

30

40

50

60

70

80

Neat silicone rubber

T
ra

n
sm

it
ta

n
ce

 (
%

)

Silicone rubber/oMMT 1wt%

Silicone rubber/oMMT 3wt%

Wavenumber (cm−1
)

(b)

Figure 6: FTIR spectra. (a) oMMT nano�ller is denoted by the red line. (b) Neat silicone rubber is denoted by the blue line, silicone rubber-
based nanocomposite (1 wt%) is denoted by the black line, and silicone rubber-based nanocomposite (3 wt%) is denoted by the red line.

O OO

m n

Si Si Si Si

CH3

CH3

CH3

CH3

CH3

CH3

CH3 CH3

CH3

CH3

Figure 7: Chemical structure of polydimethylsiloxane of silicone
rubber [26].

the polymer. 
is is depicted in Figure 1(a), which shows
agglomeration of �ller particles sizes greater than 100 nm
occurring inside the silicone rubber-based nanocomposite
sample with 1 wt% oMMT nano�ller. However, agglomer-
ated nanoparticles larger than 100 nm are considered to be
microparticles. Microparticles have also contributed to the
suppression of an electrical tree [43, 44] by acting as a
physical barrier to the growth of tree channels, resulting in
the tree formingmore side branches when it collided with the
microparticles.

5. Chemical Bonding Study via FTIR

FTIR spectra could be used to show the nature of bonding or
chemical changes of neat silicone rubber and silicone rubber-
based nanocomposite structures. FTIR spectra of oMMT
�ller and silicone rubber-based nanocomposites (1 wt% and
3wt%) are depicted in Figure 6. 
e chemical structure (ring
molecule) of silicone rubber is depicted in Figure 7 [26].

Silicone rubber consists of organic methyl groups (CH3)
and a silicone-oxygen backbone. 
e methyl groups are
responsible for water repellence, surface hardness, and non-
combustibility, whereas the vinyl groups (CH=CH2) help

Table 2: Neat silicone rubber IR band characteristics (poly-
dimethylsiloxane) [48].

Wavenumber (cm−1) Bond

3700–3200 OH

2960–2762 CH in CH3

1640 OH in H2O

1440–1410 CH

1270–1255 Si–CH3

1200–1000 Si–O–Si

870–850 Si(CH3)3
840–790 Si(CH3)2
700 Si(CH3)

to strengthen the rigidity of the molecular structure by
creating easier cross-linkage of the molecules [45, 46]. 
e
silicone rubber was vulcanized to give the required solid
shape. Vulcanization and cross-linking are terms that refer to
the formation of chemical bonds between polymeric chains
attained under high pressure and high temperature [26]. 
e
increase in the number of hydrocarbon vinyl groups (–CH2)
is associated with the increase in the number of cross-links as
this group is part of the silicone cross-link domain [47, 48].
Moreover, the presence of cross-links reduces the swelling
(bending) capacity and inhibits the transfer of polymer chains
into solution [49]. Possible bonds in the neat silicone rubber
(polydimethylsiloxane, PDMS) are presented in Table 2.

Based on the FTIR spectra of the oMMT nano�ller in
Figure 6(a), peaks occur at 3631 cm−1, 3427 cm−1, 3246 cm−1,
2920 cm−1, and 2850 cm−1. 
e peak at 3631 cm−1 corre-
sponds to broadening of the stretching vibration of hydroxyl

groups (–OH), whereas the peaks at 3427 cm−1 and

3246 cm−1 indicate the stretching vibration of the amine
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Figure 8: Possible interface model between nanoparticle and
silicone rubber segments.

group (N–H) due to modi�cation with octadecylamine.


e peaks at 2920 cm−1 and 2850 cm−1 correspond to –CH
stretching vibrations of the methyl group (–CH3). 
e
presence of the hydroxyl (–OH) group is likely to have
originated from the –OH bond existing inside the oMMT
nano�ller molecule and bonded to the nanoparticle/silicate
layers surfaces by hydrogen bonding.

Likewise, the addition of oMMT nano�llers in the
silicone rubber matrices increased the –OH functional
groups results in the spectra band between 3650 cm−1 and
3500 cm−1, which indicates the free –OH stretching vibration
in Figure 6(b). By adding 1 wt% and 3wt% oMMT nano�ller,
the –OHbands broadened signi�cantly due to the abundance
of –OH groups. 
e hydroxyl groups on the surface of
the nanoparticles led to the formation of hydrogen bonds
between the hydroxyl groups (–OH) and the oxygen in the
siloxane, which is the backbone of silicone rubber (PDMS)
matrix.


is interpretation agrees with the studies done by Fra-
giadakis and Pissis [50] and Ramirez et al. [51] that dealt with
the hydrogen bonding between silica/PDMS �ller/polymer
and the separation studies done by Singha and 
omas [52]
and Nelson et al. [53] that explained the in�uence of the
hydrogen bond due to the presence of the hydroxyl functional
groups at the surfaces of untreated ZnO and TiO2 added to
epoxy resin. 
ese hydrogen bonds form the strong bond
and tightly bounded layers at the interfaces between the
nanoparticle and the silicone rubber matrix, as depicted in
Figure 8.

In addition, the thermal stability of silicone rubber
nanocomposites has also improved due to the ability to
resist dehydration at high temperature by the presence of a
high number of hydroxyl (–OH) groups at the nanoparticle
surfaces. Dehydration may result in weaker �ller-polymer
matrix interfaces.
e presence of a high number of hydroxyl
groups helps in hydration and removes the heat to lower
the temperature at the interface, improving the insulation
properties [51, 54].


e broad peak that appears at ∼1000–1200 cm−1 cor-
responds to Si–O–Si stretching, which may be due to

an increase in the oxidative cross-linking reaction resulting
from oxidation of the hydrocarbon groups on the polymer
main chain. 
is reaction would lead to cross-linking and
increase the network chain concentration, leading to a brittle
(hard) surface layer [55, 56]. In addition, the FTIR shows
an increase in the number of hydrocarbon methyl (CH3)
groups with increasing �ller concentration. 
e bands at

2975–2875 cm−1 correspond to the stretching vibration of the
hydrocarbonmethyl group.
e transmittance amplitude also
increased with the increase in �ller content, which shows
an increase in the alkyl groups. 
erefore, the increase in
�ller concentration contributes to the increase in cross-link
numbers of silicone rubber.

Sylgard 184 silicone rubber has a thermal stability
between −45∘C and 200∘C [57]. 
is excellent thermal sta-
bility is attributable to the high dissociation energy of the
siloxane bond, Si–O–Si, which is highly stable at a value of
445 kJ/mol [58]. However, the in�uence of temperature on
the number of cross-links could be elucidated by referring to
the following formula [35]:

�� =
3���
��V
, (1)

where �� is the elastic modulus, � is the density of silicone
rubber, � is the gas constant, � is temperature, and��V is the
average molecular weight per vulcanization point in silicone
rubber. 
e elastic modulus � increases with the decrease in
average molecular weight ��V. 
e decrease in ��V results
in an increase in the vulcanization point in silicone rubber.

us, the increase in temperature � increases the elastic
modulus �� and thereby increases the vulcanization point
density. 
e higher the elastic modulus, the stronger the
forces that are required for material deformation. 
erefore,
the electrical tree becomes more di�cult to propagate due
to the increase in the elastic modulus as a function of
temperature. 
e increase in �� increased the number of
molecular bonds due to the increase in vulcanization points
or number of cross-links that are required to be broken down
to form more coalesced cavities for electrical tree initiation
and propagation.

As a result, the resistance of the electrical tree and PD
caused by increasing vulcanization or cross-link numbers
is due to the in�uence of temperature. 
e existence of
the hydrogen bond between the nanoparticle surfaces and
silicone rubber matrices has led to the existence of bet-
ter adhesion at the �ller/polymer interface, which requires
higher dissociation energy to break the bonding for polymer
decomposition. However, in the case of silicone rubber-
based nanocomposites (1 wt% and 3wt%), the di�erence in
PD and electrical tree resistivity is due to a decrease in
inter�ller distance, which implies a better shielding e�ect
of the nanoparticles by leaving very narrow regions of
the material (silicone rubber) exposed to the discharges.

e nanoparticles may form a physical barrier against the
discharges and lead to the enormous increase in the discharge
resistance performance.With an increase in temperature, the
best PD and electrical tree resistance/inhibition performance
was exhibited by the silicone rubber-based nanocomposite
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(3 wt%) taking into account all inhibition factors as discussed
earlier.

6. Conclusions


e e�ect of temperature on electrical tree growth and
corresponding PD activity were investigated in silicone rub-
ber with di�erent levels of oMMT nano�ller content. 
e
presence of nano�ller reduced the temperature dependence
of the electrical properties of the silicone rubber matrix
such that the phase distribution of PD activities became
insensitive to changes in temperature. 
e introduction of
3 wt% oMMT nano�ller inhibited electrical tree initiation
over the temperature range with a 4-hour interval for each
experiment. Under high temperature, the vulcanization e�ect
played a role in introducingmore cross-linking in the silicone
rubber chains. 
erefore, under a high temperature up to
60∘C, electrical treeing tookmore time to propagate at room-
temperature vulcanized silicone rubber. 
e presence of a
hydroxyl group at the surface of nanoparticles led to the
formation of hydrogen bonds between the hydroxyl and the
oxygen from the siloxane backbone of the silicone rubber
matrix.
ehydrogen bond helped in strengthening the inter-
action between the nanoparticles and the polymer matrix
thus increased the physical bonding. 
is enhanced bonding
increased the insulation properties, thereby resisting PD and
electrical tree degradation. As a result, this study suggests
that oMMT nanoclay as a nano�ller could be employed in
insulating materials to improve their degradation due to
internal discharges.

Conflict of Interests


e authors declare no con�ict of interests.

Acknowledgments


e authors wish to thank Universiti Teknologi Malaysia and
Ministry of Education for �nancial support through research
Grants Vot nos. 01K07, 4F599, 4F398, and 06H77. Last but not
least, special thanks are due to Professor Dr. John Fothergill
from City University, UK, Dr. Steve Dodd, and Dr. Nikola
Chalashkanov fromUniversity of Leicester, UK, for their kind
contributions and help during the study.

References

[1] S. S. Bamji, “Electroluminescence—a technique to detect the
initiation of degradation in polymeric insulation,” IEEE Electri-
cal Insulation Magazine, vol. 15, no. 3, pp. 6–18, 1999.

[2] R. Sarathi andP.G. Raju, “Study of electrical treeing phenomena
in XLPE cable samples using acoustic techniques,” Electric
Power Systems Research, vol. 73, no. 2, pp. 159–168, 2005.

[3] M. Bao, X. Yin, and J. He, “Analysis of electrical tree propagation
in XLPE power cable insulation,” Physica B: Condensed Matter,
vol. 406, no. 8, pp. 1556–1560, 2011.

[4] X. Zheng and G. Chen, “Propagation mechanism of electrical
tree in XLPE cable insulation by investigating a double electrical

tree structure,” IEEE Transactions on Dielectrics and Electrical
Insulation, vol. 15, no. 3, pp. 800–807, 2008.

[5] L. Ying and C. Xiaolong, “A novel method for the insulation
thickness design of HV XLPE cable based on electrical treeing
tests,” IEEE Transactions on Dielectrics and Electrical Insulation,
vol. 21, no. 4, pp. 1540–1546, 2014.

[6] L. Ying and C. Xiaolong, “Electrical tree initiation in XLPE
cable insulation by application ofDCand impulse voltage,” IEEE
Transactions on Dielectrics and Electrical Insulation, vol. 20, no.
5, pp. 1691–1698, 2013.

[7] E. M. Jarvid, A. B. Johansson, J. H. M. Blennow, M. R. Ander-
sson, and S. M. Gubanski, “Evaluation of the performance of
several object types for electrical treeing experiments,” IEEE
Transactions on Dielectrics and Electrical Insulation, vol. 20, no.
5, pp. 1712–1719, 2013.

[8] J. K. Nelson, Dielectric Polymer Nanocomposites, Springer,
Boston, Mass, USA, 2010.

[9] X. Huang, F. Liu, P. Jiang, and T. Tanaka, “Is graphene oxide an
insulating material?” in Proceedings of the IEEE International
Conference on Solid Dielectrics (ICSD ’13), pp. 904–907, July
2013.

[10] W. A. Izzati, Y. Z. Arief, Z. Adzis, and M. Shafanizam, “Partial
discharge characteristics of polymer nanocomposite materials
in electrical insulation: A review of sample preparation tech-
niques, analysis methods, potential applications, and future
trends,” �e Scienti	c World Journal, vol. 2014, Article ID
735070, 14 pages, 2014.

[11] F. Guastavino, A. Dardano, S. Squarcia et al., “Electrical treeing
in LDPE nanocomposite materials,” in Proceedings of the 2009
IEEE Conference on Electrical Insulation and Dielectric Phenom-
ena, pp. 697–700, June 2009.

[12] F. Guastavino, A. Dardano, G. C. Montanari, L. Testa, and
F. Bellucci, “Electrical treeing in EVA-boehmite and EVA-
montmorillonite nanocomposites,” in Proceedings of the IEEE
Electrical Insulation Conference (EIC ’09), pp. 382–386, IEEE,
Montreal, Canada, June 2009.

[13] Z. Jinmei, G. Junguo, J. Quanquan, Z. Mingyan, and Z.
Xiaohong, “Studies on electrical tree and partial discharge
properties of PE/MMT nanocomposites,” in Proceedings of
the International Symposium on Electrical Insulating Materials
(ISEIM ’08), pp. 311–314, September 2008.

[14] S. Raetzke, Y. Ohki, T. Imai, T. Tanaka, and J. Kindersberger,
“Tree initiation characteristics of epoxy resin and epoxy/clay
nanocomoposite,” IEEE Transactions on Dielectrics and Electri-
cal Insulation, vol. 16, no. 5, pp. 1473–1480, 2009.

[15] B. X. Du, Z. L. M. Gao, and T. Han, “E�ect of temperature on
electrical tree in silicone rubber,” in Proceedings of the 10th IEEE
International Conference on Solid Dielectrics, pp. 1–4, 2010.

[16] H. G. Yaworski, G. Craig, and D. Roberts, “
e use of silicon
gels for jointing power cables,” in Proceedings of the 14th
IEEE Transmission and Distribution Conference, pp. 396–401,
September 1996.

[17] R. R. Bukovnik and P. R. Carey, “Advances in silicone gel tech-
nology for cable accessories,” in Proceedings of the IEEE Power
Engineering Society Transmission and Distribution Conference,
pp. 634–637, Dallas, Tex, USA, May 2006.

[18] H. G. Yaworski and R. R. Bukovnik, “Silicone gel technology
for power cable accessories,” in Proceedings of the IEEE/PES
Transmission and Distribution Conference and Exposition, vol.
2, pp. 837–842, November 2001.

[19] A. A. A. Jamil, M. Kamarol, M. Mariatti et al., “Organo-
montmorillonite as an electrical treeing retardant for polymeric



12 Journal of Nanomaterials

insulating materials,” in Proceedings of the IEEE International
Conference on Condition Monitoring and Diagnosis (CMD ’12),
pp. 237–240, September 2012.

[20] B. X. Du, Z. L. Ma, Y. Gao, T. Han, and Y. S. Xia, “E�ects of
nano �ller on treeing phenomena of silicone rubber nanocom-
posites,” in Proceedings of the Annual Report Conference on
Electrical Insulation and Dielectric Phenomena (CEIDP ’11), pp.
788–791, October 2011.
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