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Abstract

Background: Non-heading Chinese cabbage (NHCC, Brassica rapa ssp. chinensis) is an important leaf vegetable

grown worldwide. However, little is known about the molecular mechanisms underlying tolerance for extreme

temperature in NHCC. The limited availability of NHCC genomic information has greatly hindered functional analysis

and molecular breeding.

Results: Here, we conduct comprehensive analyses of cold and heat treatments in NHCC using RNA-seq.

Approximately 790 million paired-end reads representing 136,189 unigenes with N50 length of 1705 bp were

obtained. Totally, 14,329 differentially expressed genes (DEGs) were detected. Among which, 10 DEGs were

detected in all treatments, including 7 up-regulated and 3 down-regulated. The enrichment analyses showed 25

and 33 genes were enriched under cold and heat treatments, respectively. Additionally, 10,001 LncRNAs were

identified, and 9,687 belonged to novel LncRNAs. The expression of miRNAs were more than that of pri-miRNAs

and LncRNAs. Furthermore, we constructed a coexpression network for LncRNAs and miRNAs. It showed 67 and

192 genes were regulated by LncRNAs under cold and heat treatments, respectively. We constructed the flowchart

for identifying LncRNAs of NHCC using transcriptome. Except conducting the de novo transcriptome analyses, we

also compared these unigenes with the Chinese cabbage proteins. We identified several most important genes,

and discussed their regulatory networks and crosstalk in cold and heat stresses.

Conclusions: We presented the first comprehensive characterization for NHCC crops and constructed the flowchart

for identifying LncRNAs using transcriptome. Therefore, this study represents a fully characterized NHCC

transcriptome, and provides a valuable resource for genetic and genomic studies under abiotic stress.
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Background
Nowadays, frequent occurrences of abnormal weather

events have been observed all over the world, such as

drought and extreme temperature. These stresses ser-

iously impact plant growth and crops production [1, 2].

Recently, several progresses have been made about the

identification of stress-related genes, which potentially

are able to increase the plant tolerance [3–5]. Under-

standing the molecular mechanism of the abiotic stresses

response is important to improve tolerance using mo-

lecular techniques.

Generally, these stress signals are converted into cellular

responses through two ways, including ABA-dependent

and ABA-independent signaling pathways [6, 7]. For the

former, ABA is accumulated under osmotic stress caused

by drought. It regulates the expression of gene under

osmotic stress conditions [6, 8]. The ABA-responsive
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element (ABRE) is the major cis-element for ABA-

responsive gene expression. ABRE-binding protein

(AREB) and ABRE-binding factor (ABF) control gene ex-

pression in ABA-dependent manner [1, 9–11]. The mo-

lecular studies have revealed that ABA-independent

pathway is also important for stress tolerance in plants.

Dehydration-responsive element binding protein

1(DREB1)/C-repeat binding factor (CBF) and DREB2 are

mainly involved in cold and heat stresses, respectively

[12–15]. The DREB/CBF transcription factors (TFs) could

specific bind to DRE/CRT cis-elements in promoter of tar-

get genes [14, 16, 17]. Several proteins, such as ICE1,

ZAT12, CAMTA3, and MYB15, have been identified as

regulators of DREB1/CBF genes [12, 18, 19]. In addition,

NAC and MYB/MYC also regulate abiotic stress-

responsive genes expression [20, 21]. The studies have

demonstrated that there are interactions between ABA

signaling pathway and other signaling factors in stress re-

sponses [1, 22, 23].

Until now, a large number of transcriptome sequen-

cing projects have been conducted in many species.

Genome-wide analyses have dramatically improved the

efficiency of gene identification [16]. In Arabidopsis,

about 30 % of the transcripts were related with abiotic

stresses, and 2,409 genes played important roles in cold,

salt, and drought stresses [24]. In chrysanthemum, 8,558

dehydration-responsive transcripts were detected using

RNA-seq [25]. In wheat, about 2 % of the wheat genes

were related with the cold stress [26]. In Populus and

switchgrass, heat responsive genes were also identified

by transcriptome sequencing [27, 28]. In A. mongolicus,

9,309 up-regulated and 23,419 down-regulated genes

were identified under cold stress [29].

Brassica rapa contains several subspecies, such as

Chinese cabbage (B. rapa ssp. pekinensis), NHCC, and

turnip (B. rapa ssp. rapa) [30, 31]. The genome of Chin-

ese cabbage had been sequenced, however, there is little

information about the NHCC genome and gene dataset.

Therefore, we conducted de novo assembly and gene an-

notation without prior genome information in this study.

NHCC is one of the most important vegetables in China,

and now is cultivated extensively worldwide. It is inevit-

able injured by low or heat stresses, which can directly

lead to the production decrease and affect edible quality.

The heat stress can affect the photosynthesis, and even

induce the occurrence of several diseases, such as downy

mildew, soft rot and virus diseases. The physiological

change of temperature response mediated by several

genes has been reported in model plants [32, 33]. How-

ever, little is known about the temperature-regulated

genes and the related pathways in NHCC.

In this study, we conducted the comprehensive

characterization for NHCC using RNA-seq, and ex-

plored the effect of low and heat temperature on global

change. We identified several most important genes in

temperature response, and discussed their regulatory

networks and crosstalk in cold and heat stresses. Using

Illumina sequencing technology, we generated over 85

billion base of high quality sequence, and identified a

larger number of differentially and specifically expressed

transcripts. Furthermore, we also identified lots of

LncRNAs, and constructed the coexpression network of

LncRNAs and protein encoding genes using this tran-

scriptome dataset.

Results and discussion

RNA sequencing and de novo assembly of NHCC

transcriptome

To obtain a global overview of NHCC transcriptome

under different temperature treatments, we constructed

and sequenced 15 RNA-Seq libraries, including cold

treatments (4, 0 and -4 °C), heat treatment (44 °C), and

normal condition (25 °C). For each temperature, three

samples as the biological replications were sequenced

using Illumina HiSeq™ 2000. The base quality of reads

was checked using FastQC (Additional file 1: Figure S1).

We used relatively stringent criteria for quality control

by removing the reads with adaptors and the low quality.

Finally, 790,269,418 clean pair-end (PE) reads consisting

of 71.12 billion nucleotides (nt) were obtained with an

average GC content of 47.30 % (Table 1, Additional file

2: Table S1). After the first assembly, 1,596,012 contigs

Table 1 The summary of the sequencing and assembly

Samples NHCC

Total raw reads 857,423,614

Total clean reads 790,269,418

Total clean nucleotides (nt) 71,124,247,620

Q20 percentage 98.05 %

N percentage 0.00 %

GC percentage 47.30 %

Contig

Total number 1,596,012

Total length (nt) 542,865,388

Mean length (nt) 343

N50 593

Unigene

Total number 136,189

Total length (nt) 153,124,745

Mean length (nt) 1124

N50 1705

Total consensus sequences 136,189

Distinct clusters 73,514

Distinct singletons 62,675
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were obtained for all libraries, and the total length over

542.8 Mb (Table 1). The contigs were further joined

into136,189 unigenes using paired-end information and

gap filling process. The total length of all unigenes was

153.1 Mb, and the mean length of unigene was 1124 bp

(Table 1, Additional file 2: Table S2). The PE sequencing

not only increases the depth, but also improves de novo

assembly efficiency. The N50 achieved 1705 bp, which

was larger than most plants de novo assembled by RNA-

Seq, such as radish (1095 bp), wax gourd (1132 bp), and

celery (1088 bp) [34–36]. This phenomenon indicated

that the high quality and accuracy of our assembled

transcripts. Based on FRKM, we measured the correl-

ation of three repeats for each temperature. The results

showed that there was a good correlation among three

repeats. The pearson’s correlations of almost all com-

parisons were larger than 85 % (Fig. 1, Additional file 1:

Figure S2).

Fig. 1 Pearson correlation coefficient analysis of all 15 libraries. The PCCs were calculated using Log2(FPKM), and the values in grid represent the

PCC of any two among 15 libraries. The dashed green boxes represent the PCCs of three duplications
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Functional annotation and classification of the assembled

unigenes

Among all 136,189 unigenes, 121,744 (89.39 %) unigenes

significantly matched a sequence in at least one of the

public databases, including NCBI non-redundant protein

(Nr), Gene Ontology (GO), Clusters of Orthologous

Group (COG), Swiss-Prot and Kyoto Encyclopedia of

Genes and Genomes (KEGG) (Additional file 2: Table

S3). The size distribution of BLAST-aligned coding se-

quence (89.31 %) and predicted proteins are analyzed

(Additional file 1: Figure S3a,b). The remaining unigenes

that did not match these databases were analyzed by

three programs to predict coding regions. Finally, 2793,

2491, and 3119 coding sequences were predicted by ESTS-

can, CPC, and CNCI programs, respectively (Additional

file 1: Figure S3c, Additional file 2: Table S4). The venn

diagram showed that there were 684 coding sequences

predicted by these three programs, so these genes were

relatively reliable as coding genes (Additional file 1: Figure

S3d). A total of 105,217 coding transcripts were predicted

in our study. Then we aligned these unigenes with

the proteins of Chinese cabbage (E-value <10-10,

identity >70 %). The results showed that 93,046 uni-

genes could align to the 3,2640 Chinese cabbage pro-

teins (Fig. 2a). In addition, we found that over 70 %

NHCC transcripts could match with more than 1

Chinese cabbage genes (Fig. 2b). This phenomenon

might be caused by the genome duplication of B.

rapa. The sequences without a homologous hit might

represent novel genes in the genome, and some of

them might be the specifically expressed in NHCC

for temperature treatments. In addition, they also

might be the non-coding, alternative transcription,

lineage-specific or high allelic variant unigenes.

For Nr annotations, 104,363 unigenes matched in this

database (Additional file 2: Table S3). The result indi-

cated that 89.20 % of the top hits showed strong hom-

ology with the E-value < 1E-15 (Additional file 1: Figure

S4a). The distribution pattern showed that 87.90 % of

unigenes had a similarity higher than 60 % (Additional

file 1: Figure S4b). The majority annotated unigenes

were corresponded to the known plant genes, with 41.50

and 39.60 % matching with A. thaliana and A. lyrata, re-

spectively (Additional file 1: Figure S4c). A total of

96,314 unigenes were assigned at least one GO term,

and all GO terms were classified into three groups and

further divided into 55 functional subgroups (Additional

file 1: Figure S5). Overall, only 45,750 unigenes were

assigned to COG classification (Additional file 2: Table

S3). Among 25 COG categories, the cluster for ‘general

functions prediction only’ (36.84 %) represented the lar-

gest group, followed by ‘Transcription’, and ‘Replication,

recombination and repair’ (Additional file 1: Figure S6).

To identify the biological pathways activated in NHCC,

the assembled unigenes were annotated with KEGG. A

total of 66,419 unigenes were significantly matched in

this database, and were assigned to 128 KEGG pathways

(Additional file 2: Table S3,5). The result showed that

three largest pathway groups were metabolic pathways

(ko01100, 21.12 %), biosynthesis of secondary metabo-

lites (ko01110, 9.72 %), and plant-pathogen interactions

(ko04626, 7.27 %). Following these three groups, the

plant hormone signal transduction (ko04075) was about

6.60 % of all annotated genes. The level 1 of this path-

way was ‘Environmental Information Processing’, and the

level 2 of it was ‘Signal transduction’ in the KEGG

database.

Temperature-dependent gene expression patterns

identified by RNA-Seq in NHCC

To view the gene expression, all genes were divided into

three categories, including highly (FPKM >50), medium

(5 < FPKM ≤50), and lowly (FPKM ≤5) expressed in each

library. The results showed that most genes belonged to

lowly expressed, followed by medium, and highly

expressed (Additional file 1: Figure S7). The purple line

shows the cumulative expressed gene number as the li-

brary number increased, and 134,980 genes were de-

tected by all libraries.

To evaluate the temperature decrease course and

temperature-dependent transcriptomic activities during

cold-resistance process in NHCC, we performed a

Fig. 2 The alignment analysis for NHCC RNA-Seq transcripts and Chinese cabbage (CC) proteins. a The summary of the aligned and un-aligned

transcripts. b The distribution of the aligned transcripts of the NHCC
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temperature decrease course differential gene expression

analysis by comparing any two adjacent cold treatments,

using the higher temperature treatment as the denomin-

ator. There were 27 (33) possible patterns, including

those that increased across all treatment boundaries,

termed‘up-up-up’ (UUU); those that were similar across

all boundaries, termed ‘maintain-maintain-maintain’

(MMM); and those that decreased across all boundaries,

termed ‘decrease-decrease-decrease’ (DDD). The results

showed that genes were non-randomly represented

across all patterns, and the overall temperature-

dependent patterns are analyzed (Fig. 3, Additional file 2:

Table S6). Only few genes continuously decreased

(DDD) or increased (UUU) in expression accompanying

temperature decrease, and the number were 3 (0.002 %)

and 11 (0.008 %), respectively. However, majority genes

(79,852, 58.63 %) belonged to the MMM pattern, and

the expression almost unchanged over the temperature

decrease process. In addition to MMM, the MMU

(15,675) and DMM (13,999) were also contained more

genes than other expression patterns.

Differential expressed genes detection and compare them

among each treatment

To identify the temperature respond genes, 14,329 DEGs

were detected between each temperature-treated and

control library (FC >2 and q-value >0.8) (Fig. 4). All

DEGs were used for clustering analysis, and obtained a

well cluster results (Fig. 5a). Three repeats for each

temperature got together, and 0, 4 and 25 °C formed one

group, while -4 and 44 °C formed another group. On the

whole, all DEGs were divided into three groups, and de-

fined as I, II, and III. Most DEGs in group I belonged to

up-regulated genes under -4 °C treatment, while similar

in other four temperatures. In group II, the expression

of most DEGs under 25 and -4 °C was lower than that

under other three temperatures. In group III, most

DEGs had relatively low expression, except a few genes

under 44 °C.

To further survey the interaction of these treatments

for DEGs, we constructed venn diagram using DEGs of

each treatment. There were 5445, 7430, 8056, and 488

DEGs under 4, 0, -4, and 44 °C, respectively. Among of

them, 1075, 2865, 5254, and 286 belonged to each

treatment-specific DEGs (Fig. 5b). Interestingly, we

found 10 DEGs were detected in all treatments, includ-

ing 7 up-regulated and 3 down-regulated genes (Add-

itional file 1: Figure S8). The functional annotation

showed that most of them belonged to the stresses re-

lated protein, such as LEA14 and KIN2 (Table 2). In

addition, we also conducted qRT-PCR experiment to

verify the accuracy of the RNA-Seq. The results showed

that the expression trends of all genes were consistent

with the RNA-Seq, and most genes were also significant

differently expressed (p-value < 0.01) (Additional file 2:

Table S7, Additional file 1: Figure S9). Among all DEGs,

Fig. 3 Cold stress dependent patterns of NHCC gene expression. DGEs were determined based on a combination of q-value >0.8 and FC > =2

(or < =0.5), the two sequential temperatures were compared, with the higher temperature used as the denominator. Genes were grouped into U

(Up, FC > =2), D (Down, FC < =0.5), or M (Maintain, 0.5 < FC <2). Shown here are the 27 possible expression patterns. The x axis represents the four

point during temperature decrease and the y axis represents the Log10 FPKM. The number shown in each box was derived based on the number

of genes for each expression pattern
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809 were up-regulated, and 1,743 were down-regulated

under 4 °C; 1,937 were up-regulated, 5,493 were down-

regulated under 0 °C; 4,988 were up-regulated, 3,068

were down-regulated under -4 °C. However, there were

fewer DEGs under 44 °C than cold treatment, with only

322 were up-regulated and 166 were down-regulated

genes (Additional file 1: Figure S10). Among these

DEGs, the most treatment-specific up-regulated genes

(4804) were detected under -4 °C, and the most

treatment-specific down-regulated genes (1377) were de-

tected under 0 °C (Additional file 1: Figure S8).

The enrichment analyses revealed most DEGs related with

cold and heat stresses

To understand the function of DEGs, we have con-

ducted the GO enrichment analyses using all unigenes

as background (Additional file 2: Table S8). Under 4 °C,

several cold related GO categories were significantly

Fig. 4 Scatter plot indicating the comparative results of log transformed gene expression levels (Log10 FPKM) and DEGs (q-value >0.8 and

FC > =2 or < =0.5) distributions between control (x axis) and treatment (x axis) samples. The red dot represents up-regulated gene; the green

dot represents down-regulated gene. T25, T4, T0, TM4, and T44 represent 25, 4, 0, -4, and 44 °C, respectively. a T25 vs T4; (b) T25 vs T0; (c) T25

vs TM4; (d) T25 vs T44
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enriched, such as response to desiccation, response to

cold, response to temperature stimulus, and cold accli-

mation. The photosynthesis, light harvesting, and trans-

lation categories were the top enrichment under 0 °C.

Of course, the cold related categories were also enriched

at the top 10 categories. Under -4 °C, the mainly enrich-

ment categories were secondary metabolite biosynthetic

process, S-glycoside metabolic process, glycosinolate,

and glucosinolate metabolic process. However, we did

not detect directly cold related categories as 4 and 0 °C

at the top 10 categories. This phenomenon indicated the

regulatory mechanism might exit several differences be-

tween chilling (<7 °C) and freezing (<0 °C) temperatures,

which was also consistent with the previous report [37].

Under 44 °C, the mainly enrichment categories were

response to high light intensity, heat acclimation, photo-

synthesis, and response to heat. In addition, the photo-

synthesis was also enriched under heat stress, which

indicated that all temperature stresses could affect plant

photosynthesis. We also analyzed genes belonged to the

GO enrichment categories. Among all treatments, the

most specific genes (2713) were found under -4 °C,

followed by 0 °C (1115), 4 °C (528), and 44 °C (79). In

addition, 90 genes were identified under all three cold

treatments, and 5 genes were detected by all the cold

and heat treatments (Additional file 1: Figure S11a).

In addition, we mapped DEGs to terms in KEGG data-

base to identify significantly enriched pathways. Among

the mapped pathways, 20, 11, 22, and 5 pathways were

significantly enriched (Qvalue < 0.01) under 4, 0, -4, and

44 °C treatments, respectively (Additional file 1: Figure

S12, Table S9). Notably, common enrichments were ob-

served in photosynthesis pathway, metabolic pathway,

and photosynthesis-antenna proteins pathway in all

treatments. This results indicated that the cold and heat

stresses affected the expression of genes involved in

these pathways. Most enriched pathways were also de-

tected by the previous reports, which partly reflected the

accuracy of our results [24, 27, 29]. Interestingly, we

found transcripts involved in protein processing in endo-

plasmic reticulum pathway were significantly enriched

under 44 °C treatment, while it did not enrich in cold

treatment. This phenomenon indicated that this pathway

might only play roles in heat resistance. We also

Fig. 5 Landscape of DEGs for NHCC RNA-Seq transcriptome. a Hierarchical clustering analysis of gene expression profiles from 15 libraries with

14,329 DEGs. b The venn diagram showed the overlapping and treatment-specific DGEs in four treatments

Table 2 The expression and functional annotation of 10 DEGs identified by all the cold and heat treatments. The up/down-regulated

genes were identified by comparing the treatment (T4, T0, TM4, T44) and control (T25)

GeneID T25 T4 T0 TM4 T44 Regulation Annotation

CL4489.Contig2 0.02 24.17 22.42 26.90 11.41 Up Unknown protein

CL10212.Contig2 0.00 6.52 4.30 7.03 4.30 Up Glycosyl transferase family 1 protein

CL3727.Contig8 153.31 6.14 26.06 2.08 2.71 Down Hypothetical protein ARALYDRAFT_910104

CL11270.Contig1 0.78 21.25 81.51 13.92 43.86 Up At1g01470,a late embryogenesis abundant protein LEA14

Unigene519 0.12 209.31 1750.16 67.05 157.31 Up BN28b, stress-induced protein KIN2 mRNA

CL8814.Contig1 139.12 12.75 2.07 1.84 3.27 Down BN28a gene

Unigene16735 0.00 5.36 2.14 8.70 3.29 Up Unknown protein

CL536.Contig12 0.00 3.12 7.09 10.66 8.15 Up Wound-induced protein 1

Unigene50726 11.94 0.00 0.00 0.12 0.00 Down ATP synthase CF1 epsilon chain,DM1-3-516-R44 chloroplast

CL2980.Contig1 8.18 203.56 272.71 191.73 317.44 Up BN28a, stress-induced protein KIN2,Rapeseed KIN1 protein
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analyzed the genes belonged to the KEGG enrichment

categories. Among all treatments, the most specific

genes (1052) were found under -4 °C, followed by 0 °C

(461), 4 °C (160), and 44 °C (44). Forty-five genes were

identified under all three cold treatments, and 2 genes

were detected by all the cold and heat treatments

(Additional file 1: Figure S11b). Furthermore, we also

surveyed the enrichment genes identified by combing

the GO and KEGG databases. The results showed that

25 and 33 genes were enriched in the two databases

under cold and heat treatments, respectively (Additional

file 1: Figure S11c,d). These enriched genes will greatly en-

hance the potential utilization in cold and heat stresses of

NHCC.

Identification of abiotic stresses related transcription

factors from DEGs

Given that TFs have a major effect on the network of

temperature-responsive genes, we also identified the

temperature-inducible TFs. Overall, the number of

Dehydrin, Chloroa_b-bind, p450, AP2, PSI_PsaH, and

EF-hand was more than other TFs in three cold treat-

ments (Additional file 1: Figure S13a,b,c,d,e,f ). However,

many GST were identified under -4 °C, while they were

absent under 0 and 4 °C. This phenomenon indicated

that GST might play roles in the cold resistance below

0 °C. Interestingly, HSP70 and HSP20 were identified

under 0 and 4 °C, indicating that there was a certain in-

herent association between cold and heat regulation.

Under 44 °C, HSP20 was significant enriched, which

revealed that it played important roles in heat-resistance

regulation (Additional file 1: Figure S13g,h). In all treat-

ments, P450 and Chloroa_b-bind TFs were enriched,

which indicated that cold and heat stresses had great im-

pact on plant photosynthesis, and thus might affect crop

yields. This revealed that they were related with plant

photosynthesis, which was also consistent with previous

reports [38, 39].

Among all treatments, the most specific TFs were

identified under -4 °C (1781), followed by 0 °C (775),

and 4 °C (313) in GO enrichment (Additional file 1:

Figure S14a). In addition, 51 TFs were identified under

all three cold treatments, and 2 genes were detected by

all cold and heat treatments. Among all KEGG categor-

ies, the most specific TFs (819) were found under -4 °C,

followed by 0 °C (368), and 4 °C (128) (Additional file 1:

Figure S14b). Twenty-nine genes were identified under

all three cold treatments, and 1 genes were detected by

all cold and heat treatments. Combing GO and KEGG

enrichment analyses, 17 and 31 TFs were enriched only

under cold and heat treatments, respectively (Additional

file 1: Figure S14c,d, Table 3, Additional file 2: Table

S10).

AP2/ERF TFs mainly contained two subgroups, in-

cluding CBF and DREB2. They interacted with DRE/

CRT cis-element and regulated ABA-independent gene

expression. The CBF controlled many gene expression

under several stresses, such as drought, salinity and

freezing stresses. The DREB2 mainly affected gene

expression under osmotic and heat stresses, while it

Table 3 The intersection of differntially expressed transcription factors under cold stress in GO and KEGG enrichment categories

Unigene ID Pfam ID TF family E-value
for Pfam

T4 vs T25 T0 vs T25 TM4 vs T25

log2 ratio Qvalue log2 ratio Qvalue log2 ratio Qvalue

CL10543.Contig2 PF00067.17 p450 8.90E-32 6.74 0.8445 6.32 0.8308 6.34 0.838

CL11270.Contig2 PF03168.8 LEA_2 2.10E-18 5.78 0.836 6.05 0.8397 3.24 0.8154

CL11755.Contig1 PF00295.12 Glyco_hydro_28 2.60E-09 -11.3 0.8584 -11.3 0.8635 -11.3 0.8281

CL13372.Contig2 PF00657.17 Lipase_GDSL 5.20E-28 -3.71 0.8189 -3.64 0.818 -2.64 0.806

CL3153.Contig1 PF00201.13 UDPGT 3.90E-26 3.32 0.82 3.33 0.8193 2.79 0.8159

CL6375.Contig2 PF00067.17 p450 1.90E-22 -3.79 0.8254 -2.98 0.8155 -4.06 0.8365

Unigene12001 PF00764.14 Arginosuc_synth 6.50E-52 -11.6 0.8841 -11.6 0.8882 -11.6 0.8574

Unigene16263 PF00206.15 Lyase_1 1.40E-29 -11.32 0.8599 -11.32 0.865 -11.32 0.8298

Unigene20049 PF00314.12 Thaumatin 1.50E-16 -4.95 0.8083 -3.92 0.8048 -3.35 0.8017

Unigene20728 PF01676.13 Metalloenzyme 6.40E-21 -11.15 0.8443 -11.15 0.8502 -11.15 0.8126

Unigene22237 PF00504.16 Chloroa_b-bind 2.00E-48 2.49 0.8025 3.69 0.8241 3.23 0.8285

Unigene2424 PF00067.17 p450 6.80E-07 6.18 0.806 6.67 0.8301 7.13 0.8527

Unigene2446 PF00206.15 Lyase_1 3.00E-26 -11.94 0.9086 -11.94 0.9119 -11.94 0.8861

Unigene24606 PF02800.15 Gp_dh_C 4.60E-51 -12.68 0.9492 -12.68 0.9515 -12.68 0.9354

Unigene26264 PF02775.16 TPP_enzyme_C 1.10E-10 -11.31 0.8594 -11.31 0.8645 -11.31 0.8292

Unigene42146 PF00006.20 ATP-synt_ab 2.30E-33 -11.43 0.8698 -11.43 0.8745 -11.43 0.841

Unigene50595 PF00764.14 Arginosuc_synth 2.60E-26 -11.15 0.8443 -11.15 0.8502 -11.15 0.8126
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slightly played role in cold stress [1]. Although the func-

tions of these TFs were well explained, the interaction

among them was rarely reported, especially in B. rapa.

Therefore, we conducted correlation analysis for these

TFs, and constructed the interaction network of them

using expression values. A total of 38 unigenes were de-

tected using BLAST alignment with ABFs, CBFs, and

DREB2 of Arabidopsis (Additional file 2: Table S11). The

pearson correlations coefficient (PCC) between two of

these TFs were calculated using the expression value.

Then the interaction network was constructed using part

connections with the PCC larger than 80 %. Finally, this

network contained 95 connections, including 82 positive

and 13 negative connections (Fig. 6). This phenomenon

revealed that most connections belonged to positive re-

lationship among of these TFs. However, we noted that

CL258.Contig16, a ABF TF, had negative connections

with two DREB2A (CL13726.Contig1, CL13726.Contig2),

CBF1 (CL1909.Contig9), and CBF3 (CL1909.Contig10).

To analyze the correlation of abiotic stresses and these

TFs, we collected mainly cold and heat stresses related

genes according to previous reports [1, 12]. Then the

candidate heat and cold related genes in NHCC were

identified using BLAST alignment with the collected

genes. We calculated PCC of these candidate genes and

CBF or DREB2. The PCC values larger than 0.8 were se-

lected to construct interaction network (Additional file

1: Figure S15). This network showed that there were

more negative connections in DREB2 than that in CBF,

which only contained four negative connections. Among

all connections, we identified 228 transcripts, which had

high PCC (>90 %) with DREB2, such as HSF, LEA, and

MYB102. By CBFs, 96 transcripts were also identified,

such as COR6.6, WD40, and ABF4. Moreover, 91 tran-

scripts were detected by both DREB2 and CBF, including

GRP7, P450, PP2C, and SRK2E (Fig. 7, Additional file 2:

Table S12).

Identification and characterisation of NHCC LncRNA using

RNA-seq

To identify potential LncRNA in NHCC, all sequences

from NHCC transcriptome dataset were used. Based on

previous reports [40–42], we designed the pipeline for

LncRNA analyses. Finally, 10,001 LncRNAs were identi-

fied after a series filtering, including transcript length,

coding potential, ORF size, and the exclusion of other

Fig. 6 The interaction network for DREB2, CBF, and ABF TFs, which was constructed based on PCCs. The expression value of TFs at each treatment

was used for calculating the PCCs. The blue lines represent the positive correlation, while the red lines represent the negative correlation
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ncRNA. Among these LncRNAs, 9,687 belonged to the

novel LncRNAs. In addition, we also identified 50 pri-

miRNA through comparing with Rfam and miRBase da-

tabases for comparative analyses.

LncRNA gene expression analyses and differently

expressed LncRNAs identification

LncRNA is a group of endogenous RNAs that function

as regulators of gene expression, which are involved in

developmental and physiological processes [43]. They

are longer than 200 bp, and several of them can also act

as primary transcripts for the production of short RNAs

[44]. We assessed the expression pattern under different

temperatures using the expressed LncRNA (FPKM >0).

A total of 2,236 LncRNAs were expressed in all the

treatments. We observed that 73, 14, 107, 468, and 244

LncRNAs belonged to the temperature specificity for

T25, T4, T0, TM4, and T44, respectively (Additional file

1: Figure S16). However, a hierarchical clustering of sam-

ples showed most LncRNA was low expression in each

temperature (Additional file 1: Figure S17). In this study,

50 pri-miRNA, 10,001 LncRNAs, and 121,744 protein

coding transcripts were identified. The average, maximum,

and median expression values of these three type tran-

scripts were calculated for comparative analyses. The re-

sults showed that the expression of protein coding

transcripts were more than that of pri-miRNA and

LncRNA (Fig. 8a,b,c, Additional file 2: Table S13). Most

pri-miRNA and LncRNA had relatively low expression,

which was consistent with the previous reports [45–47],

indicating it was a common property of LncRNA. We also

investigated the temperature specific expressed transcripts

(SETs) among these three types transcripts. The results

showed that 10.0 % pri-miRNA, 9.1 % LncRNA, and 2.6 %

protein coding transcripts were detected as SETs. For pri-

miRNA, 3 SETs were detected in 44 °C, while no SET was

found in 4 and 25 °C (Fig. 8d). For LncRNA, the most

SETs were identified in -4 °C (468), followed by 44 °C

(244), and 0 °C (107) (Fig. 8e). The similar trends were

also found in the protein-coding transcripts, except the in-

verse of 0 and 25 °C (Fig. 8f).

To further investigate the share or specific of these

treatments for differently expressed LncRNAs (DELs),

we conducted the venn diagram analyses. The results

showed that 91, 418, 441, and 34 specifically expressed

LncRNAs were identified under 4, 0, -4, and 44 °C,

Fig. 7 Model for DREB2 and CBF signal regulation in response to heat and cold stresses. The overlapping or specific abiotic stresses related genes

were detected, which had high PCC (>90 %) with DREB2 or CBFs
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respectively (Additional file 1: Figure S18a). However, we

not detected the share LncRNAs among all these treat-

ments. Among of these DELs, most of them were down-

regulated, and there were the most down-regulated

LncRNAs under 0 °C (1103) than other three treatments

(9 ~ 934) (Additional file 1: Figure S18b). Interestingly,

the DEL number under three cold stresses (964 ~ 1327)

was more than that of 44 °C, which only contained 44

DELs. However, most LncRNAs (79.55 %) were up-

regulated under 44 °C, while most LncRNAs belonged to

the down-regulated under other three cold treatments

(56.21 % ~96.89 %).

Construct the coexpression network between LncRNAs

and protein-coding genes

We constructed a coexpression network for LncRNAs

and protein-coding genes according to the previously

proposed method [40]. For each treatments and for each

pair of genes (LncRNA or protein-coding), we computed

the PCCs of expression patterns using the expression

values. We found that approximately 57.59 % were posi-

tive connections, and 42.40 % were negative connections

(Additional file 1: Figure S19a). Among all connections,

the PCCs of 29.27 % were between -0.4 to -0.2, and

followed by 26.29 % connections were between 0.8 to 1.

Furthermore, we identified 65,568,352 connections be-

tween protein-coding and protein-coding genes, among

which, 42.11 % were positive connections, and 57.89 %

were negative connections (Additional file 1: Figure

S19b). However, the opposite result was found between

LncRNA and LncRNA connections, and the values were

50.12 and 49.88 % for positive and negative connections,

respectively.

To be more accurate and intuitive showed the rela-

tionship between the LncRNAs and protein-coding

genes, we selected the connections with the high correl-

ation (|PCC| > 0.95) to construct the interaction net-

work. Overall, the whole network constituted by these

connections was divided into 8 clusters, including 3

large networks and 5 relative small networks (Additional

file 1: Figure S20a). In the cluster 1, about 67 % connec-

tions with the PCC > 0.95, and ~33 % with the PCC = 1.

The PCCs of all connections in the cluster 2 were larger

than 0.95, but less than 1. Only three connections with

PCC less than -0.95 were located in the cluster1 and

cluster3. Most connections (362,213) in the networks

belonged to positive, and only 636 connections were

negative correlation (Additional file 1: Figure S20b). This

phenomenon was also found in LncRNA vs LncRNA

and protein-coding vs protein-coding genes. Among all

of these three types, 99.72 % connections were positive,

and 0.28 % were negative connections.

To further analyze the correlation between LncRNA

and protein-coding genes under temperature stresses,

we annotated the function of the target genes. A total of

67 target genes were regulated by LncRNAs under all

three cold treatments, and comparing them with Arabi-

dopsis (Additional file 2: Table S14). The annotation

showed that most of them belonged to the cold respond

proteins, such as CBF1, COR6.6, and LEA14. Similar, we

Fig. 8 The comparative analyses of LncRNA, pri-miRNA, and protein-coding genes expression pattern. a, b, c The average, maximum, and median

expression analysis of LncRNA, pri-miRNA, and protein coding transcripts in NHCC using boxplot. d, e, f The temperature specific expressed

transcripts of LncRNA, pri-miRNA, and protein coding transcripts in NHCC
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identified 192 target genes of LncRNAs under 44 °C

treatment, and most of them belonged to the heat re-

spond genes, such as HSP, LTP, and CBF4 (Additional

file 2: Table S15). Furthermore, we also found several

target genes of LncRNAs under cold and heat stresses,

such as KIN2. This phenomenon indicated that they

might play important roles in the corsstalk between cold

and heat stresses responses.

Conclusion
In this study, approximately 790 million paired-end

reads representing 136,189 unigenes with a total length

of 153.1 Mb were obtained. Only few genes were DDD

or UUU expression patterns, and majority genes

belonged to MMM pattern during the temperature de-

crease process. 14,329 DEGs were detected between at

least one treatment and control library. Among which,

10 DEGs were identified in all treatments, including 7

up-regulated and 3 down-regulated genes. The enrich-

ment analyses demonstrated that most temperature re-

lated categories were discovered under cold and heat

treatments. Among the enrichment categories, 25 and

33 genes were identified in both CO and KEGG data-

bases under cold and heat treatments, respectively.

Totally, 10,001 LncRNAs were identified from NHCC

transcriptome dataset, and 9,687 belonged to novel

LncRNAs. The analyses indicated the expression of pro-

tein coding transcripts were higher than that of pri-

miRNA and LncRNA. We constructed a coexpression

network for LncRNAs and protein-coding genes. A total

of 67 and 192 target genes were regulated by LncRNAs

under three cold and heat treatments, respectively. Fur-

thermore, we also identified several shared target genes

of LncRNAs under cold and heat treatments, which in-

dicated that they might play important roles in the cors-

stalk between cold and heat stresses.

In conclusion, we conduct comprehensive analyses for

cold and heat stresses in NHCC using RNA-seq, and

identified numerous differentially and specifically

expressed transcripts. Many important genes and TFs

response to treatment stress were detected, and their

crosstalk between cold and heat stress responses was

discovered. In addition, we also identified large number

of LncRNAs, and constructed the coexpression network

of LncRNAs and protein encoding genes. This study

provides a platform for elucidating physiologic responses

to low and high temperature in B. rapa.

Methods
Plant materials, growth conditions, and treatments

The NHCC advanced inbred line, ‘Suzhouqing’, was used

in this study. The surface-sterilized seeds were grown in

pots containing a soil: vermiculite mixture (3:1) in a

controlled-environment growth chamber programmed

for 16/8 h at 25/18 °C for day/night. Seedlings at the

five-leaf stage were transferred to growth chambers set

at -4, 0, 4 °C as cold treatments, 25 °C as control, and

44 °C as heat treatment under 4 h for RNA-Seq and

qRT-PCR. Three samples of each treatment were gener-

ated from different batches of plants for three biological

replicates. All leaf samples collected from control and

treated plants were washed with distilled water, immedi-

ately frozen in liquid nitrogen, and stored at −80 °C for

RNA extraction.

RNA extraction for transcriptome sequencing and RT-PCR

validation

The RNA was isolated from leaves using RNA kit (Tian-

gen, Beijing, China) according to manufacturer’s instruc-

tions. RNA samples were treated with RNase free DNase

I to avoid DNA contamination. The RNA was reverse

transcribed into cDNA using Prime Script RT reagent

Kit (TaKaRa, Kyoto, Japan). The cDNA libraries were

constructed using an mRNA-seq assay with a fragment

length range of 200 bp (±25 bp). Finally, the library was

sequenced for paired-end reads of 90 bp using Illumina

HiSeq™ 2000 platform, which was performed by the

Beijing Genomics Institute (BGI) (http://www.genomics.cn/

index). For qRT-PCR, the actin gene (AF111812) was

used as an internal control to normalize the expression

level of the target gene. Primer 5.0 designed the specific

primers according to gene sequences. The qRT-PCR as-

says were performed with three biological and technical

replicates. Each reaction was performed in 20-μL reac-

tion mixtures containing a diluted cDNA sample as

template, SYBR Premix Ex Taq (2×) (TaKaRa, Kyoto,

Japan) and gene-specific primers. qRT-PCR was per-

formed according to our previous report [48]. The com-

parative Ct value method was adopted to analyze the

relative gene expression. RNA expression levels relative

to actin gene were calculated as 2–ΔΔCT according to a

previous analysis [48, 49].

Data filtering and de novo assembly

Raw reads generated by Illumina Hiseq™ 2000 were ini-

tially processed to get clean reads through the following

three steps. i) Remove reads with adaptors contamin-

ation; ii) Discard reads with ambiguous sequences “N”

larger than 5 %; iii) Remove low quality reads, which

contained more than 20 % Q <20 bases [50]. In addition,

we used FastQC (http://www.bioinformatics.babraham.a-

c.uk/projects/fastqc/) to check and visualize the quality

of RNA-seq reads (Additional file 1: Figure S1). After fil-

tering, all clean reads were assembled using a de novo

assembly software Trinity [51]. Firstly, clean reads with a

certain length of overlap were combined to generated

contigs. Then, the paired-end reads were realigned to

contigs to obtain unigene, which could identify different
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contigs in the same transcript and ensure the interval

among these contigs. The contigs in one transcript were

assembled by Trinity and gained the sequence not being

extended on either end, which defined as unigene [34].

Then, the TGICL program was used to delete redundant

unigene and further assembled all unigenes to form a

single set of non-redundant unigenes [52].

Gene expression quantification and differential

expression analyses

RNA-Seq reads were aligned to the assembled tran-

scripts using TopHat pipeline with the built-in Bowtie

mapping program [53]. The expression of all unigenes

was estimated by calculating read density as ‘fragments

per kilobase of exon per million mapped reads’ (FPKM)

[54]. The DEGs (FC >2, q-value >0.8) between normal

and stress-treated conditions were identified using

NOISeq (http://www.bioconductor.org/) [55]. GO en-

richment analyses were performed using Blast2GO [56].

The temperature-dependent gene expression patterns

were analyzed according to the previous report [57].

The comparisons were made between two adjacent

temperatures—that is, 25 °C vs 4 °C, 4 °C vs 0 °C, and 0 °

C vs -4 °C. A gene with FC > =2 was grouped into ‘up’ pat-

tern, a gene with FC < =0.5 was grouped into ‘decrease’, and

the remaining genes were grouped into ‘maintain’. There-

fore, a gene was grouped to 1 out of 27 patterns, ranging

from up-up-up (UUU), maintain-maintain-maintain

(MMM), to decrease-decrease-decrease (DDD).

Functional annotation and classification of the transcripts

All assembled transcripts were annotated with the

publicly available protein databases, including Nr (http://

www.ncbi.nlm.nih.gov), GO (http://www.geneontology.org),

COG (http://www.ncbi.nlm.nih.gov/COG), Swiss-Prot pro-

tein (http://www.expasy.ch/sprot), and KEGG (http://

www.genome.jp/kegg) databases using BLAST (E-value

<10-5). Then, the best alignments were used to de-

cide sequence direction and to predict coding re-

gions of the unigenes. ESTScan software was used to

decide sequence direction and coding regions when a uni-

gene unaligned to none of the above databases [58].

WEGO software was used to conduct GO classifica-

tion for understanding the distribution of gene func-

tion [59]. The unigenes were also aligned to COG

database to predict and classify possible functions. In

addition, KEGG was used to annotate the pathway of

the unigenes.

LncRNA detection

To de novo detect LncRNAs using RNA-seq, we devel-

oped a flowchart according to previous reports with

slightly modification (Additional file 1: Figure S21) [40,

41, 60, 61]. We applied several filters to ensure reliability

of LncRNAs. Firstly, all unigenes (136,189) were anno-

tated using BLAST (E-value <10-5) alignment with

NR,NT,Swiss-Prot,KEGG,COG, and GO databases.

There were 14,445 unigenes un-annotated by any pro-

tein databases above mentioned. Among which, 14,300

unigenes selected for transcripts greater than or equal to

200 bp. Secondly, Coding-Non-Coding Index (CNCI,

http://www.bioinfo.org/software/cnci) was applied on all

candidate unigenes in order to distinguish protein-

coding and non-coding sequences [62]. The unigenes

with score <0 were defined as non-coding. In addition,

Coding Potential Calculator (CPC, http://cpc.cbi.pku.e

du.cn) was also used for identifying all candidate tran-

script models in order to assess their coding potential by

a second independent method [63]. In order to extract

potential non-coding transcripts with a high reliability

from our dataset, all transcripts with a score (CPC < -1)

were retained as potential non-coding. By combining

these two methods, 10,930 unigenes were identified as po-

tential non-coding RNAs. Thirdly, we discard transcripts

with an ORF greater than 100 amino acids by ORF-

Predictor (E-value <10-5), and 813 unigenes were discard.

Finally, 10,117 candidate transcripts were identified and

compared against several non-coding RNA databases, in-

cluding Rfam, miRBase, NONCODE with designated

threshold value (E-value <10-5, identity >90 %) by BLAST

[64–66]. Candidate transcript models with known protein

motifs were discarded. We obtained 50 pri-miRNA se-

quences by comparing with the miRBase and Rfam data-

bases. To identify LncRNA, we filtered other non-coding

RNAs through comparing with Rfam and NONCODE da-

tabases. Finally, 10,001 unigenes were identified as

LncRNA based on a series of analyses above mentioned.

Furthermore, among which, 9,687 belonged to the novel

novel LncRNAs by comparing with NONCODE databases.

Statistical analysis

The differential expression levels of genes under the dif-

ferent temperatures were clustered using Cluster pro-

gram (http://bonsai.hgc.jp/~mdehoon/software/cluster),

and visualized using Tree View software (http://jtree

view.sourceforge.net/) [67]. Using in-house Perl script,

PCCs were calculated for correlation studies, including

the three repeats correlation, LncRNA and target mRNA

correlation, and key candidate mRNA-mRNA correl-

ation. The coexpression interaction networks were con-

structed using Cytoscape (http://www.cytoscape.org/)

according to PCC [68]. The numbers of specific and

common genes were plotted using Venn diagram in R

package [69].

Ethics and consent to participate

This article does not contain any human or animals data

performed by any of the other committee.

Song et al. BMC Genomics  (2016) 17:297 Page 13 of 15

http://www.bioconductor.org/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.geneontology.org/
http://www.ncbi.nlm.nih.gov/
http://www.expasy.ch/sprot
http://www.genome.jp/kegg
http://www.genome.jp/kegg
http://www.bioinfo.org/software/cnci
http://cpc.cbi.pku.edu.cn/
http://cpc.cbi.pku.edu.cn/
http://bonsai.hgc.jp/~mdehoon/software/cluster
http://jtreeview.sourceforge.net/
http://jtreeview.sourceforge.net/
http://www.cytoscape.org/


Consent to publish

Not applicable.

Availability of data and materials

The RNA sequence dataset supporting the results of this

article is available in available on NHCC Data Center

under Project P002 (http://nhccdata.njau.edu.cn/).

Additional files

Additional file 1: Figures S1-S21. (PDF 2762 kb)

Additional file 2: Tables S1-S15. (XLS 9790 kb)

Abbreviations

DEGs: differentially expressed genes; DELs: differently expressed LncRNAs;

FPKM: fragments per kilobase of exon per million mapped reads;

NHCC: Non-heading Chinese cabbage; PCC: pearson correlations coefficient;

SETs: specific expressed transcripts.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The study was conceived by XH and XS. XS, WD and HT contributed to data

collection and bioinformatics analysis. ZH and GL performed the

experiments. XS and YL participated in preparing and writing the

manuscript. All authors contributed to revising the manuscript. All authors

had read and approved the final manuscript.

Acknowledgements

We thank Beijing Genomics Institute (BGI) for their help with the RNA-Seq

and bioinformatics analyses.

Funding

This work was supported by the National Natural Science Foundation of

China (Key Program, No. 31330067), the Science and Technology Support

Program of Tangshan City (grant no. 15120204a), and the Shanghai ‘2011’

program (no. ZF12051301).

Author details
1State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key

Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in

East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing

210095, China. 2Center of Genomics and Computational Biology, College of

Life Sciences, North China University of Science and Technology, Tangshan,

Hebei 063000, China.

Received: 22 September 2015 Accepted: 16 April 2016

References

1. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. The transcriptional

regulatory network in the drought response and its crosstalk in abiotic

stress responses including drought, cold and heat. Front Plant Sci.

2014;5:170.

2. Glazebrook J. Genes controlling expression of defense responses in

Arabidopsis–2001 status. Curr Opin Plant Biol. 2001;4(4):301–8.

3. Rout G, Senapati S. Stress Tolerance in Plants: A Proteomics Approach.

Springer India. 2013;359–386.

4. Prasch CM, Sonnewald U. Simultaneous application of heat, drought, and

virus to Arabidopsis plants reveals significant shifts in signaling networks.

Plant Physiol. 2013;162(4):1849–66.

5. Krasensky J, Jonak C. Drought, salt, and temperature stress-induced

metabolic rearrangements and regulatory networks. J Exp Bot.

2012;63(4):1593–608.

6. Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and

ABA-independent signaling in response to osmotic stress in plants. Curr

Opin Plant Biol. 2014;21C:133–9.

7. Tuteja N. Abscisic Acid and abiotic stress signaling. Plant Signal Behav.

2007;2(3):135–8.

8. Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and

signalling. Trends Plant Sci. 2010;15(7):395–401.

9. Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. Pivotal role of the AREB/ABF-SnRK2

pathway in ABRE-mediated transcription in response to osmotic stress in

plants. Physiol Plant. 2013;147(1):15–27.

10. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. ABA-mediated

transcriptional regulation in response to osmotic stress in plants. J Plant Res.

2011;124(4):509–25.

11. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K,

Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3 are master transcription

factors that cooperatively regulate ABRE-dependent ABA signaling involved

in drought stress tolerance and require ABA for full activation. Plant J.

2010;61(4):672–85.

12. Chinnusamy V, Zhu JK, Sunkar R. Gene regulation during cold stress

acclimation in plants. Methods Mol Biol. 2010;639:39–55.

13. Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K.

Dual function of an Arabidopsis transcription factor DREB2A in

water-stress-responsive and heat-stress-responsive gene expression. Proc

Natl Acad Sci U S A. 2006;103(49):18822–7.

14. Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M,

Yoshiwara K, Matsukura S, Morishita Y, et al. Metabolic pathways

involved in cold acclimation identified by integrated analysis of

metabolites and transcripts regulated by DREB1A and DREB2A. Plant

Physiol. 2009;150(4):1972–80.

15. Song X, Li Y, Hou X. Genome-wide analysis of the AP2/ERF transcription

factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC

Genomics. 2013;14:573.

16. Tian DQ, Pan XY, Yu YM, Wang WY, Zhang F, Ge YY, Shen XL, Shen FQ, Liu

XJ. De novo characterization of the Anthurium transcriptome and analysis

of its digital gene expression under cold stress. BMC Genomics. 2013;14:827.

17. Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration

and low temperature: differences and cross-talk between two stress

signaling pathways. Curr Opin Plant Biol. 2000;3(3):217–23.

18. Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF. Roles for Arabidopsis

CAMTA transcription factors in cold-regulated gene expression and freezing

tolerance. Plant Cell. 2009;21(3):972–84.

19. Kim Y, Park S, Gilmour SJ, Thomashow MF. Roles of CAMTA transcription

factors and salicylic acid in configuring the low-temperature transcriptome

and freezing tolerance of Arabidopsis. Plant J. 2013;75(3):364–76.

20. Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory

networks in response to abiotic stresses in Arabidopsis and grasses. Plant

Physiol. 2009;149(1):88–95.

21. Saibo NJ, Lourenco T, Oliveira MM. Transcription factors and regulation of

photosynthetic and related metabolism under environmental stresses. Ann

Bot. 2009;103(4):609–23.

22. Roychoudhury A, Paul S, Basu S. Cross-talk between abscisic acid-dependent

and abscisic acid-independent pathways during abiotic stress. Plant Cell

Rep. 2013;32(7):985–1006.

23. Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H,

Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two

cis-acting elements, ABRE and DRE, in ABA-dependent expression of

Arabidopsis rd29A gene in response to dehydration and high-salinity

stresses. Plant J. 2003;34(2):137–48.

24. Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF. Transcriptome

changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant

Physiol. 2002;130(4):2129–41.

25. Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B.

Transcriptome sequencing and whole genome expression profiling of

chrysanthemum under dehydration stress. BMC Genomics. 2013;14:662.

26. Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ. Plant responses to

cold: Transcriptome analysis of wheat. Plant Biotechnol J. 2010;8(7):749–71.

27. Chen J, Yin W, Xia X. Transcriptome Profiles of Populus euphratica upon

Heat Shock stress. J Appl Stat. 2014;15(5):326–40.

28. Li YF, Wang Y, Tang Y, Kakani VG, Mahalingam R. Transcriptome analysis of

heat stress response in switchgrass (Panicum virgatum L.). BMC Plant Biol.

2013;13:153.

Song et al. BMC Genomics  (2016) 17:297 Page 14 of 15

http://nhccdata.njau.edu.cn/
dx.doi.org/10.1186/s12864-016-2625-2
dx.doi.org/10.1186/s12864-016-2625-2


29. Pang T, Ye CY, Xia X, Yin W. De novo sequencing and transcriptome

analysis of the desert shrub, Ammopiptanthus mongolicus, during cold

acclimation using Illumina/Solexa. BMC Genomics. 2013;14:488.

30. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I,

Cheng F, et al. The genome of the mesopolyploid crop species Brassica

rapa. Nat Genet. 2011;43(10):1035–9.

31. Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X. BRAD, the

genetics and genomics database for Brassica plants. BMC Plant Biol.

2011;11:136.

32. Robinson SJ, Parkin IA. Differential SAGE analysis in Arabidopsis uncovers

increased transcriptome complexity in response to low temperature. BMC

Genomics. 2008;9:434.

33. Glaubitz U, Li X, Köhl KI, van Dongen JT, Hincha DK, Zuther E. Differential

physiological responses of different rice (Oryza sativa) cultivars to elevated

night temperature during vegetative growth. Funct Plant Biol.

2014;41(4):437–48.

34. Wang Y, Pan Y, Liu Z, Zhu X, Zhai L, Xu L, Yu R, Gong Y, Liu L. De novo

transcriptome sequencing of radish (Raphanus sativus L.) and analysis of

major genes involved in glucosinolate metabolism. BMC Genomics.

2013;14:836.

35. Jiang B, Xie D, Liu W, Peng Q, He X. De novo assembly and characterization

of the transcriptome, and development of SSR markers in wax gourd

(Benicasa hispida). PLoS One. 2013;8(8):e71054.

36. Li M-Y, Wang F, Jiang Q, Ma J, Xiong A-S. Identification of SSRs and

differentially expressed genes in two cultivars of celery (Apium graveolens L.)

by deep transcriptome sequencing. Horticulture Res. 2014;1:10.

37. Chinnusamy V, Zhu J, Zhu J-K. Cold stress regulation of gene expression in

plants. Trends Plant Sci. 2007;12(10):444–51.

38. Pan Y, Michael TP, Hudson ME, Kay SA, Chory J, Schuler MA. Cytochrome

P450 Monooxygenases as Reporters for Circadian-Regulated Pathways. Plant

Physiol. 2009;150(2):858–78.

39. Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK.

Regulation of photosynthetic light harvesting involves intrathylakoid lumen

pH sensing by the PsbS protein. J Biol Chem. 2004;279(22):22866–74.

40. Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC,

Grutzner F, Kaessmann H. The evolution of lncRNA repertoires and

expression patterns in tetrapods. Nature. 2014;505(7485):635–40.

41. Boerner S, McGinnis KM. Computational identification and functional

predictions of long noncoding RNA in Zea mays. PLoS One.

2012;7(8):e43047.

42. Ilott NE, Ponting CP. Predicting long non-coding RNAs using RNA

sequencing. Methods. 2013;63(1):50–9.

43. Ounzain S, Micheletti R, Beckmann T, Schroen B, Alexanian M, Pezzuto I,

Crippa S, Nemir M, Sarre A, Johnson R, et al. Genome-wide profiling of the

cardiac transcriptome after myocardial infarction identifies novel heart-specific

long non-coding RNAs. Eur Heart J. 2014;36(6):353–68a.

44. Kaikkonen MU, Lam MTY, Glass CK. Non-coding RNAs as regulators of gene

expression and epigenetics. Cardiovasc Res. 2011;90(3):430–40.

45. Reis EM, Verjovski-Almeida S. Perspectives of Long Non-Coding RNAs in

Cancer Diagnostics. Front Genet. 2012;3:32.

46. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL.

Integrative annotation of human large intergenic noncoding RNAs reveals

global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27.

47. Lv J, Cui W, Liu H, He H, Xiu Y, Guo J, Liu H, Liu Q, Zeng T, Chen Y, et al.

Identification and characterization of long non-coding RNAs related to

mouse embryonic brain development from available transcriptomic data.

PLoS One. 2013;8(8):e71152.

48. Kanchiswamy CN, Mohanta TK, Capuzzo A, Occhipinti A, Verrillo F, Maffei

ME, Malnoy M. Differential expression of CPKs and cytosolic Ca2+ variation

in resistant and susceptible apple cultivars (Malus x domestica) in response

to the pathogen Erwinia amylovora and mechanical wounding. BMC

Genomics. 2013;14:760.

49. Pfaffl MW. A new mathematical model for relative quantification in real-time

RT-PCR. Nucleic Acids Res. 2001;29(9):e45.

50. Liu T, Zhu S, Tang Q, Chen P, Yu Y, Tang S. De novo assembly and characterization

of transcriptome using Illumina paired-end sequencing and identification of

CesA gene in ramie (Boehmeria nivea L. Gaud). BMC Genomics. 2013;14:125.

51. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis

X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome

assembly from RNA-Seq data without a reference genome. Nat

Biotechnol. 2011;29(7):644–52.

52. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y,

White J, Cheung F, Parvizi B, et al. TIGR Gene Indices clustering tools

(TGICL): a software system for fast clustering of large EST datasets.

Bioinformatics. 2003;19(5):651–2.

53. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with

RNA-Seq. Bioinformatics. 2009;25(9):1105–11.

54. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ,

Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by

RNA-Seq reveals unannotated transcripts and isoform switching during cell

differentiation. Nat Biotechnol. 2010;28(5):511–5.

55. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential

expression in RNA-seq: a matter of depth. Genome Res. 2011;21(12):2213–23.

56. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ,

Robles M, Talon M, Dopazo J, Conesa A. High-throughput functional

annotation and data mining with the Blast2GO suite. Nucleic Acids Res.

2008;36(10):3420–35.

57. Yu Y, Fuscoe JC, Zhao C, Guo C, Jia M, Qing T, Bannon DI, Lancashire L, Bao

W, Du T, et al. A rat RNA-Seq transcriptomic BodyMap across 11 organs and

4 developmental stages. Nat Commun. 2014;5:3230.

58. Iseli C, Jongeneel CV, Bucher P. ESTScan: a program for detecting,

evaluating, and reconstructing potential coding regions in EST sequences.

Proc Int Conf Intell Syst Mol Biol 1999:138-148.

59. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund

L, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res.

2006;34:W293–7.

60. Weikard R, Hadlich F, Kuehn C. Identification of novel transcripts and

noncoding RNAs in bovine skin by deep next generation sequencing. BMC

Genomics. 2013;14:789.

61. Billerey C, Boussaha M, Esquerre D, Rebours E, Djari A, Meersseman C, Klopp

C, Gautheret D, Rocha D. Identification of large intergenic non-coding RNAs

in bovine muscle using next-generation transcriptomic sequencing. BMC

Genomics. 2014;15:499.

62. Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y. Utilizing

sequence intrinsic composition to classify protein-coding and long non-

coding transcripts. Nucleic Acids Res. 2013;41(17):e166.

63. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G. CPC: assess the

protein-coding potential of transcripts using sequence features and support

vector machine. Nucleic Acids Res. 2007;35:W345–9.

64. Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR,

Gardner PP, Bateman A. Rfam 11.0: 10 years of RNA families. Nucleic Acids

Res. 2013;41:D226–32.

65. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation

and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–7.

66. Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, Zhu W, Wu W, Chen R, Zhao Y.

NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic

Acids Res. 2014;42:D98–103.

67. Saldanha AJ. Java Treeview–extensible visualization of microarray data.

Bioinformatics. 2004;20(17):3246–8.

68. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas

R, Avila-Campilo I, Creech M, Gross B, et al. Integration of biological

networks and gene expression data using Cytoscape. Nat Protoc.

2007;2(10):2366–82.

69. Chen H, Boutros PC. VennDiagram: a package for the generation of

highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics.

2011;12:35.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Song et al. BMC Genomics  (2016) 17:297 Page 15 of 15


	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	RNA sequencing and de novo assembly of NHCC transcriptome
	Functional annotation and classification of the assembled unigenes
	Temperature-dependent gene expression patterns identified by RNA-Seq in NHCC
	Differential expressed genes detection and compare them among each treatment
	The enrichment analyses revealed most DEGs related with cold and heat stresses
	Identification of abiotic stresses related transcription factors from DEGs
	Identification and characterisation of NHCC LncRNA using RNA-seq
	LncRNA gene expression analyses and differently expressed LncRNAs identification
	Construct the coexpression network between LncRNAs and protein-coding genes

	Conclusion
	Methods
	Plant materials, growth conditions, and treatments
	RNA extraction for transcriptome sequencing and RT-PCR validation
	Data filtering and de novo assembly
	Gene expression quantification and differential expression analyses
	Functional annotation and classification of the transcripts
	LncRNA detection
	Statistical analysis
	Ethics and consent to participate
	Consent to publish
	Availability of data and materials

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Funding
	Author details
	References

