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Abstract

The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by
the Landau—Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly
valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL
or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to
micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion
regarding simulation cell size and temperature has to be established. Based on energetic considera-
tions, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested
in micromagnetic simulations which are performed with the Object Oriented Micromagnetic
Framework (OOMMEF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as
Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31 ML are determined
from micromagnetic simulations. The results show a good agreement with experimentally determined
Curie temperatures of bulk and thin film systems when temperature scaling is performed according to
the presented model.

1. Introduction

The classical Landau—Lifshitz equation (LL) describes the precession of a macroscopic magnetic moment (M) in
aferromagnet around the effective magnetic field (H.g) [1, 2].
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The precession of the magnetic moment (M) with time (t) around an effective magnetic field (Heg) is governed
by the gyromagnetic ratio () and the damping parameter (). The effective magnetic field includes
contributions from external fields, exchange interaction, anisotropies, etc. The phenomenological damping
parameter enables the system to transfer energy and angular momentum from the magnetic movement to other
degrees of freedom. The LL is mathematically equivalent to the Landau—Lifshitz-Gilbert (LLG) [3] equation and
only differs by the relation of the two parameters, o and y[2]. The LL and LLG leave the length of the
magnetisation vector unchanged and do not include temperature effects [4]. Therefore they are strictly valid
only at the absolute zero temperature. To include effects of elevated temperatures on magnetisation dynamics,
which are of importance for various research topics and effects, such as temperature gradients, spin-torque
effects, laser induced change of magnetisation dynamics, all-optical switching and heat assisted magnetic
recording, the LL or LLG have to be modified [2, 5-7]. Different approaches exist to include these temperature
effects in micromagnetic simulations for elevated temperatures. For constant temperatures, theoretically or
empirically determined values of the material parameters can be adjusted according to their temperature
dependence and then included as input parameters into the simulation [8]. A second possibility is to use the
Landau-Lifhshitz Bloch equation which was derived from the stochastic form of the Landau-Lithshitz (sLL)
equation by a mean-field approximation [2, 4, 9]. One of the most fundamental approaches is, to include the
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effects of finite temperature on a microscopic level, as it is done for the sLL. This can be achieved by transforming
the LL or LLG into a stochastic differential equation of Langevin (sLL) type [10]. Here, the interaction of an
isolated spin with a thermal bath is modelled by addition of a temperature dependent, stochastic Langevin field
to the effective field Heg [2, 4, 5]. This temperature dependent field points for each time step and elementary cell
into a random direction. The spatial varying fluctuation leads to a similarly varying precession of the magnetic
moment around the effective field direction. By averaging over a huge number of spins, this random
perturbation results in a decrease of the total magnetisation, compared to the unperturbed case at zero
temperature. The average of many of these interacting spins leads to a temperature dependence of the
macroscopic magnetic moment in accordance with spin wave theory [2]. Due to the high number of spins in
realistic ferromagnetic structures, this approach based on one spin per unit cell results in high computational
costs during micromagnetic simulation, and is therefore only applicable to rather small systems [2]. To apply the
sLL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion has to be
established. To express the problem with the words of the author of the Langevin extension (thetaevolve
package) for OOMMEF [11]:

‘For accurate numerical results (e.g. when trying to determine the Curie-temperature of a system) the
change of saturation magnetisation with temperature has to be respected. It is not yet clear exactly
how this is done best, but it is clear that it must be done in some way. Otherwise good results can only
be expected for a density of just a single spin per cell’ [12].

In the following we will derive such a conversion for bulk and two dimensional thin film systems from energetic
considerations at the Curie temperature. The conversion will be applied in temperature dependent simulations
with OOMME. Nickel, Cobalt and Iron bulk and Nickel thin film systems with varying cell sizes are simulated. It
will be tested if, and under which conditions, the given conversion has the power to estimate the Curie
temperatures of the different systems, which is not possible in standard micromagnetism.

2. Theory

2.1. Temperature scaling

To determine the scaling between the effective physical temperature (T,y;) and the input parameter used as
simulation temperature (T;,,) in dependence of the lattice constant (a.4) and the length of a elementary
simulation cell (a;,,) we follow arguments as given in chapter VII of [13]: above the Curie temperature (T¢) the
ferromagnetic behaviour of the respective material vanishes, because the energy originating from thermal
excitation overcomes the exchange interaction, which favours magnetic ordering. With other words: for a cubic
crystal at the Curie temperature (T¢) the order of magnitude of the product of the macroscopic exchange
interaction (A) and the square of the magnetisation M? per area a” (with length a) are equal to the averaged
energy per volume (kz T, /a’) [13]:

kg T. AM?
2~ )

a a

With kg as Boltzmann’s constant, A as the exchange stiffness, M as the magnetisation and a as the characteristic
length of the system. In a real world system, the characteristic length is identified with the lattice constant. In
micromagnetic simulations the characteristic length is given by the edge of the elementary simulation cell. The
magnetisation and exchange stiffness are independent of the characteristic length of the system, due to their
definition as magnetic moment density and energy per length, respectively. Thus, following equation (2) the
relation between temperature and length of two systems (simulation (sim) and effective/physical (eff)
parameter) can be expressed as

Tsim '1:3
~ 3)

Asim Aeff

Hence, the temperature T, as used in the simulation as input parameter can be determined from the physical
temperature T.yand the respective lattice constant a.and simulation cell length ag;,, as follows:

Asim
Tim = = Teﬁ‘ 4)

To determine the range where scaling can be applied, one has to consider the temperature effects on the
exchange length of the system, which depends on various simulation parameters [14—16] as will be discussed in
the following.
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Table 1. Overview over the simulation parameters for bulk materials. Shown are from left to right, the material and its crystal structure, the
length of the elementary cell, the magnetisation, anisotropy constant, exchange constant, the simulated, scaled and experimental Curie
temperatures, the exchange length and the thermal exchange length at TZ® . The sources of the experimental data are given next to the
respective value. All other simulation parameters are given throughout the text.

)\thex
Type agr (nm) M (A/m) K(m™) A(J/m) TME TIE® TP E  A(am) (am)
Fe(bcc)  0.286[18] 1700 x 10° 48 x 10 (cubic) 21 x 10712 4300 1230 1043[19] 3.4 0.55
Ni (fec) 0.345[18] 490 x 10°  —5.7 x 10> (cubic) 9 x 1072 1800 630 627[19] 7.7 0.59
Co (hep) 0.250" 1400 x 10° 520 x 10’ (uniaxial) 30 x 10~ '? 6000 1500  1388[19] 49 0.65

Note.
* For the hep lattice, a.gis given by the shorter lattice vector ay = 0.250 nm compared to by = 0.406 nm [20].

2.2. Thermal exchange length

To obtain meaningful results from micromagnetic simulations, the deviation of the direction of two
magnetisation vectors of neighbouring simulation cells has to be small. This can be achieved by decreasing the
size of the simulation cells. At T = 0 K for systems where the exchange interaction dominates over other
anisotropies, an upper limit for the reasonable size of a simulational cell is given by the exchange length A, [17]:

M = | 5)
o M5

Here, 119 is the magnetic permeability of the free space, and Mg the saturation magnetisation. The exchange
length gives the distance over which the above mentioned condition of small deviations of the directions of two
neighbouring magnetic moments is fulfilled. The exchange lengths of all simulated materials are in the range of
nanometers (see table 1).

When temperatures are above 0 K, thermal excitation’s and the resulting disorder have to be considered as
well. Therefore, the length of a simulation cell ag;,,, has to be smaller than the length over which thermal
fluctuations decay in space [14, 15]:

Asim ,-S >\thex (6)

Whereby the characteristic length A, is called thermal exchange length. The interplay of simulation cell size
with thermal effects was investigated by different authors [14—16]. For example, Tsiantos et al [ 14] defined A,

in analogy to equation (5) as
A
)\th - > (7)
“ \ eoMsHp
2 T
Hy = |20k T ®)
’YMOMS Asim At

and the simulation time step At. By replacing T, via equation (4) with T, the dependence of Tsiantos thermal
exchange length on the simulational cell length agj,,,, Teg5 and At can be expressed as

Athex O ﬂasim(TeklAt)l/z . 9

For given material parameters the condition of equation (6) can be strictly fulfilled only by a certain set of
temperatures, and simulational parameters. Especially when it is considered that the upper limit for the
simulation parameter At has to be chosen, such that for a given set of fixed parameters the absolute value of the
equilibrium magnetisation converges, when Atis decreased further. To asses if the given set of applied material
parameter for bulk materials (table 1) allows a simulational cell size to be chosen, such that it fulfils equation (6),
the thermal exchange length for different Atand a,, (figure 1 left) and T4 (figure 1 right) was calculated. It can
be seen, that especially at elevated temperatures, it cannot be avoided that the thermal exchange length becomes
smaller than the simulational cell size.

Nevertheless, according to Martinez et al [ 15] Ay, as defined by Tsiantos et al [ 14], does not necessarily
represent the true scale over which thermally introduced fluctuations within a ferromagnet decay in space [15].
With other words, solutions may converge even if equation (6) is not strictly fulfilled.

with the thermal field
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Figure 1. Shown are the dependence of the thermal exchange length according to equation (7) in dependence of Arand ay;,, at
Ter = 1 K(left) and T and agj,, at At = 10 fs (right) for Nickel (top), Iron (middle), Cobalt (bottom). The bulk simulation
parameter are given in table 1. The line in each graph indicates the isoline for Ay, = 1 nm.

Therefore, in the following sections we will address the question if the proposed temperature scaling
(equation (4)) can successfully reproduce the Curie temperatures” of different materials and whether it is
necessary to strictly fulfil the condition given in equation (6).

We note here, that generally the objective of micromagnetism is indeed not to determine the Curie temperature, still it represents the
natural test for any temperature scaling performed in ferromagnetic systems.

4
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Figure 2. Time evolution of the normalised magnetisation M(t)/M, and the component M,, of a Ni film with 6.3 ML for different
simulation temperatures. Given are four example for increasing (top to bottom) simulation temperatures (Tgy,) from top to bottom:
100 K (M:yellow, M,:ochre), 1000 K (M:light blue, M,:pink), 1500 K (M:light green, M,:dark blue), 1800 K (M:black, M,: red). The
average magnetisation approaches their final value after about 20 ps when M and M, start to deviate. Fluctuations increase with higher
temperature.

3. Micromagnetic simulations

To test the presented model various Ni bulk and thin films were simulated with the version 1.2b2 of the Object
Oriented Micromagnetic Framework (OOMMEF) [11] which implements micromagnetic simulations in magnetic
solids described by the finite-difference method. The temperature effects were simulated with the thetaevolve
extension [12] which adds the possibility to perform simulations with the sLL. To test the model for the
temperature scaling, as presented above, different simulations of Ni, Co and Fe bulk systems and Ni thin films
were performed. For a given temperature, the magnetisation (M = /M?2 + My2 + M?)was determined in all
simulations from the average over the last hundred values before reaching the end of the simulations at 50ps. As
initial condition the magnetisation was maximum along the x axis, which was oriented in plane. Under the
influence of the temperature the magnetisation in each simulation cell gets disturbed by the fluctuating field and
the total magnetisation, averaged over all cells, decreases. As an example the time evolution of a nickel film with
6.3 ML is shown for four simulated temperatures in figure 2. Within the first picosecond’s, the magnetisation
decreases quickly. Afterwards the approach towards the equilibrium magnetisation slows down and the
influence of fluctuations becomes visible. As expected, fluctuations are stronger for higher temperatures.

3.1. Effects of the cell size

To asses the general power of the Langevin extension to estimate the Curie temperature without any scaling, a
simulation of a bulk Nickel system with ‘atomic’ dimensions of the simulation cell (4, = ao; = 0.354 9 nm)
and no temperature scaling (Ty;,,, = T,p) asystemsize of 30 x 30 x 10 cells, atime step of At = 0.1 fsand
damping parameter & = 0.05[21, 22] was performed (figure 3 red squares). All other simulation parameters of
the simulated bulk systems are given in table 1. This system was compared with a similar system (figure 3 black
circles) with increased cell size (as;,, = 1nm) and time step (At = 1 fs). After temperature scaling for the system
with ay;,,, = 1 nmaccording to equation (4), both simulations show the same decrease of the magnetisation in
dependence of the effective temperature (figure 3).

To be able to perform simulations for systems with increased size it is often beneficial to be able to use shorter
simulation time steps and increased simulation cell sizes. Therefore, further simulations were performed with
increased number of cells (50 x 50 x 10), and settings optimised for higher simulation speed (At = 10 fs,

« = 0.5) for four different cell sizes (figure 3: 1 nm pink stars, 2 nm green cross, 4 nm blue triangles, 8 nm black
diamonds). The T,ydependent magnetisation for cell sizes of 1 nm and 2 nm systems and At = 10 fs show good
agreement with the magnetisation dependence of the simulations with shorter time steps despite the fact that
Asim > Ahex- All systems approach the region of the phase transition, where M(T) drops below 5% of M(0 K),
between 630 K—670 K. This results are comparable with the Curie temperature of Ni (T2 "= 627 K)[19].

We note here, that simulational and experimental results are in agreement despite the fact that
Asim > Ahex (10). For ag;,, = 4 nm the magnetisation decreases slower, with transition temperatures above
700 K. The cell length of 8 nm, which is even above the non-thermal exchange length ), (table 1), leads to an
even stronger overestimation of the Curie temperature above 1000 K.
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Figure 3. Magnetisation in dependence of the scaled temperature (T.g) for Ni for different simulation cell sizes, damping parameter
and simulation steps. Simulations with v = 0.05 were performed for 10 x 30 x 30 cells. Simulations with @ = 0.5 were performed
for 10 x 50 x 50 cells. Additional simulation parameters are given in table 1. The given temperature (T.¢) was calculated from
equation (4) from the simulation temperature (T, ).
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Figure 4. Magnetisation in dependence of the scaled temperature (T.g) for three bulk materials with 1 nm cell size: Ni (green
diamonds), Fe (Red squares) and Co (black circles) together with the respective plot of Bloch’s T*? law:

M(T)/M(OK) =1 — (T/T:)*?(Ni: Green solid line, Fe: Red broken line, Co: Black dotted line). For detailed simulation
parameters see table 1.

3.2. Bulk ferromagnets

To test weather this parameter set (1 nm cell size, 50 x 50 x 10 cells, At = 10 fs, @« = 0.5) is capable to
estimate the Curie temperature of other ferromagnetic materials temperature dependent simulations were
performed for Nickel, Cobalt and Iron. The results are displayed together in figure 4 with Bloch’s T/ law and
Curie temperatures from the literature [ 19]. After temperature scaling according to equation (4), the simulation
predicts the phase transition of Nickel around Téﬁ = 630 K (green diamonds), overestimates the value for
Cobalt (Téﬁ( = 1500 K) slightly by about 8% and for Iron (Téﬁ = 1230 K) by about 20%. In comparison, the
non scaled values overestimate the Curie temperatures strongly: Ni T&™ = 1800 K, Fe T&™ = 4300 K and

Co T&™ = 6000 K.

3.3. Thin ferromagnetic films

The behaviour of ferromagnetic systems with thickness values of a couple of mono layer (ML) is of high interest
due to the possibility to tune magnetic properties such as the crystalline anisotropy or Curie temperature by
changing their thickness [23, 24]. For example, the type and orientation of crystalline anisotropy of thin Ni films
increases by a factor of twenty in thin film systems compared to the bulk, and between 6-40 ML it is best
described as uniaxial, which leads to a perpendicular easy axis [24, 25]. This makes them a promising material for
applications in data storage or electronics [2, 26]. Due to their reduced Curie temperature [23, 27] inclusion of
temperature effects becomes even more important than for bulk systems. To test weather the temperature
scaling is applicable to low dimensional systems, or if finite size effects have to be included, the behaviour of Ni

6
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Figure 5. Simulation results of the Curie temperature of Niin dependence of the film thickness given in mono layer (ML). Shown are
the single cell (black squares) and the multi cell (blue circles) simulations together with the model according to equation (10) (red
curve).

thin films with 6 to 36 ML (1 nm to 6 nm thickness) were simulated. Within films with a thickness below the
exchange length, an uniform magnetisation can be assumed [24]. Therefore in a first simulation run only one
cellin z direction was simulated, the whole system was 100 x 100 x 1 cells big, the time step At = 10 fs, and
the damping parameter & = 0.5andK = 1.5 x 10° Jm . During a second simulation run the cell length was
set constant (1 nm) in z direction, and the number of cells was varied (nz = 1 —6), with 100 x 100 x nzcells.
When the simulated Curie temperatures are compared with experimental values, it has to be noted that they
strongly depend on substrate and growth conditions [23, 24, 27]. For example, Tcof a I10ML Ni film grown on a
Cu(110) or Cu(111) surface can vary approximately over 50 K [27]. Therefore we compare our results with a
model developed by Zhang et al [27], for the thickness dependent (n, no of mono layers) change of the Curie
temperature (T (n)) of thin films:

A
Te(n) = Tc(OO)(l - (M) ) (10)
2n

With T (00) as the bulk value of the Curie temperature, Ny as a material dependent constant, and A as the
‘temperature shift exponent’ which depends on the spin-spin interaction of the material, and the condition that
n > Ny. For Nickel, Zhang et al determined Ny = 4.7 MLand A\ = 1[27]. The simulations result and the model
according to equation (10) are shown in figure 5. It is evident that the simulated thickness dependence of the
Curie temperature in the single cell simulation (figure 5, black squares) is best described by linear dependence
(linear fit, R* = 0.99—not shown) instead of the model given in equation (10). In contrast, the multi cell
simulation (figure 5, blue circles) with homogeneous cell length follows the behaviour of equation (10) (red
curve) for Nickel and is therefore a good approximation to the model, derived from experimental data.

4. Summary

To describe the movement of the magnetic moment of a ferromagnet at elevated temperatures, the Landau
Lifthshitz equation can be extended into a stochastic equation of the Langevin type. Temperature effects are
included by addition of a fluctuating field with white noise properties. The application of such a stochastic
equation in micromagnetic simulations needs a discretization of the geometry of the magnet into different
simulation cells. When this fundamental simulation cells include more than one spin [2], a scaling of the
temperature should be performed. Based on considerations of the energy of magnetic interactions at the
transition from ferromagnetic to paramagnetic phase, a scaling relation (equation (4)) in linear dependence of
the simulation cell length was proposed. Under considerations of the thermal effects on the exchange length, the
application of the proposed model was investigated. The scaling model was applied in micromagnetic
simulations for ferromagnetic materials of general interest, Nickel, Cobalt and Iron. It was tested for different
cell sizes, temperatures and bulk as well as thin film systems. Within the simulated parameter range, the best
agreements between simulated and experimentally determined bulk Curie temperatures was achieved for Nickel
(within 1%), followed by Cobalt (overestimated by 8%) and Iron (overestimated by about 20%). The simulation
of Nickel films in the range of 6 ML to 36 ML reproduced quantitatively the change of the Curie temperature
with film thickness as predicted by theoretical models [27] when simulation cell sizes of 1 nm are considered.
Generally, simulation cell sizes below 2 nm gave the best results for the determination of the Curie temperature

7
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for the simulated systems even without fulfilling the condition regarding the thermal exchange length as defined
in equation (7). This is in agreement wit the results by Martinez et al [ 15] which concluded that in this form, Ay,
“...does not represent the true scale over which thermal fluctuations decay in space.’[15] Thus, the question how to
obtain a general expression for the determination of the maximal length of a simulational cell size remains
open[15].

In conclusion, the presented scaling model for temperature scaling in micromagnetic simulation with the
stochastic Landau—Lifshitz equation is, despite its simplicity, able to predict the temperature dependent decrease
of the magnetisation up to the Curie temperature. Nevertheless, care has to be taken to choose simulation cell
size and simulational time steps to achieve convergence of the results.
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