
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Newcastle University ePrints - eprint.ncl.ac.uk 

 

Barbero R, Westra S, Lenderink G, Fowler HJ.  

Temperature-extreme precipitation scaling: A two-way causality? 

International Journal of Climatology 2017 

 

Copyright: 

This is the peer reviewed version of the above article, which has been published in final form at 

https://doi.org/10.1002/joc.5370. This article may be used for non-commercial purposes in accordance 

with Wiley Terms and Conditions for Self-Archiving. 

 

DOI link to article: 

https://doi.org/10.1002/joc.5370 

 

Date deposited:   

31/01/2018 

 

Embargo release date: 

05 December 2018  

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=244634
https://doi.org/10.1002/joc.5370


International Journal of Climatology IJOC 00: 1–5 (0000)

1

2

Temperature-extreme precipitation scaling: a two-way causality?3

R. Barberoab∗S. Westrac G. Lenderinkd H. J. Fowler a
4

a School of Engineering, Newcastle University, Newcastle-upon-Tyne, United-Kingdom5

b Irstea, Mediterranean Ecosystems and Risks, Aix-en-Provence, France6

c School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, Australia7

d Royal Netherlands Meteorological Institute, De Bilt, The Netherlands8

⇤Correspondence to: renaud.barbero@irstea.fr9

10

Extreme precipitation events are widely thought to intensify in a warmer atmosphere

through the Clausius-Clapeyron equation. The temperature-extreme precipitation

scaling was proposed to analyze the temperature dependency of short-duration extreme

precipitation and since then, the concept has been widely used in climatology. Bao

et al. (2017) (Nature Climate Change, DOI:10.1038/NCLIMATE3201) suggest that

the apparent scaling reflects not only how surface air properties affect extreme

precipitation, but how synoptic conditions and localised cooling due to the storm itself

affect the scaling – implying two-way causality. We address here critical issues of this

paper and provide evidence that dew point temperature drives extreme precipitation,

with the direction of causality reversed only for the storm’s peak intensity. This physical

inference may serve as a basis to better quantify scaling rates and to help establish the

relationship between extreme precipitation and environmental conditions in the current

climate, and thereby provide insights into future changes to precipitation extremes due

to climate change.
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1. Introduction13

In a recent paper (Nature Climate Change, DOI:10.1038/NCLIMATE3201), Bao et al. (2017) study future changes to precipitation14

extremes in Australia under a warming climate using a regional climate model with parameterised convection. They report on15

projections of a uniform increase in precipitation extremes across Australia, including the northern half of the country where there16

is a negative historical scaling relationship between temperature and extreme precipitation (Hardwick Jones et al. 2010; Herath et al.17

2017), in agreement with what is generally observed in tropical regions (Utsumi et al. 2011; Maeda et al. 2012; Wasko et al. 2016).18

While the moisture-holding capacity of the atmosphere is expected to increase with surface temperature through the Clausius-Clapeyron19

(CC) equation (Pall et al. 2007), the negative scaling observed in tropical regions is generally attributed to limitations in atmospheric20

moisture at higher temperatures (Hardwick Jones et al. 2010; Westra et al. 2014), particularly at extreme precipitation percentiles21

and for longer storm durations (Wasko et al. 2015). In contrast, Bao et al. (2017) attribute the negative historical apparent scaling22

relationship to lower temperatures associated with storms which arise from local saturated downdraughts and evaporative cooling of23

the rain itself and from synoptic atmospheric properties such as colder air found generally in low-pressure systems. Thus they suggest24

that the apparent scaling reflects not only how surface air properties affect extreme precipitation, but also how atmospheric conditions25

that are correlated with precipitation affect surface air properties – implying two-way causality. The idea that the atmosphere drives26

air surface temperature as well as precipitation (i.e., wet conditions favor less sunshine and more evaporative cooling) is not new and27

previous findings indicate that neither temperature nor precipitation should be interpreted without considering their strong covariability28

(Trenberth and Shea 2005). This mutual control is often observed across various time scales and under favorable circulation patterns,29

antecedent high sea surface temperature may enhance evaporation and provide additional moisture for coastal areas (Lenderink et al.30

2009), implying a lagged relationship between temperature and precipitation. Previous work has examined how scaling results can31

be altered by a temporary localised cooling in air surface temperature associated with precipitation extremes by considering air mass32

properties during but also a few hours before the shower (Lenderink et al. 2011), with Bao et al. (2017) suggesting that this will shift33
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many events to lower daily temperature bins. As the magnitude of the ’cooling effect’ is linked to event size, the largest precipitation34

events will cause the greatest local cooling, and thus move into lower temperature bins, leading to a reduction or reversal in the35

theoretical Clausius-Clapeyron scaling. If, as the authors claim, this is the primary reason for negative scaling relationships observed36

in tropical regions, then the historical scaling would be an irrelevant concept with which to examine future changes to precipitation37

extremes, at least in the tropical zone.38

We argue here that the first-order driver of the apparent negative scaling relationship observed at Darwin is not a temporary localised39

cooling in surface air temperature associated with precipitation extremes as proposed in Bao et al. (2017). Instead, using quality40

controlled data from the meteorological station at Darwin Airport (ID 014015, 130.89�E-12.42�S) providing both temperature and41

precipitation data from 1954-2007, we show that i) the cooling effect shown in Bao et al. (2017) can be obtained simply as an artefact of42

data sampling based on the temporal autocorrelation of synoptic systems, ii) positive scaling is obtained when the dew point temperature43

coincident to the precipitation day (which reflects the actual amount of moisture in the atmosphere) is used as a scaling variable and iii)44

short-duration (hourly) precipitation extremes intensify with increased dew point temperature for hours preceding the peak intensity; a45

cooling effect due to the storm itself is evident only during the peak intensity of the storm.46

2. Results and discussion47

Bao et al. (2017) illustrate the cooling effect in Darwin with a composite analysis of observed temperature spanning from 7-days48

before to 7-days after extreme precipitation days grouped into different temperature bins, which are ordered based on the temperature49

on the day of the storm. They conclude that the cooling effect coincident with extreme precipitation may move these events to colder50

temperature bins in the precipitation scaling diagram, thereby reducing the apparent scaling (see Figure 2a in their paper). This effect51

is thought to dominate precipitation scaling in tropical regions, where the temperature range across the year is small. Repeating the52

analysis of Bao et al. (2017) at Darwin using 10 temperature bins, we found similar results (Figure 1a). However, since temperature53

at a given time-step is correlated with temperature at the previous and subsequent time steps, we would expect that temperature54

would return to the average daily temperature for that month as we extend backward and forward in time simply as a result of55

the autocorrelation properties of the time series commonly observed in atmospheric synoptic conditions. We illustrate this statistical56

property of autocorrelated data in a simple example where the temporal pattern of daily temperature observed at Darwin is replicated57

using a time series (N=10,000) with µ=0, σ=1, and the same skewness and lag-1 autocorrelation as the original data. The synthetic58

time series is then stratified by quantile (from 0.1 to 1) based on the synthetic temperature on the central day (lead/lag=0). We show59

the temporal evolution of temperature before and after the values observed in each quantile in Figure 1b. As expected, the elapsed time60

before returning to normal conditions increases for the extreme quantiles, indicating that the so-called cooling effect for the coldest bin61

is in fact a regression to the mean effect, and can be reproduced with a simple autoregressive model on the synthetic ’temperature’ time62

series (i.e. ignoring covariability with other variables such as preciptation). The asymmetry between warm and cold temperature bins is63

due to the negative skewness of the observed temperature time series (Figure 1c). This skewness reduces the probability of sampling a64

cold day before or after a wet day in the coldest bin: not surprising given that wet days are generally cooler than dry days. Consequently,65

wet days in the warmest bins hardly exceed the climatological temperature while wet days in the cold bins strongly deviate from the66

climatology. We therefore conclude that, although the most intense precipitation events in Darwin are often fed by low pressure systems67

which cause cold air advection that may move some associated extreme precipitation events to lower temperature bins, the temporal68

temperature profile shown in Bao et al. (2017) reflects the statistical properties of autocorrelated temperature data (and does not prove69

that the most intense precipitation events are systematically displaced to colder bins), can be reproduced by the nature of the sampling70

and does not provide information on the presence or direction of causality between extreme rainfall and temperature.71

Bao et al. (2017) use surface air temperature as a scaling variable for precipitation extremes, as do most recent studies (Wang72

et al. 2017). However, atmospheric moisture scales with surface air temperature only under the assumption of constant relative73

humidity (Lenderink and van Meijgaard 2010) and it is well known that such conditions are not prevalent at high temperatures in74

the tropics (Hardwick Jones et al. 2010). Instead, we argue that dew point temperature (estimated by cooling air at constant pressure75

until saturation occurs) provides a more robust estimate of the amount of moisture available in the atmosphere since by definition a76

1
�C increase in the dew point temperature is equal to an approximately 7% moisture increase in the atmosphere (Lenderink and van77

Meijgaard 2010; Lenderink et al. 2017). We examined how precipitation extremes change with both air surface temperature and the78

dew point temperature using a quantile regression method that estimates a regression model at the tail (here the 99th percentile) of the79

conditional distribution. This approach has proven to be unbiased with respect to sample size along the temperature range (Wasko and80

Sharma 2014). While surface air temperature on the same day as the precipitation event scales negatively with daily precipitation depth81

(Figure 2,top) (note that using temperature before the storm reduces this negative scaling but does not reverse the sign), dew point82

temperature on the same day provides a positive scaling (Figure 2,bottom) that even slightly exceeds the CC relation. Indeed, as air83

surface temperature increases, deviation from dew point temperature increases (Figure 3). This deviation leads to a decrease in relative84

humidity and precipitation depth, indicating that humidity in the atmospheric boundary layer does not increase proportionately to air85

surface temperature. In this case, the only way for a warm air parcel to reach saturation is to rise and cool down until it saturates at86

high altitude. When the air parcel saturates, the maximum water vapor content in the atmosphere is actually lower than what we would87

expect from air surface temperature as it overestimates the actual temperature at condensation (Drobinski et al. 2016). Note that dew88

point temperature gives the humidity at cloud base assuming a non-entraining ascent. Additionally, moisture that transits over Darwin89

is generally picked up over the ocean and hence sea surface temperature might in this case be a better proxy for available moisture in90

the atmosphere. We therefore propose that a decrease in relative humidity at higher air temperatures is more likely the first-order driver91

of the negative scaling relation in Darwin. This historical relationship between dew point temperature and extreme precipitation is not92

necessarily inconsistent with future increases in extreme precipitation as reported in Fig 3c in Bao et al. (2017) and confirms previous93

results indicating that expected increases to precipitation extremes in response to global warming are primarily based on the expected94

moisture increase (Lenderink and Attema 2015). The dew point temperature thus appears as a legitimate avenue of investigating how95

precipitation extremes might change in the future.96

Finally, although the Bao et al. (2017) analysis was based on daily precipitation data, localised cooling associated with precipitation97

events can occur quite rapidly. Now we use sub-daily data to better understand the processes underlying the mutual causality of98
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precipitation extremes and dew point temperature over shorter timescales. Hourly precipitation extremes are generally more sensitive99

to day-to-day dew point temperature variations (Drobinski et al. 2016; Schroeer and Kirchengast 2017) and are expected to intensify100

at a faster rate than daily extremes in a warmer climate (Prein et al. 2016). We found that >91% of 1-h rainfall extremes in Darwin101

(defined as >95th percentile of wet hours) were embedded within short-duration (<12-hour) storms. We performed composite analyses102

and estimated the mean dew point temperature and air surface temperature (available as three-hourly data) centered on the 1-h peak103

intensity of short-duration storms. Both air surface temperature and dew point temperature reveal a short-term cooling effect due to104

the storm itself (as opposed to the gradual cooling over several days seen in Bao et al. (2017)) during its peak intensity (the larger the105

peak, the stronger the cooling effect) but the dew point temperature shows a warming effect spanning from 72 hours to 3 hours before106

the peak intensity (the stronger the warming effect, the larger the peak intensity), a period during which atmospheric water content is107

increasing (Figure 4). This indicates that i) dew point temperature controls the magnitude of short-duration storms, while the storm108

itself induces a cooling effect only during the peak intensity and ii) the cooling effect from the storm is unlikely to affect significantly109

scaling results for short-duration storms when using daily average dew point temperature and/or maximum dew point temperature110

within a day.111

3. Concluding remarks112

Results reported in Bao et al. (2017) raise two fundamental questions in the context of climate change: (i) Which variable comes first in113

the temperature-extreme precipitation scaling relationship? (ii) Can this scaling method accurately represent the influence of warming114

on extreme precipitation? Their results indicate that observed scaling based on surface air temperature is not reflective of future changes115

in precipitation extremes over Australia. We agree with this statement and have shown here that changes in relative humidity are the116

likely first-order drivers of the historical negative scaling found between air temperature and extreme precipitation in Darwin. This117

highlights the need to include moisture, in the form of dew point temperature, in the scaling relation and we would recommend that all118

further scaling studies consider its strong role.119

While possible feedbacks between atmospheric conditions and surface air temperature may confound the scaling relation, we have120

provided evidence that dew point temperature drives short-duration extreme precipitation, with the direction of causality reversed121

only for the storm’s peak intensity. This physical inference may serve as a basis to better quantify scaling rates and to help establish122

the relationship between extreme precipitation and environmental conditions in the current climate (Zhang et al. 2017), and thereby123

provide insights into future change to precipitation extremes due to climate change. Further research is clearly needed to better explain124

the role of local factors versus large-scale circulation drivers on temperature-precipitation scaling (Pfahl et al. 2017) and this may help125

to elucidate whether or not future changes in precipitation extremes are likely to exceed observed scaling rates estimated through dew126

point temperature variations.127
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Figure 1. a) Daily mean temperature observed in Darwin spanning 7 days before to 7 days after extreme precipitation events. Different colours from darkest blue (coolest)

to darkest red (warmest) represent the 10 different temperature bins. b) Same as Figure 1a but using a time series (N=10,000) with =0, =1 and the same skewness and

first-order autocorrelation observed in Darwin. The synthetic time series is then stratified into 10 bins by quantile (from 0.1 to 1) and its temporal evolution before/after

the values observed in each quantile is shown. c) Distribution of observed daily temperature illustrating the negative skewness of the data. The horizontal line (boxplot)

indicates the overall mean, as well as the standard deviation of the distribution.
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Figure 2. Estimation of the scaling slopes for the 99th percentile of wet days through a quantile regression method using both (a) daily air surface temperature and (b)
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reported.
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Figure 3. Relationships between daily air surface temperature (y-axis), the deviation of daily air surface temperature from daily dew point temperature (x-axis) and daily

precipitation depth (color). Note that the color scale is not linear.
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Figure 4. 3-hour a) dew point temperature and b) air surface temperature blocks observed in Darwin spanning 72 hours before to 72 hours after the peak intensity of
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one-third peak intensity (low), middle one-third peak intensity (normal) and upper one-third peak intensity of the distribution of the maximum 1-hour burst of each storm.
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